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Types of resonators 

Stable Unstable 

Beam is maintained 

inside limited volume of 

active medium 

Beam expands more 

and more with each 

bounce 
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Resonator stability 

Stability condition : 
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Geometrical description 

Magnification per roundtrip : 

 

M = Iout/Iin 

 

Higher magnification means higher 

fraction of power is extracted. 

 

Also, the higher is a magnification, the 

near-field output beam will then be as 

nearly fully illuminated as possible, and 

the far-field beam pattern will have as 

much energy as possible concentrated in 

the main central lobe. 
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Fresnel numbers 

Nc determines amount of Fresnel diffraction ripples on the wavefront. 

 
Siegman also introduced Neq, which is proportional to Nc : 
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Fresnel number describes a diffractional behavior of a beam, which passed 

aperture : 

 

NF = a2/Lλ 

 

This term is also applied to optical cavities. Siegman introduced so called 

collimated Fresnel number for unstable cavities : 



Positive branch resonator 

 

M = 
A+D

2
>1 

Negative branch resonator 

 

M = 
A+D

2
<-1 

Can be classified into positive and negative branch resonators 

Geometrical description 
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Output coupling methods 

Brewster plate mount “Spider” mount “Scraper mirror” 
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Output beam pattern 

Very bright Arago spot due to 

diffraction on output mirror edge 
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Mode analysis  

Simple spherical wave analysis form a picture of 

lowest-order unstable resonator mode. 

 

Distance between P1 and P2 must be chosen in a way 

that spherical wave after 1 roundtrip recreates initial 

wave.  

 

Then the mode is self-consistent. 
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Mode analysis  

ABCD ray matrix model 

Round-trip Huygens´ integral : 
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Canonical formulation 

Convertion of Huygens´ integral to canonical form begins with rewriting input 

(u0) and output (u2) waves into : 

This is physically equivalent to extraction of the spherical curvature of unstable 

resonator modes, conversion of magnifying wavefronts to collimated wavefronts 
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Canonical formulation 

Huygens´ integral then turns into : 

This integral corresponds to propagation through a simple collimated telescopic 

system with a ray matrix of a form : 
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Canonical formulation 

The system then can be expressed as 

the matrix product of zero-length 

telescope with magnification M and a 

free-space section of length MB 

Reference plane is moved to magnified input plane z1, so after change of variables 

x1=Mx0 we have free-space Huygens´ integral : 
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Loss calculations 
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Geometrical prediction : loss = 1 – 1/M 

Low-loss behavior ”travels” from 1 mode to another 



Loss calculations 
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Feature of rectangular unstable resonators! 

Mode separation at high M and high Neq 



Eigenvalues for circular-mirror resonators 
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Majority of modes appear at low Neq values , additional modes appear 

from high loss region with Neq increasing. 

Points on halfway (peaks) between mode crossing look like optimal Neq 

values for unstable resonator operation. 



Output coupling approximation 
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Geometrically predicted diffraction 

losses are always higher than ones 

calculated for optimum operation 

points. 

 

Geometric eigenvalue magnitude : 

Eigenvalue at optimum peaks : 



Mode patterns 

• mode shape changes from nearly Gaussian (Neq<=1) to square-like (Neq>>1) 

• increasing Nc induces more Fresnel ripples 

• higher M gives more power concentrated in central peak of far-field beam pattern 
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Loaded mode patterns 
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Some peaks in the near-field decreased in amplitude due to local gain saturation 



Numerical simulations 

Parameters included : 

 

• beam propagation, modified by mirror distortion, diffraction on edges, internal 

phase perturbations, etc 

 

• gain medium characteristics, influenced by heating, saturation, repumping, 

possible chemical reactions and other effects 
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Near-field : unloaded and loaded simulation 



Numerical simulations 
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(c) Zemax 
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Experimental results 
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10.6 µm CO2 laser with 2 different scraper 

coupling mirrors 

 

Small deviation from theory for both near-field 

and far-field beam profile 
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Ring unstable resonators 
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Possibility of unidirectional 

beam propagation : no spatial 

hole burning! 



Self-imaging unstable resonators 
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The system images magnified 

version of coupling aperture onto 

itself after each round-trip. 

 

If self-imaging condition  

 

f1 + f2 = ML1 + L2/M  

 

is satisfied, then B=0 in cavity 

descriptive matrix, then each round-

trip  has zero effective propagation 

length, so the resonator has infinitely 

high Fresnel numbers, Nc = Neq = ∞ 

 

 



Off-axis unstable resonators 
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Designed for more uniform near-field pattern 

and to increase intensity in the central lobe of 

far-field pattern. 

 

With mirror misaligned, system can be 

assumed to have 2 half-resonators with same 

M but different N numbers, this modifies near-

field pattern. 

 

When rectangular astigmatism introduced, 

there are 2 half-resonators with different M 

but same N numbers, then far-field pattern is 

modified. 



Stable-unstable resonators 
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In such systems gain medium 

geometry exhibits high N numbers in 1 

transverse direction, and low N 

numbers in another transverse 

direction (thin slab or sheet). 

 

The cacity is then stable in 1 direction 

and unstable in another. 



Unstable resonators in semiconductor lasers 
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(c) Biellak et al. 



Minimizing edge wave effects : aperture 
shaping 
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(c) Maunders et al. 



Minimizing edge wave effects : mirror 
tapering 
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Causes fundamental mode to 

separate from higher order modes due 

to reduced diffraction on mirror edges. 



Variable reflectivity unstable resonators 
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Unstable cavity is combined with partially reflecting mirrors (Gaussian mirror, for example). 

Control of mode behavior + better beam profile. 

(c) Ananjev et al. 



Conclusions 

• Large controllable mode volume 

• Controllable diffractive output coupling 

• Good transverse mode discrimination 

• All-reflective optics 

• Automatically collimated output beams 

• Easy to align 

• Efficient power extraction 

• Good far field beam patterns 
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