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Types of resonators

Stable Unstable
Beam is maintained Beam expands more
inside limited volume of and more with each

active medium bounce




Resonator stability
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Geometrical description

I

M

Magnification per roundtrip :
M = Iout/Iin

Higher magnification means higher
fraction of power is extracted.

Also, the higher is a magnification, the
near-field output beam will then be as
nearly fully illuminated as possible, and
the far-field beam pattern will have as
much energy as possible concentrated in
the main central lobe.




Fresnel numbers

Fresnel number describes a diffractional behavior of a beam, which passed
aperture :

Ne = a?/LA

This term is also applied to optical cavities. Siegman introduced so called
collimated Fresnel number for unstable cavities :
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N, determines amount of Fresnel diffraction ripples on the wavefront.

Siegman also introduced N, which is proportional to N, :

M?2—-1 a2 M? -1

Neq= XNc
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Geometrical description

Can be classified into positive and negative branch resonators
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Output coupling methods
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Output beam pattern

near-field far-field
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Mode analysis

Simple spherical wave analysis form a picture of
lowest-order unstable resonator mode.

Distance between P1 and P2 must be chosen in a way
that spherical wave after 1 roundtrip recreates initial
wave.

Then the mode is self-consistent.




Mode analysis

Round-trip Huygens” integral :
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Canonical formulation

Convertion of Huygens” integral to canonical form begins with rewriting input
(up) and output (u,) waves into :

+j¢r(A ~ M)mﬁ]

Uo(zo) = Vo(zo) X exp [ B

jir(D— I/M).m%]

Ug(z2) = Da(x2) X exp [— B

This is physically equivalent to extraction of the spherical curvature of unstable
resonator modes, conversion of magnifying wavefronts to collimated wavefronts




Canonical formulation

Huygens” integral then turns into :

— o o
Ua(z2) = 1/3;770 / p(za)o(zo) exp [-—3}3—;\; (Mz§ — 2z2z0 + mg/M)] dzo

This integral corresponds to propagation through a simple collimated telescopic
system with a ray matrix of a form :

& 1= 5 s =[o T[T ]




Canonical formulation
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{ The system then can be expressed as
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Reference plane is moved to magnified input plane z,, so after change of variables
X,=Mx, we have free-space Huygens’ integral :

Ma 2
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Fereh Loss calculations
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Geometrical prediction : loss =1 - 1/M
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Low-loss behavior "travels” from 1 mode to another




Loss calculations

diffraction loss per bounce, %

Feature of rectangular unstable resonators!
Mode separation at high M and high N,




Eigenvalues for circular-mirror resonators
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Majority of modes appear at low N, values , additional modes appear
from high loss region with N, increasing.

Points on halfway (peaks) between mode crossing look like optimal N,
values for unstable resonator operation.




power loss, 1-|7|?

100

Output coupling approximation
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Geometrically predicted diffraction
losses are always higher than ones
calculated for optimum operation
points.

Geometric eigenvalue magnitude :
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Mode patterns
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 mode shape changes from nearly Gaussian (Ng,<=1) to square-like (N,>>1)
* increasing N, induces more Fresnel ripples
* higher M gives more power concentrated in central peak of far-field beam pattern




Loaded mode patterns
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Some peaks in the near-field decreased in amplitude due to local gain saturation
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Mot

Parameters included :

» beam propagation, modified by mirror distortion, diffraction on edges, internal
phase perturbations, etc

« gain medium characteristics, influenced by heating, saturation, repumping,
possible chemical reactions and other effects
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Numerical simulations
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Ring unstable resonators

Possibility of unidirectional
beam propagation : no spatial
hole burning!




Self-imaging unstable resonators
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The system images magnified
version of coupling aperture onto
itself after each round-trip.

If self-imaging condition
f, + f, = ML, + L,/M

is satisfied, then B=0 in cavity
descriptive matrix, then each round-
trip has zero effective propagation
length, so the resonator has infinitely
high Fresnel numbers, N = Ng, = ©




Off-axis unstable resonators

(a) square mirror, off-axis (b) square mirror, corner
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Designed for more uniform near-field pattern
and to increase intensity in the central lobe of
far-field pattern.

With mirror misaligned, system can be
assumed to have 2 half-resonators with same
M but different N numbers, this modifies near-
field pattern.

When rectangular astigmatism introduced,
there are 2 half-resonators with different M
but same N numbers, then far-field pattern is
modified.




(a) off-axis toroidal resonator
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(b) stable-unstable siab resonator
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Stable-unstable resonators

In  such systems gain medium
geometry exhibits high N numbers in 1
transverse direction, and Ilow N
numbers in another transverse
direction (thin slab or sheet).

The cacity is then stable in 1 direction
and unstable in another.




Unstable resonators in semiconductor lasers

(c) Biellak et al.




Minimizing edge wave effects : aperture
shaping
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rounded-edge unstable mirrors rimmed and stepped-edge mirrors
| % %

Causes fundamental mode to
separate from higher order modes due
to reduced diffraction on mirror edges.

Minimizing edge wave effects : mirror
tapering

(a) hard-edged circular
unstable resonator

4 power loss
per bounce, %
M=33

80~ ﬂeometrlcal
mit
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Variable reflectivity unstable resonators

(a) hard-edged strip resonator (b) tapered-edge or partially

(no smoothing smoothed mirror reflectivity
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Unstable cavity is combined with partially reflecting mirrors (Gaussian mirror, for example).
Control of mode behavior + better beam profile.

(c) Ananjev et al.




Conclusions

Large controllable mode volume
Controllable diffractive output coupling
Good transverse mode discrimination
All-reflective optics

Automatically collimated output beams
Easy to align

Efficient power extraction

Good far field beam patterns




