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Outline 

• Differential approach: Paraxial Wave equation 
• Integral approach: Huygens’ integral 
• Gaussian Spherical Waves 
• Higher-Order Gaussian Modes 

• Lowest Order Mode using differential approach 
• The ”standard” Hermite Polynomial solutions 
• The ”elegant” Hermite Polynomial solutions 
• Astigmatic Mode functions 

• Gaussian Beam Propagation in Ducts 
• Numerical beam propagation methods 
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The paraxial wave equation 

EM field in free space 

Extracting the primary propagation factor: 
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The paraxial wave equation 

EM field in free space 

Extracting the primary propagation factor: 

Paraxial approximation: 

, , 
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The paraxial wave equation 

EM field in free space 

Paraxial approximation: 

, , 
The paraxial wave equation then becomes 
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The paraxial wave equation 

EM field in free space 

Paraxial approximation: 

, , 

The paraxial wave equation 

, where  – - transverse coordinates 
   - Laplacian operator in theses 
 coordinates 
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Validity of the Paraxial Approximation 

Arbitrary optical beam can be 
viewed as a superposition of plane 
wave components travelling at 
various angles to z axis 
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Validity of the Paraxial Approximation 

The reduced wave amplitude 
θ << 1 

+ 
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Validity of the Paraxial Approximation 

The reduced wave amplitude 
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Validity of the Paraxial Approximation 

The reduced wave amplitude 

To remind: Paraxial approximation 

, , 

θ2/4<<1, i.e. θ<0.5 rad 
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Validity of the Paraxial Approximation 

The reduced wave amplitude 

To remind: Paraxial approximation 

, , 

θ2/4<<1, i.e. θ<0.5 rad 
Paraxial optical beams can diverge at cone angles up to ≈30 deg 
before significant corrections to approximation become necessary 
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Huygens' Integral: Huygens’ principle 

“Every point which a luminous 
disturbance reaches becomes a source 
of a spherical wave; the sum of these 
secondary waves determines the form 
of the wave at any subsequent time” 

, where 

WE 
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Huygens' Integral: Fresnel approximation 

Paraxial-spherical wave 

Fresnel approximation: 

PWE 
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Huygens' Integral 

Huygens’ principle 

,where  ρ(r,r0) – distance between source and observation points 
 dS0 – incremental element of surface are at (s0,z0) 
 cosθ (r,r0) – obliquity factor  
 j/λ – normalization factor 
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Huygens' Integral 
Huygens’ integral 

θ<<1  cosθ≈1 
 
Spherical wave    
  
Paraxial- spherical wave 
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Huygens' Integral 
Huygens’ integral 

Huygens’ integral in Fresnel approximation 

, or the reduced wavefunction (with L=z-z0) 

θ<<1  cosθ≈1 
Spherical wave    Paraxial-
  spherical 
  wave 
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Huygens’ integral in Fresnel approximation 

Huygens' Integral 

General form: 

- Huygens kernel 

- 1D kernel 

cilindrical wave an initial phase shift of the Huygens' wavelet compared to 
the actual field value at the input point 

Then, if u0 can be separated  
- 1D Huygens-
Fresnel integral 
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Gaussian spherical waves 

(z-z0)>>x0,y0 
Paraxial approximation 

Phase variations across transversal plane 

The radius of curvature of the wave plane 
Quadratic phase variation represents 
paraxial approximations, so it is valid 
close to z axis 

18 



Gaussian spherical waves 

(z-z0)>>x0,y0 
Paraxial approximation 

Phase variations across transversal plane 

The radius of curvature of the wave plane 
Quadratic phase variation represents 
paraxial approximations, so it is valid 
close to z axis 

Inherent problem – the wave extends out to infinity in transversal direction! 
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Gaussian spherical waves: Complex point 
source 

The solution – to introduce a complex point source 
x0 → 0; 
y0 → 0;     q0 - complex 
z0 → z0-q0 
 

Substitute radius of curvature R(z) 
by complex radius 

Then 

Separate real and imaginary parts of q: 
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Gaussian spherical waves 

Convert into standard notation by denoting: 

the lowest-order spherical-gaussian beam solution in free space 
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Gaussian spherical waves 

Convert into standard notation by denoting: 

the lowest-order spherical-gaussian beam solution in free space 

, where R(z) – the radius of wave front curvature 
 w(z) – “gaussian spot size” 

Note, that R(z) now should be derived from , while  

The complex source point derivation used is only one of 4 different ways 
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Gaussian spherical waves: differential 
approach 

From Paraxial Wave Equation approach: 

Assume a trial solution 

, with A(z) and q(z) being unknown functions 
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Gaussian spherical waves: differential 
approach 

From Paraxial Wave Equation approach: 

Leads to the exactly the same solution for the lowest-order spherical-
gaussian beam   
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Higher-Order Gaussian Modes #1 
Let’s again use a trial solution approach and restrict the problem to the 
1D case 

the paraxial wave equation in 1D 

Trial solution: 

Considering the propagation rule 

( )
xh h

p z
 

=  
 ( )q q z= ( )p p z=
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Higher-Order Gaussian Modes #1 
Let’s again use a trial solution approach and restrict the problem to the 
1D case 

the paraxial wave equation in 1D 

Trial solution: 

Considering the propagation rule 

differential equation for the Hermite 
polynomials 
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Higher-Order Gaussian Modes #1 

- defines different families of solutions 
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The "Standard" Hermite Polynomial 
Solutions 

Main assumption 

Motivation: solutions with the same normalized shape at every transverse plane z 

After proper normalization, one gets expression for the set of higher-order 
Hermite-Gaussian mode functions for a beam propagating in free space 
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The "Standard" Hermite Polynomial 
Solutions 

Rewrite involving the real spot size w(z) and a phase angle ψ(z) 

“After some algebra”: 

And the lowest order gaussian beam mode: 

reason for the choice: ψ(z)=0 at the waist w(z)=w0 
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Guoy phase shift 

Rewrite involving the real spot size w(z) and a phase angle ψ(z) 

“After some algebra”: 

reason for the choice: ψ(z)=0 at the waist w(z)=w0 
 

at n>0 – gives pure phase shift 

Only half of the phase shift comes from each transversal coordinate 
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Properties of the "Standard" Hermite 
Polynomial Solutions  

• Provide a complete basis set of orthogonal functions 

arbitrary paraxial optical beam 
And expansion coefficients depending on arbitrary choice of w0 and z0 

n = 2 
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Properties of the "Standard" Hermite 
Polynomial Solutions  

• Provide a complete basis set of orthogonal functions 

• Astigmatic modes 
( , , ) ( , ) ( , )nm n mu x y z u x z u y z= ⋅

q0 (and w0,z0) can have different values in x and y directions of transversal 
plane astigmatic Gaussian beam modes 
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Properties of the "Standard" Hermite 
Polynomial Solutions  

• Provide a complete basis set of orthogonal functions 

• Astigmatic modes 
( , , ) ( , ) ( , )nm n mu x y z u x z u y z= ⋅

q0 (and w0,z0) can have different values in x and y directions of transversal 
plane astigmatic Gaussian beam modes 

• Cylindrical coordinates: Laguerre-Gaussian modes 

0p ≥ m - radial index  - asimuthal index 
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Properties of the "Standard" Hermite 
Polynomial Solutions  

Hermite-Gaussian laser modes Laguerre-Gaussian laser modes 
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The "Elegant" Hermite Polynomial 
Solutions 

Main assumption 

Motivation: having the same complex argument in Hermite ploynomial and 
gaussian exponent 

• biorthogonal to a set of adjoint functions  

• significant difference in high order modes with “standard” sets 
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The “standard” and “elegant” sets high-
order solutions 

2w
R
πα
λ

=, with 
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Gaussian beam propagation in ducts 

Duct – is a graded index optical waveguided 
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Solution: 

w<< 1/2
21/ n

Gaussian eigenmode of the duct 



Gaussian beam propagation in ducts 

Duct – is a graded index optical waveguided 
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Beating of excited lower and 
higher-order eigenmodes 
propagating with different phase 
velocities 



Numerical Beam Propagation Methods 
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1. Finite Difference Approach 
 
 
Beam propagation through inhomogeneous regions 



Numerical Beam Propagation Methods 
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1. Finite Difference Approach 
 
 
 

2. Fourier Transform Interpretation of Huygens Integral 

x1 FFT xN FFT 

remains a Gaussian 



Numerical Beam Propagation Methods 
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3. Alternative Fourier Transform Approach 

the Huygens-Fresnel propagation integral appears as a single (scaled) 
Fourier transform between the input and output functions u0 and u 

single FT, but applied to a more complex input fucntion 



Paraxial Plane Waves and Transverse 
Spatial Frequencies 

42 

FT → expansion of the optical beam in a set of infinite plane waves 
traveling in slightly different directions 

Set of infinite plane waves 

θx,θy or 
spatial frequencies: sx, sy 
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Outline 

• Gaussian beam propagation 
• Aperture transmission 
• Beam collimation 
• Wavefront radius of curvature 

• Gaussian beam focusing 
• Focus spot sizes and focus depth 
• Focal spot deviation 

• Lens law and Gaussian mode matching 
• Axial phase shifts 
• Higher-order Gaussian modes 

• Hermite-Gaussian patterns 
• Higher-order mode sizes and aperturing 
• Spatial-frequency consideration 
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Gaussian beam 
Beam waist  
w0: R0=inf 

 “Standard” hermite-gaussian solution (n=0) 

, where 
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Gaussian beam 
Beam waist  
w0: R0=inf 

 “Standard” hermite-gaussian solution (n=0) 

, where 

4 



Aperture transmission 

The radial intensity variation of the beam 

5 



Aperture transmission 

The radial intensity variation of the beam 
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Aperture transmission 

The radial intensity variation of the beam 

+ diffraction on aperture 
 sharp edges  
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Gaussian beam collimation 

0( ) 2Rw z w=

zR characterizes switch from near-field (collimated beam) to far-field 
(linearly divergent beam) 
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Collimated Gaussian beam propagation 

(99% criterion) 02D wπ=
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Far-field Gaussian beam propagation 

1. The “Top-hat” criterion 

2
0

2TH
wA π

= - effective source aperture area 
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Far-field Gaussian beam propagation 

1. The “Top-hat” criterion 

2. The 1/e criterion 

- Antenna theorem 
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Far-field Gaussian beam propagation 

1. The “Top-hat” criterion 

2. The 1/e criterion 

3. The conservative criterion far-field beam angle 
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Far-field Gaussian beam propagation 
Wavefront radius of curvature 
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Far-field Gaussian beam propagation 
Wavefront radius of curvature 

Put two curved mirrors of radius R at the points 
±zR to match exactly the wavefronts R(z) 

 - Symmetric confocal resonator 

2
Rf =
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Gaussian beam focusing 

99% criterion 

( )D w fπ=

0 02d w=
1/e criterion 

1. Focused spot size 
lens radius a 

Larger gaussian beam is required for stronger focusing 

Lens is in the far-field 
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Gaussian beam focusing 

1. Focused spot size 

2. Depth of focus 
- Region in which the beam can be thought collimated 

99% criterion 

( )D w fπ=

The beam focused to a spot Nλ in diameter will be N2λ in length 
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Gaussian beam focusing 

1. Focused spot size 

2. Depth of focus 

3. Focal spot deviation 

_ _f depth of focus∆ << - The effect is usually negligible (zR<<f) 
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Gaussian Mode Matching 
The problem: convert w1 at z1 to w2 at z2 

Thin lens law 

The lens law for gaussian beams 

18 



Gaussian Mode Matching 
The problem: convert w1 at z1 to w2 at z2 

Thin lens law: 

The lens law for gaussian beams 
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Gaussian Mode Matching 
The problem: convert w1 at z1 to w2 at z2 

Gaussian-beam (Collins) chart 

The lens law for gaussian beams 
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Axial phase shifts 
Cumulative phase shift variation on the optical axis: 

Plane wave phase shift 
Added phase shift 

/ 2 when z
( ) arctan( / )

/ 2 when zRz z z
π

ψ
π

→ +∞
= → − → −∞

The phase factor yields a  phase shift relative 
to the phase of a plane wave when a Gaussian 
beam goes through a focus. 
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Axial phase shifts: The Guoy effect 
Valid for the beams with any reasonably simple cross section 

Each wavelet will acquire exactly π/2 of extra phase shift in diverging 
from its point source or focus to the far field 

More pronounced for the higher modes: 

1D→ 
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Higher-Order Gaussian Modes 

Hermite-Gaussian TEMnm 

( ) arctan( / )Rz z zψ =, where 
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Higher-Order Gaussian Modes 

Hermite-Gaussian TEMnm 

( ) arctan( / )Rz z zψ =, where 
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Higher-Order Gaussian Modes 

The intensity pattern of any given 
TEMnm mode changes size but 
not shape as it propagates 
forward in z-a given TEMnm mode 
looks exactly the same 

Inherent property of the 
“Standard” Hermite-Gaussian 
solution 
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Higher-Order Mode Sizes 

- spatial period of the ripples 

• An aperture with radius a 

- works well for big n values 
 Common rule: 
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Numerical Hermite-Gaussian Mode 
Expansion 

w, N - ? 
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Numerical Hermite-Gaussian Mode 
Expansion 

w, N - ? 
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Numerical Hermite-Gaussian Mode 
Expansion 
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Spatial Frequency Considerations 

Expand arbitrary function f(x) across an aperture 2a with a finite sum of 
N+1 gaussian modes               :   w, Nmax - ? 
 1. Calculate maximum spatial frequency of fluctuations in the function f(x) 

variations slower than  

2. Select w, N so that the highest order TEMN: 

• at least fill the aperture 

• handle the highest spatial variation in the signal 
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