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(a) 

Abstract 
 
 

Quasi-phase-matching (QPM) is a method to get efficient and tailored second-order 

nonlinear interactions. Several techniques exist for fabrication of periodic domain 

structures in ferroelectric crystals for QPM- based frequency conversion. By far, electric 

field-poling using lithographically patterned electrodes on the z-face of the crystal is the 

most common one. High-quality, periodically inverted ferroelectric domain structures in 

flux-grown KTiOP   (KTP) crystals were fabricated already in the late 90’s using this 

technique. It has been shown that a slight Rb doping of the KTP crystal (RKTP) facilitates 

the periodic poling. However, fabrication of two-dimensional (2D) domain structures in 

RKTP has not yet been investigated. A disadvantage with the lithographic patterning is 

that each sample needs to be patterned individually, which is tedious and time 

consuming. Moreover, when it comes to small domain features, which are required by 

the next generation of nonlinear optical devices, a more versatile poling technique has to 

be developed due to the limitations of conventional photolithography.  

 

In this work, we present a new technique for 2D domain inversion in a 1 mm thick 

RKTP crystal and demonstrate the densest 2D lattice in a KTP isomorph. First, 2D 

periodic arrays of silicon spikes with 20 µm periods and silicon pillars with 5 µm 

periods were constructed using isotropic dry etching. Second, the silicon arrays were 

used as a contact electrode in order to periodically pole the RKTP crystal. A 2D domain 

pattern with 20   20     and 5   5     periods were obtained. A high normalized 

conversion efficiency of 1.27 %         was obtained for frequency doubling of a CW 

Ti-Sapphire laser at 894 nm for the 5 µm period pattern. The measured temperature 

bandwidth was 4.25     from which we estimated an effective crystal length of 5.4 mm, 

which is very close to the physical structure length of 6 mm.  

 

This novel poling technique has several advantages. First, the silicon electrode is 

reusable and there is no need for patterning each sample individually. Second, the 

crystalline structure of silicon provides high accuracy and reproducibility in the 

electrode fabrication. Finally, Si array electrodes can be designed for any desirable 

period or electrode geometry. Therefore, contact electrode poling with this technique 

can be a more convenient, flexible, and suitable method for making small feature domain 

patterns, and it also can reduce the fabrication costs.  
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1	Introduction		

1.1	Background		

Nonlinear	frequency	conversion	is	a	very	attractive	method	for	achieving	coherent	radi‐
ation	 in	 spectral	 regions	 inaccessible	 by	 available	 lasers,	 leading	 to	 potential	 applica‐
tions	 ranging	 from	 optical	 communication,	 spectroscopy	 and	 remote	 sensing,	 projec‐
tors,	material	processing	to	diagnostic	and	medical	treatment.	Many	applications	of	fre‐
quency	conversion	are	based	on	second‐order	nonlinear	effects	utilizing	the	߯ሺଶሻ		com‐
ponent	 of	 the	 susceptibility	 tensor,	 which	 is	 a	 characteristic	 of	 non‐centrosymmetric	
materials,	such	as	lithium	niobate	(LN),	potassium	titanyl	phosphate	(KTP),	lithium	tan‐
talate	 (LT),	 etc.	 These	 nonlinear	materials	 have	 relatively	 high	 nonlinear	 coefficients	
and	are	useful	for	applications	such	as	second	harmonic	generation	(SHG),	optical	par‐
ametric	oscillation	(OPO),	and	optical	parametric	amplification	(OPA).		

Due	to	dispersion	in	the	material,	incident	and	generated	waves	with	different	wave‐
lengths	travel	at	different	velocities	and	become	out	of	phase,	thus	reducing	the	conver‐
sion	efficiency.	For	efficient	frequency	conversion,	it	is	necessary	to	maintain	the	phase	
match	between	the	interacting	wavelengths,	i.e.	,	to	transfer	the	energy	to	the	generated	
wave,	 the	 relative	phase	of	 the	 interacting	waves	must	be	 kept	 constant.	Quasi‐phase	
matching	(QPM)	brings	the	interacting	waves	into	phase	by	adding	an	artificial	momen‐
tum	 vector.	 The	 artificial	 momentum	 vector	 in	 QPM	 originates	 from	 a	 periodic	 QPM	
structure.		By	periodically	inverting	the	polarization	vector,	the	sign	of	the	χ(2)	suscepti‐
bility	 can	 be	 altered	 and	 the	 accumulated	 phase	 mismatch	 between	 the	 	 interacting	
waves	is	reset.	Changing	the	polarization	locally	in	ferroelectric	material	to	achieve	QPM	
is	 called	 ferroelectric	domain	engineering	or	periodic	poling.	With	 this	 technique	 it	 is	
possible	 to	 phase‐match	 any	 conversion	 in	 the	 transparency	 range	 of	 the	 nonlinear	
crystal,	usually	from	mid‐infrared	to	near	ultra‐violet.	

There	are	many	different	 techniques	 for	achieving	polarization	switching	 in	 ferroe‐
lectric	materials,	including	chemical	treatment,	modulation	of	the	sign	of	the	nonlineari‐
ty	during	the	 ferroelectric	crystal	growth,	electron	beam	lithography	and	electric	 field	
poling.		The	latter	is	the	most	common	technique,	which	is	implemented	by	applying	an	
electric	field	periodically	over	every	coherent‐length	of	the	interaction	in	the	ferroelec‐
tric	material.	 Conventional	 electric‐field	poling	 relies	 on	 the	 creation	of	 periodic	 elec‐
trodes	via	contact	photolithography,	limiting	the	domain	size	to	1	µm.	The	lithography	
process	for	patterning	micro‐structured	electrodes	on	each	crystal	is	a	complicated	and	
time	 consuming	 procedure.	 The	width	 of	 the	 domain‐inverted	 regions	with	 this	 tech‐
nique	is	always	larger	than	that	of	the	initially	deposited	electrode	region.	This	effect	is	
called	 domain	 broadening	 and	 it	 influences	 the	 accuracy	 of	 the	 duty	 cycle.	 Domain	
broadening	is	due	to	the	tangential	component	of	the	electric	field	which	results	in	po‐
larization	reversal	under	the	photoresist	isolating	layer	[1].	In	order	to	improve	the	in‐
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verted	domain	grating	quality	and	compensate	for	the	domain	broadening,	it	has	been	
proposed	to	pattern	the	metal	electrodes	with	less	duty	cycle	[2].	Hence,	in	the	case	of	a	
large	wavevector	mismatch	 the	QPM	structure	needs	to	be	 in	 the	scale	of	sub‐micron.	
This	corresponds	to	sub‐micron	electrode	dimensions	for	small	domain	pattern	grating	
which	is	hard	to	achieve	by	the	photolithography	process.		
		
Latest	efforts	to	reduce	the	domain	size	to	sub‐micron	scale	with	less	domain	broad‐

ening	include	1)	periodic	poling	of	KTP	crystal	with	720	nm	period	for	backward	second	
harmonic	generation	[3],	2)	poling	of	Rb‐doped	KTP	(RKTP)	crystal	with	690	nm	period	
[4],	and	3)	fabrication	of	periodically	poled	KTP	(PPKTP)	crystals	with	800	nm	period	
for	mirrorless	optical	parametric	oscillation	[5]	,	[6].	In	order	to	simplify	the	poling	pro‐
cess	and	to	speed	up	the	fabrication	procedure,	etched	Si	stamper	electrode	with	3	µm	
period	has	been	investigated	as	an	alternative	electrode	for	formation	of	1D	domains	by	
contact	poling	in	LiNbOଷ	[7].	However,	these	electrodes	were	fabricated	by	wet	etching	
and	the	sample	thickness	was	limited	to	~200	µm.	

1.2	Objective	of	the	work	

The	aim	of	 this	 thesis	 is	 to	 investigate	a	new	 technique	 for	 ferroelectric	domain	engi‐
neering	 on	 the	micron	 scale	which	 can	 reduce	 the	 domain	 broadening	 as	well	 as	 the	
complexity	and	lithography	problems	of	the	conventional	technique.	In	this	approach	an	
array	 of	 silicon	 needles	 is	 used	 as	 a	 periodic	 electrode	 for	 applying	 voltage	 over	 the	
crystal	 in	 a	 periodic	 fashion.	 To	 explore	 the	 feasibility	 of	 this	 technique,	 two‐
dimensional	gratings	with	different	periodicity	are	fabricated	as	silicon	needles	on	a	p‐
type	silicon	wafer.	This	silicon	array	of	needles	 is	used	to	create	 two‐dimensional	do‐
main	structures	 in	RKTP	crystal.	Reproducing	the	grating	structure	of	the	silicon	elec‐
trode	with	high	accuracy	on	a	crystal	can	lead	to	new	achievements	in	periodic	poling	
technique	and	new	applications	of	quasi‐phase	matched	devices.	Finally,	the	ferroelec‐
tric	domain	structures,	poled	with	silicon	electrodes,	were	analyzed	and	the	optical	per‐
formance	of	periodically	poled	crystals	was	evaluated.		
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2	Nonlinear	optics	
In	 classical	optics	 the	 light‐matter	 interaction	 induces	oscillating	dipoles	with	 the	 fre‐
quency	of	the	incoming	light.	Nonlinear	optics	 is	the	field	of	optics	that	studies	the	in‐
teraction	of	 light	with	matter	 in	 the	regime	where	 the	response	of	 the	material	 to	 the	
electromagnetic	 radiation	 is	 nonlinear	 and	 depends	 on	 the	 electric	 field	 amplitude	 of	
the	 radiation.	 If	 the	power	of	 the	 incoming	 light	 is	high	enough,	 the	properties	of	 the	
material	become	dependent	on	the	intensity	of	the	illumination.	The	induced	oscillating	
dipoles	 create	photons	with	 frequencies	 that	are	not	present	 in	 the	 incoming	 light.	 In	
the	first	nonlinear‐optical	experiment	of	the	laser	era	which	was	performed	by	Franken	
et	al	in	1961,	a	ruby	laser	radiation	with	a	wavelength	of	694.2	nm	was	used	to	generate	
the	second	harmonic	in	a	quartz	crystal	at	a	wavelength	of	347.1	nm	[8].	This	work	was	
followed	by	the	discovery	of	a	rich	diversity	of	nonlinear	optical	effects	[9].	Therefore,	
in	order	to	describe	frequency	conversion,	it	is	necessary	to	understand	the	principles	
of	nonlinear	optics.	In	this	Chapter,	the	physics	behind	the	nonlinear	frequency	conver‐
sion	will	be	discussed.	

2.1	Linear	and	nonlinear	polarization	

When	 an	 electromagnetic	wave	 passes	 through	 a	 dielectric	medium,	 the	 electric	 field	
induces	a	polarization	in	the	material.	For	low	intensity	electromagnetic	waves,	the	ma‐
terial	response	can	be	approximated	in	the	following	way:	

P෩ሺtሻ ൌ ϵ଴χ
ሺଵሻE෩ሺtሻ,																									(2.1)	

where	ϵ଴	is	the	permittivity	of	the	vacuum	and	ܧ	෩ 	is	the	electric	component	of	the	elec‐
tromagnetic	wave.	This	equation	shows	a	linear	dependence	of	the	polarization	P෩	on	the	
electric	field	with	a	proportionality	factor		χሺଵሻ	(first	order	susceptibility),	which	applies	
to	the	linear	optical	phenomena.	When	it	comes	to	more	intense	electromagnetic	waves,	
Eq.(2.1)	can	be	extended	to:			

P෩ሺtሻ ൌ ϵ଴ൣχ
ሺଵሻE෩ሺtሻ ൅ χሺଶሻE෩ଶሺtሻ ൅ χሺଷሻE෩ଷሺtሻ ൅ ⋯ ൧	,																							(2.2)	

or	

P෩ሺtሻ ൌ P෩ሺଵሻ ൅ P෩ሺଶሻ ൅ P෩ሺଷሻ ൅ ⋯	.																									(2.3)	

The	parameters	χሺଶሻ	and	χሺଷሻ	in	Eq.(2.2)	are	the	second	and	third	order	susceptibilities,	
respectively.	Regarding	the	linear	and	the	nonlinear	components,	Eq.(2.3)	can	be	writ‐
ten	as:		

P෩ሺtሻ ൌ P෩୐ ൅ P෩୒୐		.																							(2.4)	

If	the	nonlinear	part	of	the	induced	polarization	is	strong	enough,	the	oscillating	dipoles	
inside	the	material	emit	photons	with	other	frequencies	[10].	
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2.2	Second	order	nonlinear	processes	

The	 term	 	ϵ଴χ
ሺଶሻE෩ଶሺtሻ	 	 in	 Eq.(2.2)	 describes	 the	 second	 order	 nonlinear	 interactions,	

which	are	illustrated	in	Fig.(2.1).	

 

 

 

 

 

 

                                                  Figure 2.1 Second order nonlinear interaction processes. 

Figure	(2.1.a)	shows	the	second‐harmonic	generation	process,	where	two	incident	pho‐
tons,	each	with	frequency	ω,	are	combined	to	give	one	new	photon	with	frequency	2ω.	
The	induced	polarization	in	the	nonlinear	medium	is	then	as	follows:	

P෩ሺଶሻ ൌ 2ϵ଴χሺଶሻEE∗ ൅ ሺϵ଴χ
ሺଶሻEଶeି୧ଶன୲ ൅ c. c. ሻ.																									(2.5)	

The	first	term	of	Eq.(2.5)	represents	the	zero	frequency	contribution,	known	as	optical	
rectification.	 The	 second	 term	 represents	 the	 generated	 second‐harmonic	 signal	with	
frequency	2ω.	Second‐harmonic	generation	 is	 in	practice	useful	 to	access	 the	spectral	
range	of	shorter	wavelengths.	

Figure	 (2.1.b)	 shows	 the	 case	 of	 sum‐frequency	 generation	 (SFG)	 and	 difference‐
frequency	generation	(DFG).	In	SFG,	two	incident	photons	with	frequencies	߱ଵ	and	߱ଶ	
propagating	through	the	nonlinear	medium	are	combined	to	creat	a	photon	with	higher	
energy,	߱ଷ ൌ ߱ଵ ൅ ߱ଶ.	 In	 the	 DFG	 case,	 a	 lower	 energy	 photon	 is	 created	with	 a	 fre‐
quency	of		߱ଷ ൌ ߱ଵ െ ߱ଶ	(observe	that	here	߱ଵ ൐ ߱ଶ	).	

Figure	(2.1.c)	shows	another	possible	second	order	nonlinear	interaction	called	fre‐
quency	 down‐conversion	 or	 optical	 parametric	 generation	 (OPG).	 Here,	 one	 photon	
with	frequency	ωଵ	propagating	through	the	nonlinear	medium	is	split	into	two	photons	
with	frequencies	ωଶ	and		ωଷ		repectively.	If	the	nonlinear	medium	is	placed	in	an	optical	
resonator,	the	configuration	is	called	optical	parametric	oscillator	(OPO)	[11].	

2.3	Susceptibility	coefficient	

The	nonlinear	susceptibility	is	introduced	as	a	tensor	of	rank	m+1	for		χሺ୫ሻ,	but,	usually,	
a	nonlinear	coefficient,	d,	is	used	instead	of		χ	tensor	and	is	defined	in	the	following	way:		

 

 

 

߯ሺଶሻ 

߯ሺଶሻ 

߯ሺଶሻ 

߱ 

߱ଵ 

߱ଶ 

߱ଵ 

߱ଵ
߱ଶ 
߱ଷ 

߱ଵ
߱ଶ

߱ଷ 

߱ 

2߱ SHG 

SFG, DFG 

OPG, OPO 

߱ଷ ൌ ߱ଵ ൅ ߱ଶ 
߱ଷ ൌ 2߱ଵ 				߱ଷ ൌ 2߱ଶ 

a 

b 

c 
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d୧୨୩ ൌ
ଵ

ଶ
χ୧୨୩					.																				(2.6)	

If	 the	 condition	 of	 permutation	 symmetry	 applies,	d୧୨୩ ൌ d୧୩୨,	 the	 d‐tensor	 can	 be	 ex‐

pressed	as	a	3ൈ6‐element	matrix,	and	the	polarization	of	the	generated	photons	in	Car‐
tesian	coordinates	is	given	by	the	components:	

ۉ

ۈ
ۇ
൫Pனయ

ሺଶሻ൯
୶

൫Pனయ

ሺଶሻ൯
୷

൫Pனయ

ሺଶሻ൯
୸ی

ۋ
ۊ
ൌ 2ϵ଴K ൥

dଵଵ dଵଶ dଵଷ			dଵସ dଵହ dଵ଺
dଶଵ dଶଶ dଶଷ			dଶସ dଶହ dଶ଺
dଷଵ dଷଶ dଷଷ			dଷସ dଷହ dଷ଺

൩

ۉ

ۈ
ۈ
ۈ
ۇ

ሺEனభሻ୶ሺEனమሻ୶
ሺEனభሻ୷ሺEனమሻ୷
ሺEனభሻ୸ሺEனమሻ୸

ሺEனభሻ୷ሺEனమሻ୸ ൅ ሺEனభሻ୸ሺEனమሻ୷
ሺEனభሻ୶ሺEனమሻ୸ ൅ ሺEனభሻ୸ሺEனమሻ୶
ሺEனభሻ୶ሺEனమሻ୷ ൅ ሺEனభሻ୷ሺEனమሻ୶ی

ۋ
ۋ
ۋ
ۊ

 ,             (2.7)	

where	ωଷ		is	 the	 frequency	of	 the	generated	photon	due	 to	 the	annihilation	of	 the	two	
photons	 with	 frequencies	 ωଵ	 and	 ωଶ.	 K	 is	 the	 degeneracy	 factor,	 given	 by	 K=½	 ,	
when	ωଵ ൌ ωଶ	(	SHG	case)	and	K=1	when	ωଵ ് ωଶ[12].	

Considering	a	 second‐order	nonlinear	 interaction,	 the	 susceptibility	 coefficient	 	χሺଶሻ	
only	appears	in	crystals	without	a	center	of	inversion.	In	many	materials,	therefore,		χሺଶሻ	
vanishes	due	to	their	centrosymetric	crystal	structure.	

2.4	The	coupled	wave	equation		

The	new	frequency	components	of	the	electromagnetic	field	can	be	expressed	by	intro‐
ducing	a	wave	equation.	 If	 the	nonlinear	part	 is	added	to	the	standard	wave	equation,	
one	can	extract	the	coupled	wave	equation	between	the	interacting	waves	by	the	follow‐
ing	expression:	

ଶE׏ ൌ μ଴σ
ப୉

ப୲
൅ μ଴ϵ଴

பమ୉

ப୲మ
൅ μ଴

பమ୔

ப୲మ
	,																									(2.8)	

where	μ଴	is	the	vacuum	permeability	and	σ	is	the	conductivity	of	the	crystal.		

Assuming	a	wave	propagating	in	the	x‐direction.	In	the	second	harmonic	generation	
process,	it	takes	the	form	of	plane	waves,	Eሺx, tሻ ൌ ½ൣEሺx, ωሻeି୧ሺ୩୶ିன୲ሻ൧ ൅ c. c	,	and	with	

the	approximation	of	a	 slowly	varying	electric	 field,	 i.e.		ୢ
మ୉

ୢ୶మ
≪ k ୢ୉

ୢ୶
		,	 the	 three	coupled	

equations	at	each	frequency,	can	be	derived	as	following:	

																																	ப୉భ
ப୶

ൌ െαଵEଵ ൅
୧னభ

మ

୩భୡమ
Kdୣ୤୤EଷEଶ

∗eି୧∆୩୶ , 

ப୉మ
ப୶

ൌ െαଶEଶ ൅
୧னమ

మ

୩మୡమ
Kdୣ୤୤EଷEଵ

∗eି୧∆୩୶	,																									(2.9)	
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2.5.1	Birefringent	phase‐matching	and	quasi‐phase	matching		

There	are	several	techniques	for	compensating	the	phase	mismatch	in	the	crystal.	One	
technique	 takes	advantage	of	 the	natural	birefringence	of	 the	medium	itself. The	bire‐
fringence	is	defined	as	the	difference	between	the	refractive	indices	of	the	ordinary	and	
the	 extraordinary	 wave	 defined	 on	 the	 principal	 axis	 of	 the	 crystal.	 In	 birefringent	
phase‐matching,	 by	 choosing	 a	 specific	 “cut”	 or	 crystal	 orientation,	 the	 interacting	
waves	experience	the	same	refractive	indices.	Consequently,	they	propagate	at	the	same	
phase	velocity	and	∆k	is	thus	zero.	Growth,	preparation	and	alignment	of	these	crystals	
is	 straightforward.	 However,	 the	 applicability	 of	 simple	 birefringent	 phase‐matching	
can	 be	 limited	 by	 a	 number	 of	 factors.	 First,	 since	 the	method	 relies	 on	 the	material	
properties	(the	dispersion	and	the	birefringence),	finding	a	crystal	orientation	that	sat‐
isfies	the	phase‐matching	condition	is	challenging.	Second,	the	nonlinearity	depends	on	
the	propagation	direction	in	the	crystal.	

Another	phase	matching	technique,	which	is	based	on	the	compensation	of	phase	ve‐
locity	 differences	 between	 the	 interacting	 waves,	 is	 quasi‐phase	 matching	 (QPM).	 In	
QPM,	 the	sign	of	 the	nonlinear	susceptibility	 is	modulated	 in	 the	spatial	 coordinate	 to	
prevent	accumulation	of	phase	mismatch.	Such	a	spatial	modulation	can	be	obtained	in	
ferroelectric	crystals	by	periodically	altering	the	crystal	orientation	and	in	this	way	the	
effective	 nonlinearity	 changes	 between	 െdୣ୤୤	and	 ൅dୣ୤୤.	 The	 interacting	 waves	 still	
propagate	with	different	phase	velocities,	but,	when	the	accumulated	phase	mismatch	
reaches	π,	 the	 sign	 of	 the	 driving	nonlinear	 susceptibility	 is	 also	 reversed	 so	 that	 the	
phase	difference	 is	reset	 to	zero.	This	creates	a	step‐wise	growth	in	the	output	power	
along	the	crystal	length	as	can	be	seen	in	Figure	2.2.c.	Ideally,	the	modulation	is	done	af‐
ter	each	coherence	 length,	Lୡ		,	 and	 is	 referred	to	as	 the	 first‐order	QPM.	One	can	also	
use	higher	order	QPM	where	the	material	is	modulated	with	a	period	of	several	coher‐
ence	lengths.	Besides	a	higher	efficiency,	QPM	structures	can	be	made	with	any	period	
and	structure	as	well	 as	provide	phase	matching	 for	any	nonlinear	process	 inside	 the	
transparency	window	of	the	material	[15].		

In	a	QPM	structure,	the	periodically	modulated	nonlinear	coefficient	is	used	to	com‐
pensate	for	the	phase	mismatch	in	the	crystal.	This	nonlinear	coefficient,	݀,	can	be	writ‐
ten	in	the	spatial	coordinate	by	a	Fourier	expansion:	

dሺxሻ ൌ d୧୪ ∑ G୫ exp൫ik୫୕x൯	ஶ
୫ୀஶ ,																									(2.10)	

where	d୧୪	is	the	nonlinear	coefficient,	k୫୕	is	the	m୲୦	order	grating	vector	which	satisfies	

the	phase‐matching	condition,	and	G୫	is	the	Fourier	coefficient	of	the	m୲୦harmonic	de‐
fined	as	[16]:	

G୫ ൌ ଶ

୫஠
sinሺmπDሻ.																									(2.11)	

Here,	D	is	the	duty	cycle,	which	is	determined	by	the	ratio	of	the	reversed	domain	length	
and	 the	 structure	 period.	 From	 Eq.(2.11)	 it	 follows	 that	 the	 most	 efficient	 phase‐
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matching	will	be	 for	 the	 first	order	QPM	(m	=	±1)	and	with	a	duty‐cycle	of	50	%	(D	=	
1/2).	 Whereas	 for	 second‐order	 QPM,	 efficient	 phase‐matching	 is	 gained	 for	 a	 duty‐
cycle	of	25	%	(D	=	1/4).	

2.5.2	Quasi‐phase	matched	second‐harmonic	generator		

The	wave	vector	mismatch	for	QPM	SHG	can	be	written	as:	

Δk୕ ൌ kୗୌୋ െ 2k୊ െ k୫୕,																										(2.12)	

where	k୫୕	,	the	so	called	m୲୦harmonic	grating	vector,	is	defined	as:	

k୫୕ ൌ
ଶ஠୫

ஃ
.																									(2.13)	

When	 the	SHG	and	 the	 fundamental	waves	are	quasi‐phase	matched,	 i.e.,	Δk୕ ൌ 0,	 the	

grating	structure	period	can	be	written	as:		

Λ ൌ ଶ஠୫

୩౏ౄృିଶ୩ూ
ൌ ୫஛

ଶሺ୬౏ౄృି୬ూሻ
													݉ ൌ 1,2,3, …			.																						(2.14)	

The	length	of	the	grating	structure	can	then	be	adjusted	for	maximizing	type‐I	and	type‐
II	QPM	SHG	processes.	Type‐I	and	type‐II	SHG	are	related	to	dଷଷ	and	dଶସ,	respectively.		

2.6	Fabrication	methods	of	QPM	structures		

In	principle,	 a	QPM	device	 can	be	designed	 as	 long	 as	 one	 can	 change	 the	 sign	of	 the	
nonlinear	 coefficient	 in	 the	 material.	 There	 are	 several	 methods,	 including	 crystal	
growth	[17],	ion	exchange	[18],	and	electron	beam	writing	[19],	to	fabricate	QPM	devic‐
es.	However,	 the	most	 common	 technique	 for	making	QPM	 structures	 is	 electric‐field	
poling.	High‐quality,	periodically	inverted	ferroelectric	domain	structures	in	flux	grown	
KTiOPOସ(KTP)	 crystals	were	 fabricated	 in	 the	 late	90’s	by	Laurell	 and	Karlsson	using	
this	technique	[20]. A	scheme	for	sample	preparation	and	subsequent	electric‐field	pol‐
ing	is	shown	in	figure	2.3.	

 

 

 

	

	

	

Figure 2.3 Contact electrode poling process. 
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The	ferroelectric	crystal	is	cut	into	small	pieces	and	the	c‐face	is	polished	to	provide	
optimum	 light	 beam	propagation.	 After	 cleaning	 the	 samples,	 the	 photoresist	 is	 spin‐
coated	on	the	polar	faces	of	each	crystal.	The	periodic	structure	is	created	by	a	standard	
photolithographic	process.	Finally,	metal	electrodes	are	formed	by	met‐al	deposition	on	
top	of	the	photoresist.	The	last	step	is	applying	a	voltage	across	the	crystal	to	create	the	
domains	of	reversed	polarization	under	the	metal	electrodes.	 

The	QPM	devices	have	a	 very	high	efficiency,	when	 the	domain	 structures	 are	uni‐
form	through	out	the	whole	thickness	of	the	crystal	as	well	as	in	the	direction	of	the	op‐
tical	beam	propagation.	 Fabrication	of	periodically‐poled	 crystals	 can	be	done	only	 in	
certain	 crystal	materials.	 These	materials	 are	 ferroelectric	 nonlinear	 crystals	 such	 as	
KTP, LiNbOଷ	and	LiTaOଷ.	

2.7	1D	and	2D	quasi‐phase	matched	crystals	

For	1D	QPM,	the	incident	plane	wave	is	usually	propagating	in	the	x‐direction	and	the	
phase	mismatch	can	be	compensated	for	in	a	structure	with	the	period		Λ,	which	is	equal	

to	a	multiple	of	the	fundamental	spatial	frequency	of	the	structure,		ଶ஠
ஃ
	.	In	a	2D	crystal,	

the	 electromagnetic	 radiation	 is	 propagating	 in	 the	 x‐y	 plane.	 In	 this	 situation,	 more	
than	 one	 k୫୕	 vector	 appear	which	 are	 not	 in	 the	 same	 direction	 as	 the	 initial	 plane	
wave	(opposite	to	1D	QPM).	Figure	2.4	shows	the	possible	k୫୕	in	the	case	of	the	SHG	
process	 for	2D	QPM.	For	a	given	pump	 frequency	ω,	 	 several	grating	vectors	k୫୕	can	
compensate	for	the	phase	mismatch.	By	changing	the	angle	of	the	incident	beam	one	can	
observe	different	cases	of	SH	corresponding	to	these	different	k୫୕’s.	Each	propagation	
direction	in	such	a	2D	QPM	structure	can	result	in	several	SH	peaks	with	varying	inten‐
sity	[21]. 

	

	

	

		
 

                                    

                                 Figure 2.4 Possible k‐vectors for compensating phase mismatch in a 2D QPM crystal. 
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The	nonlinear	optical	material	which	 is	chosen	 for	 this	project	 is	 	KTP	closest	rela‐
tive,	Rb‐doped	KTP,	RKTP.	In	RKTP	crystal,	the	۹ା	ions	are	substituted	by	܊܀ା	ions.	The	
RKTP	crystal	has	similar	properties	as	KTP	with	less	ionic	conductivity.	

3.2	Crystal	properties	

Ferroelectricity	

Ferroelectric	 crystals	 are	 materials	 with	 spontaneous	 polarization,	 which	 can	 be	
switched	between	 two	opposing	 states	by	applying	 an	electric	 field.	 The	 spontaneous	
polarization	is	defined	by	the	composition	of	negative	and	positive	ions.	In	equilibrium,	
the	center	of	positive	and	negative	ions	does	not	coincide.	Therefore,	each	pair	of	nega‐
tive	and	positive	ions	can	be	considered	as	an	electric	dipole.	The	sum	of	these	individu‐
al	dipoles	with	the	same	direction	constitutes	the	spontaneous	polarization.	Any	region	
of	a	ferroelectric	crystal	with	uniform	spontaneous	polarization	is	called	a	domain.	The	
interface	border	between	each	domain	inside	the	crystal	is	called	domain	wall.	For	KTP	
and	RKTP,	 the	domains	 are	oriented	along	 the	 c‐	 direction	 forming	 the	180	 °	 domain	
walls	between	them.	The	domain	walls	are	parallel	to	the	1ത00	crystal	plane	[25]	,	[26].	

Ionic	conductivity		

Ionic	conductivity	plays	an	 important	role	 for	the	process	of	domain	switching	 in	KTP	
crystals.	The	nature	of	the	KTP	material	allows	the	diffusion	of	atoms	in	the	structure.	
Under	certain	thermal	conditions,	the	potassium	ions	(Kା)	tend	to	hop	over	the	vacan‐
cies	and	thereby	introducing	an	ionic	conductivity	in	the	c‐axis	direction.	The	conductiv‐
ity	along	the	polar	axis	can	be	up	to	four	orders	of	magnitude	larger	than	the	direction	
perpendicular	to	the	polar	axis	[25].	High	ionic	conductivity	causes	large	current	to	flow	
through	the	crystal	when	a	high	voltage	is	applied;	this	can	result	in	electrical	damages	
of	the	crystal	[27].	In	order	to	decrease	the	ionic	conductivity	of	the	KTP	crystal,	one	can	
introduce	a	dopant	like	Rb.	Since		Rbା	has	a	larger	radius	than	Kା,	it	is	more	difficult	for	
the	Rbାto	pass	through	the	conductivity	channels	in	RKTP.	The	Rbାalso	blocks	the	lat‐
tice	for	the	movement	of	the	majority	of	the	Kା	ions,	which	otherwise	would	hop	from	
site	 to	 site.	This	 is	not	possible,	 since	 the	neighboring	spaces	are	already	occupied	by	
Rbା.	The	hopping	rate	of		Kା	is	then	reduced	with	respect	to	that	of	Rbା	as	there	are	no	
possibilities	 for	 the	Kା	ion	 to	pass	 the	Rbାion	 [28].	 The	 ionic	 conductivity	 of	RKTP	 is	
typically		about	2	orders	of	magnitude	lower	than	that	of	flux‐grown	KTP	[29].	

3.3	Domain	switching	

Nonlinear	 crystals	 such	 as	 KTP,	 which	 are	 used	 for	 QPM	 frequency	 conversion,	 are	
grown	to	have	one	single	domain	and	are	cut	along	a,	b	and	the	c	crystallographic	axes.	
In	order	to	alter	the	polarization,	the	applied	electric	field	must	exceed	a	certain	thresh‐
old,	called	coercive	field.	The	value	of	the	coercive	field	depends	on	parameters	such	as	
the	 frequency,	 the	waveform	of	 the	applied	voltage,	 the	temperature	and	the	shape	of	
the	contact	electrode.	
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Ferroelectric	domain	 inversion	by	contact	poling,	 is	based	on	three	steps.	First,	nu‐
cleation	of	the	domain	which	starts	 from	the	edge	of	each	electrode	where	the	field	 is	
strongest.	Second,	the	domain	will	rapidly	propagates	forward	along	the	polar	direction	
of	the	crystal	and	at	the	same	time,	the	domain	will	slowly	grows	sideways		[30].	Nucle‐
ation	is	the	formation	of	small	antiparallel	domains	under	contact	electrodes	inside	the	
crystal,	which	 grow	 and	 subsequently	merge	 together.	 These	 domains	 can	 grow	both	
along	the	ferroelectric	axis	or	by	sideways	motion.  It	 is	estimated	that	 in	KTP,	the	do‐
main‐wall	 growth	 velocity	 in	 the	 polar	 direction	 is,	 at	 least,	 two	 orders	 of	magnitude	
larger	than	in	the	x‐y	plane.	The	velocity	along	the	y‐axis	is	around	30	times	larger	than	
that	along	the	x‐axis	due	to	the	crystal	structure	of	KTP	[31].	Domain	movement	in	the	
sideways	directions	is	not	desired	in	electric	field‐poling,	since	it	causes	deviation	from	
the	ideal	duty	cycle,	domain	mergings,	and	will	ruin	the	grating	quality.	
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4.2	Photolithographic	mask	design		

The	design	of	the	photolithographic	mask	for	the	silicon	array	of	neeles		fabrication	con‐
tains	seven	different	periods	in	square	and	in	hexagonal	arrangement.	The	distance	be‐
tween	the	needles	in	the	different	arrays	includes:	3.2	µm,	5	µm,	6.4		µm,	8	µm,	9	µm,	15	
µm	and	20	µm.	For	having	sharp	needles	of	1‐2	µm	height,	a	circular	mask	of	roughly	4	
µm	diameter	 should	be	designed	 for	each	needle	as	 it	 is	 shown	 in	Fig.(4.3).	However,	
this	 4	 µm	diameter	 value	 cannot	 apply	 for	 the	 3.2	 µm	period	 due	 to	 the	 distance	 re‐
striction.	For	the	3.2	µm	period,	the	circular	mask	diameter	is	taken	to	be	2.2	µm.	Thus	
the	height	of	the	needles	for	this	period	will	be	smaller	than	for	the	other	periods.		
 

 

	

	

Figure 4.3 Schematic of mask, opening area and ratio of exposed and non‐exposed area for a 5 µm period grating. 

The	period	diversity	for	different	electrode	array	results	in	specific	density	of	circu‐
lar	masks	 on	 each	 array.	 Furthermore,	 considering	 the	 same	 diameter	 of	 the	 circular	
mask	for	the	period	of	more	than	5	µm,	the	opening	area	(etch	area)	will	be	different	for	
each	array.	The	opening	area	increases	by	increasing	the	period.	These	two	reasons,	be‐
sides	the	fact	that	the	etch	rates	are	not	the	same	for	all	parts	of	the	wafer	(due	to	gas	
and	 plasma	 distributions	 in	 the	 chamber),	 lead	 to	 the	 predicted	 non‐identical	 needle	
shapes	on	the	arrays	with	different	periods.	One	way	to	control	these	parameters	is	to	
calculate	 the	 ‘exposed	area’	 (etching	 area)	 	 and	 the	 ‘non‐exposed	 area’	 and	 arranging	
different	electrode	arrays	with	regard	to	the	high	and	the	low	etch	rate	parts	of	the	wa‐
fer.	 Figure	 (4.3)	 shows	 a	 schematic	 of	 the	mask,	 the	 opening	 area	 and	 the	 estimated	
etching	shape	for	a	5	µm	period.	The	parameter	߮	represents	the	ratio	between	the	ex‐
posed	and	the	non‐exposed	area	for	this	period.	
	

After	calculating	the	value	for		߮	for	all	the	specific	periods,	arrays	with	higher	߮	val‐
ue	 were	 located	 close	 to	 the	 perimeter	 of	 the	 wafer,	 where	 the	 etch	 rate	 is	 higher,	
whereas	arrays	with	 lower	߮	value	were	 located	 in	 the	 center	part where	 the	etch	 is	
slower.	 Table	 (4.1)	 summarizes	 the	 different	 parameters	 of	 each	 array	 regarding	 the	
opening	areas,	mask	diameters	and	the	corresponding	߮	value.		
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Period (µm)  Type  Mask diameter (µm) Non‐exposed area :ࡺ࡭ :ࡱ࡭ Exposed area  ࣐ ൌ ࡺ࡭ ⁄ࡱ࡭

3.2  Hexagonal  2.2  3.73 5.02 0.74 

Square  2.2  3.73 6.38 0.58 

5  Hexagonal  4  12.56 9.09 1.38 

Square  4  12.56 12.44 1.01 

6.4  Hexagonal  4  12.56 22.86 0.55 

Square  4  12.56 28.44 0.44 

8  Hexagonal  4  12.56 42.64 0.29 

Square  4  12.56 51.44 0.24 

9  Hexagonal  4  12.56 59.14 0.21 

Square  4  12.56 70.25 0.18 

15  Hexagonal  4  12.56 182.2 0.07 

Square  4  12.56 212.44 0.06 

20  Hexagonal  4  12.56 333.85 0.04 

Square  4  12.56 387.44 0.03 

Table 4.1 Mask diameter, exposed and non‐exposed areas for different gratings on the wafer. 

Although	the	arrangement	of	 the	arrays	was	
done	 to	 get	 the	 same	 result	 in	 all	 cases,	 a	
large	difference	in	the	߮	value	lead	to	antici‐
pated	different	needle	shapes.	Comment:	The	
less	 exposed	 area	 open	 to	 the	 etch	 gases	
there	is		on	the	wafer,	the	more	uniform	etch	
results	will	yield	(due	to	less	consumption	of	
etch‐gas	molecules	and	thus	a	more	homoge‐
nous	 etch	 plasma	 with	 less	 excausted	 vol‐
umes).	 In	 reality,	 very	 low	߮:s	 are	unpracti‐
cal,	 as	 you	 get	 very	 few	 etched	 features	 on	
your	wafer. 	

	

4.3	Fabrication	process	 																																										Figure 4.4  Schematic of the fabrication process. 

The	process	started	with	five	one‐sided,	500	µm	thick,	p‐doped	wafers.	The	dopant	ele‐
ment	 was	 boron,	 the	 wafer	 orientation	 was	 (100)	 and	 the	 resistivity	 was	 0.005	 ‐	
0.02	Ωcm.	These	characteristics	made	the	wafer	suitable	 for	the	contact	electrode	pol‐
ing.	A	schematic	of	the	fabrication	process	is	illustrated	in	Fig.(4.4).	
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4.3.1	RCA	cleaning	

The	first	phase	of	the	process	is	wafer	cleaning	(Fig.(4.4.a))	to	eliminate	any	contamina‐
tion,	and	also	to	prepare	the	wafer	for	a	better	adhesion	of	the	photoresist.	The	stand‐
ard cleaning	procedure	contains	four	steps:		

1.	 Removing	 organic	 contaminants	 by	 placing	 the	 wafers	 into	 a	 solution	 of	 HଶSOସ+	
HଶOଶ	at	80‐130	°C	for	5	minutes,	a.k.a.	Piranha	dip	or	7‐Up	cleaning.	

2.	Washing	in	deionized	(DI)	water	N2	bubbler	for	5	minutes.	

3.	Removing	the	thin	native	oxide	layer	(~10	Հ)	by	putting	the	wafers	into	a	solution	of	
HF	(50	%)	+	HଶO	at	25	°C	for	100	seconds.	

4.	Washing	again	in	DI	water	and	bubbler	for	3	more	minutes,	followed	by	drying	in	hot	
N2	

4.3.2	Wet	oxidation	

After	cleaning	the	wafers,	they	were	transferred	to	the	‘wet’	(O2	and	H2)	oxide	furnace	
(Fig.(4.4.b)).	The	oxide	growth	rate	at	1050	Ԩ	is	approximately	5.3	nm/min.	Therefore,		
a	1	µm	thick	oxide	layer,	requires	a	three	hours	run.	The	oxide	layer	will	later	act	a	hard	
mask	for	the	silicon	needle	fabrication,	being	resistant	to	the	SF6	etch	plasma.	

4.3.3	Resist	coating	

The	resist	coating	 is	 illustrated	in	Fig.(4.4.c).	 It	 includes	four	steps	that	are	performed	
semi‐automatically:	

To	prevent	peeling	of	the	resist,	the	wafers	were	coated	with	an	adhesion	layer	con‐
sisting	of	hexamethyldisilazane	(HMDS)	at	130	°C.	The	surface	oxide	layer	on	the	wafer	
forms	 long‐range	 hydrogen	 bonds	 with	 water	 absorbed	 from	 the	 air.	 When	 resist	 is	
spun	onto	such	a	surface,	it	adheres	to	the	water	vapor	rather	than	to	the	wafer	surface,	
and	 this	 results	 in	 poor	 adhesion.	 Before	 applying	 the	HMDS,	 the	 temperature	 of	 the	
chamber	was	increased	to	130	°C	in	order	to	dehydrate	the	surface.	Then	HMDS	gas	was	
spun	onto	the	dehydrated	surface,	providing	a	more	efficient	adhesion	of	the	photore‐
sist.	The	wafers	then	had	to	be	cooled	down	to	22Ԩ	in	20	seconds	to	prevent	a	reduc‐
tion	of	 the	resist	viscosity.	The	photoresist	 (SPR	700	1.2)	 	was	spin	coated	with	5000	
rpm	on	the	wafers	resulting	in	the	final	resist	layer	being	1.2	µm	thick.	To	evaporate	the	
solvent	and	prepare	it	for	exposure,	the	wafers	were	soft	baked	on	a	hot	plate	at	90	°C	
for	60	seconds.	Exposing	a	wafer	without	cooling	it	down	results	in	a	thermal	expansion	
effect		of	the	photoresist.	

4.3.4	UV	exposure	

The	UV	exposure	step	is	one	of	the	challenging	parts	of	the	fabrication	process	due	to	
the	fact	that	 it	requires	high	resolution	to	achieve	micron‐scale	structures.	Critical	pa‐
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rameters	are	the	wavelength	of	the	UV	light	and	the	exposure	time.	The	wavelength	of	
the	mask	aligner	was	set	to	405	nm	with	an	 intensity	of	18.4		MWcmିଶ.	The	exposure	
time	can	be	calculated	by	knowing	the	UV	lamp’s	intensity	and	the	thickness	of	the	pho‐
toresist,	however,	it	needed	modification	for	getting	good	lithographic	results.		

Reproduction	 of	 the	 photolithographic	 mask	 structure	 on	 to	 the	 photoresist	 was	
done	by	 ‘proximity	exposure’	which	retains	a	gap	between	the	mask	and	the	wafer	 to	
prevent	stiction	or	damage	(Fig.(4.4.d)).	Since	the	wavelength	of	the	UV	light	is	compa‐
rable	with	 the	mask	 features,	 the	gap	may	cause	some	diffraction	effects	and	may	de‐
grade	the	resolution	of	the	pattern.	Therefore,	the	gap	also	needed	to	be	modified.	The	
UV	exposure	step	was	started	with	 four	different	parameters	 to	optimize	 the	process.	
The	exposure	time	and	the	lamp	intensity	were	kept	at	the	same	level	but	the	exposure	
mode	and	the	gap	between	wafer	and	mask	were	changed.	The	detailed	parameters	are	
listed	in	Table	(4.2).		

	 Mode	 Exposure	time Gap Lamp	intensity

Wafer	2	 Soft	contact	 5 s 50 µm 18.4	MW/ܿ݉ଶ

Wafer	3	 Soft	contact	 5 s 40 µm 18.4	MW/ܿ݉ଶ

Wafer	4	 Vacuum	contact	 5 s 50 µm 18.4	MW/ܿ݉ଶ

Wafer	5	 Soft	contact	 5 s 30 µm 18.4	MW/ܿ݉ଶ

Table 4.2 Exposure parameters for 4 different wafers in batch process. Wafer 1 is not listed since it is used as dummy. 

4.3.5	Developing	

Developing	the	exposed	photoresist	began	with	a	60	seconds	soft‐bake	step	at	110	Ԩ	in	
vacuum	followed	by	a	15	seconds	cooling	down	to	22	Ԩ.	The	soft	bake	rearranges	the	
exposed	and	non‐exposed	molecules	of	the	photoresist,	averages	the	standing	wave	in‐
tensity	 and	 prevents	 over‐exposure	 and/or	 under‐exposure.	 Moreover,	 it	 smoothens	
the	photoresist	side	walls	and	increases	the	resolution	[38].	The	baking	was	followed	by	
developing	the	photoresist	in	a	CD26	developer.	The	CD26	developer	is	a	combination	
of	<95	%	water	and	3%	tetramethyl	ammonium	hydroxide.	This	developer	reacts	with	
the	exposed	photoresist	and	the	hydroxide	carboxyl	groups	of	the	photoresist	are	dis‐
solved	in	it.	The	final	profile	is	depicted	in	Fig.(4.4.e).	

4.3.6	Hard	bake	

Before	 continuing	 the	process	with	 dry	 etching,	 the	wafers	 needed	 to	 be	 hard	baked.	
Hard	baking	decreases	the	etch	rate	of	the	photoresist	and	prevents	the	total	consump‐
tion	of	the	resist	during	the	etch	process.	Furthermore,	during	the	hard	bake,	all	the	sol‐
vent	in	the	photoresist	is	evaporated,	which	improves	adhesion	of	the	photoresist.	

The	hard‐bake	time	needed	to	be	adjusted	due	to	the	type	of	photoresist	employed	
and	 its	 thickness.	 An	 under‐baked	 photoresist	 has	 low	 adhesion,	 is	 not	 polymerized	
properly	and	displays	high	etch	rate.	On	the	other	hand,	over‐baking	of	the	sample	re‐
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sults	in	reflowing	of	the	photoresist	in	the	openings	and	will	thereby	degrade	the	reso‐
lution.	

In	this	experiment,	our	samples	were	hard	baked	for	45	minutes	at	110	Ԩ.	Fig.(4.4.f)	
illustrates	the	sample	after	the	hard	baking	stage.	

4.3.7	Silicon	oxide	etching	

In	 this	 step,	 the	 hard	mask	 (SiOଶ	 layer)	 was	 patterned	 through	 the	 photoresists	 soft	
mask	by	etching.	The	process	was	performed	in	a	dry‐etching	machine	with	a	combina‐
tion	of	 gases:	Nଶ,	Ar,	Oଶ,	 CFସ	 and	CHFଷ.	The	estimated	oxide	etch	 rate	 in	 this	machine	
was	 60	 nm/min.	 Considering	 the	 the	 oxide	 thickness	 should	 be	 950	 nm,	 the	 samples	
were	processed	for	16	minutes.	Fig.(4.4.g)	shows	the	scheme	of	the	sample	after	remov‐
ing	the	oxide	layer.	

4.3.8	Silicon	etch	

The	silicon	was	etched	 isotropically	 through	the	openings	of	 the	oxide	(hard	mask)	to	
form	the	needles	by	using	SF଺	 in	 the	reactive	 ion	etching	machine.	To	set	 the	running	
time	of	the	process,	the	etch	rate	needed	to	be	estimated.	The	rate	depends	on	several	
adjustable	parameters:	 pressure,	 initial	 pump‐out	 time,	 speed	 flow	of	 the	plasma	and	
plasma	 power	 type	 can	 be	 varied.	 A	 detailed	 description	 of	 these	 parameters	 can	 be	
found	in	[37].	However,	based	on	this	reference,	the	time	estimation	for	needles	of	1‐2	
µm	height	is	65	seconds.	The	final	needle	arrays	are	supposed	to	look	like	those	shown	
in	the	scheme	of	Fig.(4.4.h).	

4.3.9	Masks	strip	

After	forming	the	needles,	the	next	step	was	removing	the	masks	and	exposing	the	sili‐
con	needles.	The	removal	of	the	photoresist	was	done	by	applying	an	oxygen	plasma	for	
15	minutes	with	500	sccm	at	1000	W	(Fig.(4.4.i)).	The	oxide	mask	was	removed	from	
the	wafer	by	dipping	it	in	hydrofluoric	acid	(50	%)	.	Hydrofluoric	acid	is	a	good	option	
in	this	case	due	to	its	selective	etching	of	the	silicon	oxide.	2	minutes	was	found	to	be	
sufficient	etch	time.	Rinsing	wasin	DI	water	for	30	seconds.	The	most	reliable	way	to	as‐
certain	the	point	when	the	oxide	is	completely	removed	from	the	wafer	is	testing	it	with	
DI	water.	Since	silicon	oxide	has	a	hydrophilic	surface,	 if	after	 this	step,	 if	a	 film	of	DI	
water	 is	 still	observed	on	 the	whole	wafer,	 the	oxide	has	not	been	properly	 removed.	
This	 process	was	 continued	 until	 the	 surface	 showed	 a	 hydrophobic	 behavior,	which	
means	 that	 the	 oxide	 layer	 was	 removed	 [38].	 Figure	 (4.4.j)	 shows	 the	 final	 needles	
shape	on	the	silicon	wafer	after	removing	the	masks.	

4.4	Modifications	

High‐density	patterns	(5	µm	periodicity)	and	low‐density	patterns	(20	µm	periodicity)	
in	the	same	photolithographic	mask	introduced	difficulties	in	the	photolithography	and	
the	silicon	etching	steps.		Different	etch	rates	due	to	the	different	openings	may	result	in	
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varying	height	of	the	needles.	However,	it	can	be	modified	by	arranging	different	arrays	
on	the	same	mask	as	it	was	explained	in	Section	4.2.	Considering	the	lithographic	prob‐
lems,	the	diffraction	effect	due	to	the	small	gap	between	the	mask	and	the	wafer,	photo‐
resist	spreading	after	the	hard	bake	and	a	non‐optimal	exposure	time	will	lead	to	a	poor	
lithographic	 quality	 in	many	 of	 our	 patterns.	Moreover,	 a	 small	 period	 between	 each	
single	circular	masks,	resulted	 in	a	higher	risk	of	over‐exposure	due	 to	contamination	
between	 exposed	 and	non‐exposed	photoresist	 and	decreased	quality	 of	 the	 lithogra‐
phy.	Using	vacuum	contact	exposure	mode	and	thus	decreasing	the	gap	size	and	the	ex‐
posure	time	resulted	in	better	resolution	for	different	feature	sizes.							

Regarding	the	silicon	dioxide	and	the	photoresist	mask,	which	are	used	for	the	pat‐
terning	and	silicon	etching,	their	layer	thickness	is	a	challenging	issue	in	the	fabrication	
process.	For	having	well‐controlled	etching	of	silicon,	a	relatively	thick	silicon	oxide	lay‐
er	is	needed.	This,	consequently,	requires	longer	oxide	etching	time.	On	the	other	hand,	
a	longer	silicon	oxide	etching	directly	results	in	a	higher	photoresist	consumption.	Thus,	
a	 thick	 layer	of	photoresist	 is	needed	which	possibly	results	 in	a	poor	pattern	quality.	
However,	a	thinner	photoresist	layer	also	requires	a	thin	oxide	layer.	This	leads	to	not	
well‐controlled	silicon	etching	and,	again,	 low	resolution	in	pattern	quality.	Therefore,	
the	thicknesses	of	these	two	layers	needed	to	be	optimized.	The	optimization	which	was	
used	in	this	thesis	was	a	thinner	oxide	layer	and	a	slightly	thicker	photoresist	layer	with	
regards	to	their	initial	values.	Hard	baking	time	was	decreased	in	order	to	prevent	re‐
flow	of	the	photoresist	in	the	openings.	The	initial	and	modified	values	of	the	different	
parameters	are	listed	in	Table	(4.3).			

	 Oxide	

thickness

Photoresist	

thickness	

Exposure	

time		

Proximity	mode Proximity	

gap	

Hard	bake	

time		

Initial		 950	nm	 1.2	µm	 5	 s Soft	contact 30‐50	µm	 45		min

Modified		 470	nm	 1.4	µm	 4	 s Vacuum	contact 10	µm	 30		min

Table 4.3 Initial and final parameters for needles fabrication. 

4.5	Final	fabricated	Si	electrodes	

The	fabrication	process	of	the	silicon	micro	needles	has	been	optimized	in	every	fabrica‐
tion	step	in	order	to	construct	needles	with	the	desired	period	and	dimensions.	Howev‐
er,	 due	 to	 the	 reasons	mentioned	 in	 Section	 4.4,	 the	 resulting	 needles	 have	 different	
shapes.	Figures	(4.5)	‐	(4.8)	illustrate	5	µm	period	patterns	in	different	steps	of	fabrica‐
tion.		
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Figure 5.1 Schematic of poling technique with silicon electrodes. 

5	Fabrication	of	periodically	poled	RKTP	by	silicon	stamp	
Considering	the	fabrication	of	QPM	crystals	with	electric‐field	poling,	the	most	common	
defects	in	the	fabrication	are	missing/merged	domains	and	domain	broadening.	Fabri‐
cating	sub‐micron	structures	becomes	more	challenging	since	the	fringing‐field	effect	is	
more	severe.	 In	this	case,	 the	usual	technique	for	patterning	of	the	metal	electrode	on	
the	sample	surface	is	photolithography	process	(see	Section	2.6).	The	photolithography	
process	involves	several	steps	which	must	be	performed	on	the	surface	of	each	individ‐
ual	sample.	This	process	is	time	consuming	and	can	lead	to	slightly	different	patterns	on	
each	sample.	Furthermore,	by	having	the	same	thickness	of		photoresist,	in	sub‐micron	
domain	fabrication,	the	aspect	ratio	is	increased	and	the	quality	of	photolithography	is	
decreased.	Therefore,	the	lithography	process	needs	to	be	modified	in	order	to	achieve	
high	quality	in	the	fabricated	domains	with	less	defects.		

In	 this	work	we	 investigate	 a	new	 technique	of	 electric	 field	poling	using	 a	boron‐
doped	silicon	array	of	needles	as	an	electrode.	Unlike	the	previous	techniques,	here	the	
whole	array	of	electrodes	 is	manufactured	independently	 from	the	crystal	on	a	silicon	
wafer.	Silicon	is	a	flexible	and	highly	developed	material,	therefore,	transferring	lithog‐
raphy	steps	 from	the	crystal	 surface	 to	a	Si	electrode	can	be	helpful	 in	order	 to	over‐
come	 the	 photolithographic	 problems	 of	 the	 conventional	 technique.	 As	 illustrated	 in	
Fig.(5.1),	the	fabricated	silicon	array	of	needles	is	mounted	on	the	crystal	and	the	polar‐
ization	is	altered	by	applying	a	voltage	across	the	crystal	and	the	whole	electrode	struc‐
ture.			
 

 

 

 

 

 

 

 

 

 

	
In	order	 to	 study	 the	electric‐field	poling	using	 the	Si	electrode,	different	electrode	

gratings	with	different	periods	ranging	from	3.2	μm	to	20	μm	were	fabricated.	The	top	
dimension	of	each	electrode	on	the	surface	vary	between	50	nm	and	1.9	µm.	With	the	
help	of	the	silicon	array	of	electrodes,	the	periodic	poling	can	be	done	using	fewer	steps	
and	only	one	silicon	electrode	structure	can	be	used	for	poling	of	several	samples.	
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RKTP	samples.	Two	different	silicon	masks,	with	a	periodicity	of	Λ	=	5	µm	and	Λ	=	20	
µm,	were	used	for	the	periodic	poling.		

5.4	Poling	monitoring	

In	 low‐conductivity	 ferroelectrics	 such	 as	 LiNbOଷ,	 the	 domain	 inversion	 can	 be	 con‐
trolled	by	monitoring	the	current	flowing	in	the	poling	circuit	[2].	For	high‐conductivity	
ferroelectrics,	 such	 as	 KTP,	 the	 applied	 field	 leads	 to	 a	 strong	 ionic	 current	 passing	
through	the	sample.	Therefore,	monitoring	the	poling	process	by	the	current	flow	is	in‐
accurate.	In	order	to	control	the	poling,		and	to	be	able	to	reproduce	the	results,	the	pol‐
ing	process	was	instead	monitored	by	the	electro‐optic	effect	and	in‐situ	SHG.			

A	 schematic	 of	 the	 experimental	 setup	 is	 shown	 in	 Fig.(5.3).	 The	HeNe	 laser	 beam	
was	linearly	polarized	45°	to	the	z‐	and	y‐axis	of	the	crystal	by	the	polarizer.	The	beam	
went	parallel	to	the	x‐axis	of	the	crystal	and	the	intensity	of	the	beam	was	measured	by	
an	analyzer	rotated	by	90°	with	respect	to	the	first	polarizer.	When	the	domains	propa‐
gate	down	through	the	crystal,	the	output	intensity	from	the	HeNe	laser	will	be	modu‐
lated	in	the	crystal	[39].	This	effect	can	be	observed	with	a	photodetector	and	an	oscillo‐
scope.			

 

 

 

 

	

	

Figure 5.3 Poling monitoring setup. 

The	electro‐optic	monitoring	method	gives	 information	as	 to	whether	 the	polariza‐
tion	 is	reversed	or	not.	Hence,	only	a	qualitative	 indication	of	 the	poling	result	can	be	
obtained	by	this	technique.  

In	order	 to	obtain	more	detailed	 information	on	 the	homogeneity	of	 the	 fabricated	
domains,	the	in‐situ	SHG	technique	was	applied	[29].	A	Ti:sapphire	laser	was	loosely	fo‐
cused	 on	 the	 crystal	 aperture	 and	 tuned	 to	 the	 phase‐matching	wavelength.	 The	 SHG	
signal	was	measured	by	a	power	meter.	The	laser	beam	was	scanned	in	the	horizontal	
and	the	vertical	directions	to	check	the	quality	of	the	domains	by	observing	the	SHG	in	
different	positions	across	the	crystal	aperture.	
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As	a	CW	Ti:sapphire	 laser	(Spectra	Physics	Model	3900S,	pumped	by	a	10	W	Milennia	
Xୱ)	has	emission	lines	between	700	nm	and	950	nm,	the	QPM	grating	period	of	5	µm	can	
be	evaluated	by	using	the	1st	order	SHG,	i.e.,	λ୊ ൌ 894	nm.	For	the	periods	of	Λ	=	20	µm	
the	5th	order	SHG	has	to	be	used	with	a	 fundamental	wavelength	of	λ୊ ൌ 842	nm	(ac‐
cording	to	Equation	2.14).			
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Figure	 (6.1)	shows	 the	domain	structures	of	one	particular	RKTP	sample	 for	different	
parts	of	 the	crystal.	There	are	2D	domain	structures	as	well	as	elongated	2D	domains	
and	1D	domains	on	 the	cା	polar	 face	(Fig.(6.1.a),	 (6.1.c),	 (6.1.e)).	Their	corresponding	
domains	on	the		cି	face		are	shown	on	the	right	hand	side	(Fig.(6.1.b),	(6.1.d),	(6.1.f)).	In	
most	of	the	domains	on	the	cା	face,	ring‐shaped	and	spike	scratches	can	be	observed.		

Since	the	spike	tip	diameter	is	increased	after	the	sample	mounting,	the	fabricated	do‐
main	 dimensions	 are	 larger	 than	what	was	 anticipated.	 Due	 to	 the	 quasi‐one	 dimen‐
sional	structure	of	the	RKTP,	2D	domains	tend	to	merge	together	in	the	b‐direction	and	
form	a	1D	domain	structure.	Therefore,	in	samples	containing	2D	domain	structures,	the	
fabricated	domains	are	larger	along	the	b‐axis	(~3.5	‐	4.2	µm)	and	narrower	along	the	a‐
axis	(~2.4	‐	3.8	µm).	Their	corresponding	domains	on	the	cି	polar	face	follows	the	same	
criteria.	In	samples	with	1D	domains	on	the	cା	polar	face,	the	width	of	the	domains	in	
the	a‐direction	is	larger	at	the	location	of	the	spike	contact	(~4.1	μ݉)	and	narrower	in	
between	 (~1.6	 µm).	 The	 information	 regarding	 the	domains	 dimensions	 in	 both	polar	
faces	are	listed	in	Table	(6.1).	The	reason	for	this	is	the	high	value	of	the	fringing	field	
around	the	spike	tip	and	also	the	hard	contact	of	the	electrode	and	the	crystal	surface.	
The	corresponding	1D	domains	on	the	cି	polar	face	are	homogenous	and	have	a	width	
of	1.9	µm.		

Domain	type	 2D	 Elongated	2D 1D	

Dimension	in	cା	 3.7	µmൈ	3.7	µm 3.8	µmൈ16.5	µm 1.6	&	4.1	µm	

Dimension	in	cି	 1.5	µm	ൈ	3.7	µm 2.9	µm 1.9	µm	

Table 6.1 Domain shape and dimension in Λ = 20 µm grating 

6.1.2	Domain	evaluation	for	5	µm	period	grating	
Six	RKTP	samples	were	poled	with	a	5	µm	grating	electrode.	Grating	patterns	of	5	µm	
periods	 are	 successfully	 reproduced	 on	 the	 polar	 faces	 of	 the	 crystal	 by	 applying	 an	
electric	field	of	5.4	kV mm⁄ 	with	a	triangular	pulse	of	5	ms	duration.	

Fabricated	domain	structures	with	a	5	µm	period	silicon	electrode	is	more	uniform	
across	the	crystal	surface.	Uniform	domain	structures	come	from	the	fact	that	the	con‐
tact	area	of	the	crystal	surface	and	the	electrode	is	now	more	homogenous	than	in	the	Λ	
=	20	μm	case.	Several	parameters	lead	to	the	uniform	contact.	First,	all	the	plateaus	on	
the	silicon	array	of	electrodes	have	the	same	height.	Second,	 top	areas	of	the	plateaus	
are	 perfectly	 flat	 because	 they	 have	 the	 initial	 surface	 of	 the	 silicon	wafer.	 Third,	 the	
density	of	 the	plateaus	 is	high	over	the	whole	surface	and	this	results	 in	a	 total	 lower	
pressure	on	each	individual	needle	electrode.	Therefore,	better	domain	grating	quality	
is	to	be	expected	for	the	RKTP	samples	poled	with	Λ	=	5	μm	Si	electrodes.	However,	the	
problem	of	 the	manual	alignment	and	 the	pressing	of	 the	silicon	array	and	crystal	 to‐
gether	still	affects	the	poling	process.		
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On	 the	 other	 hand,	 inhomogeneous	 pressure,	 lower	 applied	 electric	 field,	 and	 lack	 of	
good	alignment	result	in	many	missing	domains	as	is	shown	in	Fig.(6.7).		

6.2	Optical	characterization	

The	silicon	spikes	are	very	sharp	for	the	20	µm	period	electrodes.	This	results	in	a	non‐
optimal	 duty	 cycle	 of	 the	 fabricated	 domain	 structures.	 5th	 order	 SHG	 process	 in	 the	
domain	structures	with	non‐optimal	duty	cycle	results	in	a	very	low	SH	signal.	However,	
in	the	case	of	the	5	µm	grating,	since	the	duty	cycle	in	this	case	is	close	to	the	ideal	case	
of	50	%,	the	1st	order	SHG	process	with	a	measurable	signal	power,	is	observed.	In	order	
to	evaluate	the	quality	of	 the	 fabricated	gratings	 in	 the	RKTP	crystals,	 the	optical	per‐
formance	of	two	of	the	samples	with	the	Λ	=	5	µm	grating	were	investigated.	The	gener‐
ated	 SH	 signal	 which	 was	 created	 in	 this	 experiment	 is	 close	 to	 cିpolar	 face,	 corre‐
sponds	to	[1,0]	reciprocal	lattice	vector	(RLV).	This	RLV	is	equivalent	to	1D	grating.		

6.2.1	Conversion	efficiency	

One	way	 to	 check	 the	poling	quality	 is	 to	 observe	 the	 SH	 conversion	 efficiency	of	 the	
poled	crystal.	For	a	Gaussian	beam,	the	conversion	efficiency	 is	given	by	the	following	
expression	[41]:	

η ൌ
୔౏ౄ
୔ూ

ൌ ቀ
ଶனూ

మୢ౛౜౜
మ ୩ూ୔ూ

஠୬ూ
మ୬౏ౄகబୡయ

ቁ LhሺB, ξሻ.     (6.1) 

 
According	 to	 Eq.(6.1),	 the	 SH	 conversion	 efficiency	 increases	 linearly	with	 the	 funda‐
mental	power,	P୊,	and	the	crystal	length	L.	The	conversion	efficiency	measurement	were	
done	for	the	SHG	of	a	Ti:Sapphire	laser	beam	at	894	nm	for	two	PPRKTP	samples	with	5	
µm	grating	periods	[22],	[29].	Figure	(6.8)	shows	the	experimental	setup. 
 
 
 
 
 
 
 

Figure 6.8 SHG setup for measuering conversion efficiency. 

The	measured	efficiencies	for	these	two	samples	are	given	in	Fig.(6.9)	and	represent	the	
efficiency	of	poling	in	1D	domain	structure	close	to	cିpolar	face.	The	experimental	data	
of	the	conversion	efficiencies	fits	very	well	with	the	linear	theoretical	function.		
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Figure 6.9 The SHG conversion efficiency as a function of fundamental power for 2 samples with 5 µm grat‐

ing period. Circles and squares are measured data and red lines are linear fis, respectively.  

In	order	to	compare	the	conversion	efficiency	for	the	two	different	samples,	 it	 is	com‐
mon	 to	 use	 their	 normalized	 conversion	 efficiencies.	 The	 normalized	 conversion	 effi‐
ciency	refers	to	an	input	of	 fundamental	power	of	1	Watt	and	a	crystal	 length	of	1	cm	
(with	unit	of	%/Wcm).	It	is	defined	as	follows:	

η୬୭୰୫ ൌ
୔౏ౄ
୔మూ୐

ൌ ቀ
ଶனూ

మୢ౛౜౜
మ ୩ూ

஠୬ూ
మ୬౏ౄகబୡయ

ቁ hሺB, ξሻ.						(6.2)	

The	maximum	normalized	conversion	efficiency	obtained	for	the	best	spot	in	sample	#1	
was	1.27	%/Wcm	and	1.1	%/Wcm	for	sample	#2.	The	generated	SH	powers	were	1050	
µW	and	912	µW	for	an	input	power	of	373	mW	and	375	mW	in	sample	#1	and	#2	re‐
spectively.	Based	on	Eq.(6.2),	the	SH	power	has	a	quadratic	dependence	on	the	funda‐
mental	power	with	a	proportionality	factor	of		ߟ௡௢௥௠ܮ.	Figure	(6.10)	below	shows	the	SH	
signals	dependence	on	the	fundamental	power.	The	experimental	data	agrees	well	with	
the	theoretical	fit.		

	

	

	

	

	
 

 

Figure 6.10 The SH power versus  the  fundamental power  in 2 different samples with 5 µm grating period. 

Solid squares and circles are experimental data and red solid line is the theorical curve. 
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6.2.2	Temperature	acceptance	bandwidth	

The	phase‐matching	phenomenon	 is	 sensitive	 to	many	parameters,	 such	as	 the	wave‐
length,	 temperature,	 and	 the	 polarization	 of	 the	 interacting	 waves.	 The	 acceptance	
bandwidth,	also	called	the	phase‐matching	tolerance,	is	defined	as	the	relative	change	in	
the	parameter	that	causes	a	drop	of	the	output	power	to	one	half	of	the	maximum	value.	
In	 this	work,	 the	 temperature	 tuning	 characteristics	 of	 the	 SHG	 nonlinear	 interaction	
was	investigated.	For	a	fixed	wavelength,	the	temperature	bandwidth	can	be	expressed	
as	[16]:	

∆ ிܶௐுெ ൌ ଴.ସସଶଽఒഘ
௅

ቚ డ
డ்
ሺΔ݊ሻ ൅ 	(6.3)															Δ݊ቚ,ߙ

where	α	is	the	thermal	expansion	coefficient	in	the	x‐direction	and	Δn	is	the	difference	
in	the	index	of	refraction.	L	is	the	length	of	the	structure	containing	the	uniform	periodic	
ferroelectric	domain	grating.		
	
Temperature	 bandwidth	measurement	was	 performed	 for	 frequency	 doubling	 of	 a	

Ti:Sapphire	laser	at	894	nm.	The	setup	is	shown	in	Fig.(6.11)	below	and	the	measure‐
ment	was	done	only	 for	 sample	#2.	The	 fundamental	beam	had	 	369	mW	power	 and		
was	polarized	in	the	z‐direction	by	a	ߣ‐half	wave	plate	and	a	linear	polarizer.	The	beam	
was	focused	by	a	lens	into	the	crystal,	close	to	the	cି	polar	face.	A	copper	element	was	
used	 together	 with	 a	 temperature	 controller	 (ILX	 Lightwave	 LDT‐5525)	 in	 order	 to	
achieve	the	temperature	tuning. The temperature in the copper element increased from 22 
Ԩ to 39 Ԩ with 0.2 Ԩ steps and the SH power was monitored at every step. 
 
 
 
 
 
 
 
 
 

Figure 6.11 Temprature tuning setup for SHG. 

The	temperature	tuning	curve	obtained	for	the	PPRKTP	crystal	with	a	period	of	5	µm	is	
shown	in	Fig.(6.12).	The	solid	line	is	a	theoretical	function,	which	fits	the	experimental	
data	well	 [42].	This	confirms	that	a	high‐quality	QPM	structure	 in	this	crystal	was	ob‐
tained.		
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Figure 6.12 Temprature tuning curve for SHG, black squares show observed data and red line is the ܿ݊݅ݏଶ fit‐
ting funcion. 

If	the	poling	quality	is	low	and	there	are	missing	domains	in	the	structure,	the	effective	
interaction	 length	of	 a	periodically‐poled	 crystal	will	 be	 correspondingly	 reduced.	Ac‐
cording	to	Eq.(6.3),	by	measuring	the	bandwidth,	the	effective	crystal	length	can	be	es‐
timated	as	follows:	

Lୣ୤୤ ൌ
଴.ସସଶଽ஛ಡ
∆୘ూ౓ౄ౉

ቚ ப
ப୘
ሺΔnሻ ൅ αΔnቚ.                 (6.4)	

	
From	the	measured	temperature	bandwidth	of	4.25	Ԩ,	the	effective	crystal	length	is	es‐
timated	to	be	5.4	mm.	This	value	is	very	close	to	the	physical	grating	length	of	6	mm.	
	
In	this	configuration,	the	QPM	SHG	process	utilizes	the	d33	coefficient	of	the	RKTP	crys‐
tals,	 therefore,	 the	 effective	nonlinear	 coefficient	 is	 related	 to	 the	d33	 in	 the	 following	
way	[16]:	

dୣ୤୤ ൌ
ଶ

஠
dଷଷ. 

 
The	 experimentally	 obtained	 nonlinear	 coefficient	 of	 our	 PPRKTP	 sample	 can	 be	 ob‐
tained	from	rearranging	Eq.(6.2).	Thus,	the	effective	nonlinear	coefficient	 is	written	as	
follows:	

dୣ୤୤ ൌ ට
஠୬ూ

మ୬౏ౄகబୡయ

ଶனూ
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୔మూ

  .               (6.5)      

	
In	order	to	evaluate	the	quality	of	the	poled	crystal,	dୣ୤୤	can	be	compared	with	the	value,	
calculated	using		dଷଷ,	as	taken	from	reference	[43].	In	our	experiment,	the	RKTP	crystal	
exhibits	an	effective	nonlinear	coefficient	of	9.39	pm/V	for	a	maximum	output	SH	power	
of	896	µW.	This	value	is	close	to	the	calculated	value	of		dୣ୤୤ ൌ 10.7	pm/V		for	the	first	
order	SHG.	
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6.2.3	Domain	merging	point	estimation	

The	fabricated	domains	with	the	2D	array	of	silicon	electrode	in	the	5	µm	periods	are	
two‐dimensional	 on	 the	 cା	 face	of	 the	 crystal	 (where	 the	 electrode	 is	 in	 contact)	 and	
one‐dimensional	on	 the		cି	polar	 face.	Therefore,	2D	domain	structures	merged	along	
the	b‐axis	during	the	propagation	and	became	1D	on	the	non‐contact	face	of	the	crystal.	
In	order	to	find	the	exact	position	of	the	domain	merging	along	the	polar	direction	in	the	
crystal,	an	SHG	experiment	was	conducted	 in	one	of	 the	PPRKTP	crystals.	The	experi‐
mental	setup	is	illustrated	in	Fig.(6.8)	and	was	performed	using	the	CW	Ti:Sapphire	la‐
ser	lasing	at	a	wavelength	of	894	nm.	Based	on	the	concept	which	is	explained	in	Section	
2.7,	 the	 generated	 SH	 signal	 with	 this	 structure	 includes	 side	 peaks	which	 represent	
more	than	one	possible	k‐vector	in	a	2D	QPM	structure	close	to	the	cା	face.	When	the	
Ti:Sapphire	 laser	 beam	was	 scanned	 over	 the	 crystal	 thickness,	 the	 side	 peaks	 disap‐
peared	as	soon	as	 the	2D	structure	became	1D.	The	2D	domain	structure	merged	and	
became	a	1D	ditto	at	a	distance	of	0.21	mm	from	the	cା	face.		
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7	Conclusions	
In	 this	work,	a	new	method	 for	 fabrication	of	periodically‐poled	crystals	 is	presented.	
This	method	 is	 based	 on	 using	 an	 array	 of	 silicon	 spikes	 as	 an	 electrode	 for	 contact	
when	performing	 	electric‐field	poling	of	RKTP.	The	process	 for	 fabricating	the	silicon	
spikes	 is	 designed	 and	 subsequently	 optimized	 for	 different	 electrode	 shapes	 and	
formes.	The	final	method	is	flexible,	repeatable,	and	easy	to	modify	for	producing	new	
types	 of	 electrodes	with	 different	 sizes	 and	 geometries.	 The	 periodicity	 of	 the	 spikes	
ranges	 from	3.2	 µm	up	 to	 20	 µm.	 The	 process	 of	 producing	 spike	 array	 electrodes	 is	
overviewed	in	detail.	
 
The	 constructed	 Si	 spike	 arrays	 are	 used	 as	 a	 2D	 contact	 electrode	 for	 poling	 the	

RKTP	with	two	different	periodicities	of	20	µm	and	5	µm,	respectively.	Each	individual	
silicon	electrode	on	the	final	silicon	array	of	electrodes	has	a	conical	shape	in	the	20	µm	
period	case	and	a	plateau	shape	in	the	5	µm	period	case.	The	conical‐shaped	electrodes	
have	very	 sharp	 spike	 tips	 resulting	 in	 a	poorly	 controlled	pressure	 in	 the	poling	 cell	
employed.	 	 In	 the	 20	 µm	 period,	 the	 fabricated	 domains	 show	 pattern	 broadening.	
Nonetheless,	 the	 broadening	 can	 be	 reduced	 by	mask	modification	 and	 by	 improving	
the	 poling	 cell.	 The	 plateau‐shaped	 electrodes	 produce	 domain	 structures	 which	 are	
similar	to	the	fabricated	domains	using	conventional	technique.	The	domain	broadening	
for	 the	 5	 µm	 period	 case	 has	 the	 same	 scale	 as	 that	 of	 the	 broadening	 with	 metal‐
deposited	electrodes.	However,	 it	 can	be	 reduced	by	 improving	 the	poling	cell	 and	by	
controlling	 the	 pressure	 between	 the	RKTP	 crystal	 and	 the	 silicon	 electrode.	 The	 do‐
main	broadening	is	also	affected	by	the	electrode	geometry	and	can	be	adjusted	by	mod‐
ifying	 the	 	geometry	of	 the	plateau	 for	different	periods.	Moreover,	 the	 fabricated	do‐
mains	for	this	period	are	reproduced	by	applying	the	same	parameters	for	two	different	
samples.	To	the	best	of	our	knowledge,	this	is	the	first	time	this	technique	has	been	used	
for	fabricating	periodically	poled	RKTP	(PPRKTP).	
 
The	duty	 cycle	of	 the	 fabricated	domains	 for	 the	5	µm	periods	 is	 close	 to	 the	 ideal	

case	of	50	%.	Therefore,	the	optical	performance	of	the	PPRKTP	crystals	with	this	peri‐
od	was	 further	 evaluated.	Two	 samples	poled	with	5	µm	period	are	used	 to	 generate	
second‐harmonic	 (SH)	 signals	 and	 to	 investigate	 the	 conversion	 efficiency	 of	 the	 SH	
process	 for	 fabricating	QPM	devices.	 The	normalized	 conversion	efficiencies	 for	 these	
two	 samples	 are	 higher	 than	 1	%/Wcm	 and,	 thus,	 this	 indicates	 good	 optical	 perfor‐
mance.	 The	 evaluated	 effective	 grating	 length	 from	 the	 measured	 temperature	 ac‐
ceptance	bandwidth	 is	5.4	mm,	which	 is	 close	 to	 the	physical	grating	 length	of	6	mm.	
Thus,	 the	 fabricated	domains	are	uniformly	structured	demonstrating	the	high‐quality	
poling	obtained	with	this	technique.		
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7.1	Further	developments	

There	is	a	variety	of	interesting	future	experiments	that	can	be	done	based	on	this	work.	
They	can	be	divided	 into	 two	main	categories:	1)	modification	of	 the	silicon	electrode	
structure	and	2)	more	detailed	investigation	of	the	poling	process.	

It	was	observed	that	by	using	sharp	spikes	 for	 the	poling,	 	 resulted	 in	non‐uniform	
contact	and	non‐homogenous	ring‐shaped	domain	structures.	Therefore,	in	the	case	of	
silicon	 electrode	 modification,	 first,	 it	 is	 beneficial	 to	 polish	 the	 spike	 electrode	 and	
thereby	 reduce	 the	 sharpness.	 Second,	 the	 spikes	 and	 the	 plateaus	 can	 be	 fabricated	
with	a	larger	height	by	introducing	the	Bosch	process.	An	array	of	silicon	spikes	or	plat‐
eaus	with	large	height	can	be	partially	covered	with	a	layer	of	photoresist	resulting	in	a	
better	isolation	during	the	poling	process.	Third,	in	order	to	control	the	domain	broad‐
ening,	the	geometry	of	the	silicon	spike	and	plateau	electrodes	can	be	modified.	Reduc‐
ing	 the	electrode	dimension	 in	 the	b‐direction	could	result	 in	 less	domain	broadening	
leading	to	a	complete	2D	domain	structure	on	both	the	polar	faces	of	the	crystal.	Forth,	
the	electrode	material	can	be	changed	to	analyze	the	influence	of	different	materials	on	
poling.	The	p‐type	 silicon	electrode	 can	be	 replaced	by	an	n‐type	 silicon	or	metalized	
polymer	spikes.	The	fabrication	of	polymer	spikes	is	flexible	and	well	developed.	There‐
fore,	 a	 metalized	 polymer	 array	 of	 spikes	 can	 serve	 as	 a	 good	 alternative	 electrode	
choice	to	the	silicon	spikes.	Furthermore,	modifiation	of	the	electrode	structure	can	be	
done	in	order	to	investigate	the	1D	periodic	poling	of	KTP.	In	order	to	access	this	tech‐
nique	for	fabricating	domains	in	the	nano‐scale,	silicon	electrode	specifications	need	to	
be	modified.		

Regarding	the	poling	process	itself,	the	following	aspets	can	be	improved	upon.	The	
poling	cell	should	be	upgraded	so	as	to	provide	a	better	pressure	and	alignment	control.	
The	poling	parameters	such	as	the	pulse	shape,	pulse	duration	and	the	number	of	pulses	
can	be	optimized.	Thus,	periodically‐poled	crystals	with	higher	quality	can	be	obtained.	
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