Tunhe Zhou

Laboratory x-ray phase-contrast imaging: methods and comparisons

Time: Fri 2016-10-14 13.00 - 16.00

Lecturer: Tunhe Zhou

Location: FD5

Title: Laboratory x-ray phase-contrast imaging: methods and comparisons
Candidate: Tunhe Zhou
Time: Friday October 14, 2016, at 13:00
Location: Room FD5
Opponent: Prof. Tim Salditt, Institute for X-ray physics, Göttingen
Supervisor: Assistant Professor Anna Burvall

Abstract: X-ray phase-contrast imaging has seen rapid development in recent decades due to its superior performance in imaging low-absorption objects, compared to traditional attenuation x-ray imaging. Having higher demand on coherence, x-ray phase-contrast imaging is performed mostly at synchrotrons. With the development of different imaging techniques, and the development of laboratory sources and x-ray optics, x-ray phase-contrast imaging can now be implemented on laboratory systems, which is promising and practical for broader range of applications.

The subject of this thesis is the implementation, development and comparison of different laboratory phase-contrast methods using a liquid-metal-jet source. The three x-ray phase-contrast imaging methods included in this thesis are the propagation-, grating-, and speckle-based techniques. The grating-based method has been implemented on a laboratory system with a liquid-metal-jet source, which yields several times higher brightness than a standard solid-anode microfocus source. This allows shorter exposure time or a higher signal-to-noise ratio. The performance of the grating-based method has been experimentally and numerically compared with the propagation-based method, and the dose required to observe an object as a function of the object’s diameter has been investigated with simulations. The result indicates a lower dose requirement for the propagation-based method in this system but a potential advantage for the grating-based method to detect relatively large samples using a monochromatic beam.

The speckle-based method, both the speckle-tracking and speckle-scanning techniques, has been implemented on a laboratory system for the first time, showing its adaptability to radiation of low temporal coherence. Tomography has been performed and shows the potential applications of this method on quantitative analysis on both absorption and phase information of materials. As a basis for further optimization and comparisons to other methods, the noise properties of the differential phase contrast of the speckle-based method have been studied and an analytical expression for the noise variance introduced, showing a similarity to the grating-based method.

2016-10-14T13:00 2016-10-14T16:00 Tunhe Zhou Tunhe Zhou
Top page top