

Syllabus

Course name in Swedish			
Ickelinjär Optisk Teknologi			
Course name in English			
Nonlinear Optical Technology			
Credits	Course code		Level
12,0	FSK3421		3rd cycle
Main field of study			
TFY			
School/Department/Division (Code)		Syllabus valid from	term
SCI		VT13	
Course Objectives			

The aim of the course is that the student shall:

- have acquired a thorough understanding of the basic theory and science of nonlinear optics
- be able to describe and to analyze in detail the theory of salient components and basic systems employed within modern nonlinear optics
- be able to formulate a physically reasonable and complicated problem in nonlinear optics and provide an extended solution to the same, and
- present the problem and discuss the solution in front of the whole class

Main content

Introduction to nonlinear optics, resonant and nonresonant processes, nonlinear optical materials and applications, ultrashort optical pulses, nonlinear optical fibers, Raman and Brilloin scattering, nonlinear waveguides and photorefraction and optical damage in materials

Course Literature

P N Butcher and D Cotter: "The Elements of Nonlinear Optics". (1998)

Extensive lecture notes and chapters from other main sources

Language of instrutction: English only

Prerequisites

MSc degree in physics or equivalent education

Specifically, it is assumed that the student has a working knowledge of vector analysis,

EM-wave theory, atomic and molecular physics, basic laser physics, and solid-state physics

Grading scale: P/F

Examination

Solving a large number of homework problems. Designing some (1 or 2) problems of his/her own. Provide an annotated, extended solution to these problems and present it to the class

Other			
Established			

Signed by GA	Signed by head of school

Clarification of signature

Clarification of signature