Wave Optics and Gaussian Beams

Ruslan Ivanov OFO/ICT

Outline

- Differential approach: Paraxial Wave equation
- Integral approach: Huygens' integral
- Gaussian Spherical Waves
- Higher-Order Gaussian Modes
- Lowest Order Mode using differential approach
- The "standard" Hermite Polynomial solutions
- The "elegant" Hermite Polynomial solutions
- Astigmatic Mode functions
- Gaussian Beam Propagation in Ducts
- Numerical beam propagation methods

The paraxial wave equation

EM field in free space

$$
\left[\nabla^{2}+k^{2}\right] \tilde{E}(x, y, z)=0
$$

Extracting the primary propagation factor:
$\tilde{E}(x, y, z) \equiv \tilde{u}(x, y, z) e^{-j k z}$
$\frac{\partial^{2} \tilde{u}}{\partial x^{2}}+\frac{\partial^{2} \tilde{u}}{\partial y^{2}}+\frac{\partial^{2} \tilde{u}}{\partial z^{2}}-2 j k \frac{\partial \tilde{u}}{\partial z}=0$

Transverse amplitude and phase variation of a paraxial optical wave.

The paraxial wave equation

EM field in free space
$\left[\nabla^{2}+k^{2}\right] \tilde{E}(x, y, z)=0$,
Extracting the primary propagation factor:
$\tilde{E}(x, y, z) \equiv \tilde{u}(x, y, z) e^{-j k z}$
$\frac{\partial^{2} \tilde{u}}{\partial x^{2}}+\frac{\partial^{2} \tilde{u}}{\partial y^{2}}+\frac{\partial^{2} \tilde{u}}{\partial z^{2}}-2 j k \frac{\partial \tilde{u}}{\partial z}=0$
Paraxial approximation:

$$
\left|\frac{\partial^{2} \tilde{u}}{\partial z^{2}}\right| \ll\left|2 k \frac{\partial \tilde{u}}{\partial z}\right|,\left|\frac{\partial^{2} \tilde{u}}{\partial x^{2}}\right|,\left|\frac{\partial^{2} \tilde{u}}{\partial y^{2}}\right|
$$

Transverse amplitude and phase variation of a paraxial optical wave.

The paraxial wave equation

EM field in free space
$\left[\nabla^{2}+k^{2}\right] \tilde{E}(x, y, z)=0$.
$\frac{\partial^{2} \tilde{u}}{\partial x^{2}}+\frac{\partial^{2} \tilde{u}}{\partial y^{2}}+\frac{\partial^{2} \tilde{u}}{\partial z^{2}}-2 j k \frac{\partial \tilde{u}}{\partial z}=0$
Paraxial approximation:
$\left|\frac{\partial^{2} \tilde{u}}{\partial z^{2}}\right| \ll\left|2 k \frac{\partial \tilde{u}}{\partial z}\right|,\left|\frac{\partial^{2} \tilde{u}}{\partial x^{2}}\right|,\left|\frac{\partial^{2} \tilde{u}}{\partial y^{2}}\right|$
The paraxial wave equation then becomes

$$
\frac{\partial^{2} \tilde{u}}{\partial x^{2}}+\frac{\partial^{2} \tilde{u}}{\partial y^{2}}-2 j k \frac{\partial \tilde{u}}{\partial z}=0
$$

Transverse amplitude and phase variation of a paraxial optical wave.

The paraxial wave equation

EM field in free space
$\left[\nabla^{2}+k^{2}\right] \tilde{E}(x, y, z)=0$
Paraxial approximation:

$$
\left|\frac{\partial^{2} \tilde{u}}{\partial z^{2}}\right| \ll\left|2 k \frac{\partial \tilde{u}}{\partial z}\right|,\left|\frac{\partial^{2} \tilde{u}}{\partial x^{2}}\right|,\left|\frac{\partial^{2} \tilde{u}}{\partial y^{2}}\right|
$$

The paraxial wave equation

$$
\nabla_{t}^{2} \tilde{u}(s, z)-2 j k \frac{\partial \tilde{u}(s, z)}{\partial z}=0
$$

, where $s \equiv(x, y)$ - transverse coordinates ∇_{t}^{2} - Laplacian operator in theses coordinates

Transverse amplitude and phase variation of a paraxial optical wave.

Validity of the Paraxial Approximation

$\frac{\partial \tilde{u}(s, z)}{\partial z}=-\frac{j}{2 k} \nabla_{t}^{2} \tilde{u}(s, z)$

Arbitrary optical beam can be viewed as a superposition of plane wave components travelling at various angles to z axis

$$
\begin{aligned}
\tilde{E}(x, z) & =\exp [-j k x \sin \theta-j k z \cos \theta]= \\
& =\tilde{u}(x, z) e^{-j k z}
\end{aligned}
$$

Validity of the Paraxial Approximation

$$
\begin{aligned}
& \frac{\partial \tilde{u}(s, z)}{\partial z}=-\frac{j}{2 k} \nabla_{t}^{2} \tilde{u}(s, z) \\
& \tilde{E}(x, z)=\exp [-j k x \sin \theta-j k z \cos \theta]= \\
& =\tilde{u}(x, z) e^{-j k z} \\
& \text { The reduced wave amplitude } \\
& \tilde{u}(x, z)=\exp [-j k x \sin \theta+j k z(1-\cos \theta)] \approx \exp \left[-j k \theta x+j k \frac{\theta^{2} z}{2}\right]
\end{aligned}
$$

Validity of the Paraxial Approximation

$$
\frac{\partial \tilde{u}(s, z)}{\partial z}=-\frac{j}{2 k} \nabla_{t}^{2} \tilde{u}(s, z)
$$

The reduced wave amplitude

$$
\begin{gathered}
\tilde{u}(x, z) \approx \exp \left[-j k \theta x+j k \frac{\theta^{2} z}{2}\right] \\
-j \frac{2 k}{\tilde{u}} \frac{\partial \tilde{u}}{\partial z}=+2 k^{2}(1-\cos \theta) \approx k^{2} \theta^{2} \\
\frac{1}{\tilde{\tilde{u}}} \frac{\partial^{2} \tilde{u}}{\partial x^{2}}=-k^{2} \sin ^{2} \theta \approx-k^{2} \theta^{2} \\
\frac{1}{\tilde{\tilde{u}}} \frac{\partial^{2} \tilde{u}}{\partial z^{2}}=-k^{2}(1-\cos \theta)^{2} \approx-\frac{k^{2} \theta^{4}}{4}
\end{gathered}
$$

Validity of the Paraxial Approximation

$\frac{\partial \tilde{u}(s, z)}{\partial z}=-\frac{j}{2 k} \nabla_{t}^{2} \tilde{u}(s, z)$
The reduced wave amplitude

$$
\begin{aligned}
\tilde{u}(x, z) & \approx \exp \left[-j k \theta x+j k \frac{\theta^{2} z}{2}\right] \\
-j \frac{2 k}{\tilde{u}} \frac{\partial \tilde{u}}{\partial z} \approx k^{2} \theta^{2} & \text { To remind: Paraxial approximation } \\
\frac{1}{\tilde{\tilde{u}}} \frac{\partial^{2} \tilde{u}}{\partial x^{2}} \approx-k^{2} \theta^{2} & \left|\frac{\partial^{2} \tilde{u}}{\partial z^{2}}\right| \ll\left|2 k \frac{\partial \tilde{u}}{\partial z}\right|,\left|\frac{\partial^{2} \tilde{u}}{\partial x^{2}}\right|,\left|\frac{\partial^{2} \tilde{u}}{\partial y^{2}}\right| \\
\frac{1}{\tilde{\tilde{\sim}} \frac{\partial^{2} \tilde{u}}{\partial \tau^{2}}} \approx-\frac{k^{2} \theta^{4}}{\Lambda} & \theta^{2} / 4 \ll 1, \text { i.e. } \theta<0.5 \mathrm{rad}
\end{aligned}
$$

Validity of the Paraxial Approximation

$\frac{\partial \tilde{u}(s, z)}{\partial z}=-\frac{j}{2 k} \nabla_{t}^{2} \tilde{u}(s, z)$
The reduced wave amplitude

$$
\begin{array}{rr}
\tilde{u}(x, z) & \approx \exp \left[-j k \theta x+j k \frac{\theta^{2} z}{2}\right] \\
-j \frac{2 k}{\tilde{u}} \frac{\partial \tilde{u}}{\partial z} \approx k^{2} \theta^{2} & \text { To remind: Paraxial approximation } \\
\frac{1}{\tilde{\tilde{u}}} \frac{\partial^{2} \tilde{u}}{\partial x^{2}} \approx-k^{2} \theta^{2} & \left|\frac{\partial^{2} \tilde{u}}{\partial z^{2}}\right| \ll\left|2 k \frac{\partial \tilde{u}}{\partial z}\right|,\left|\frac{\partial^{2} \tilde{u}}{\partial x^{2}}\right|,\left|\frac{\partial^{2} \tilde{u}}{\partial y^{2}}\right| \\
\frac{1}{\tilde{\tilde{u}} \frac{\partial^{2} \tilde{u}}{\partial z^{2}} \approx-\frac{k^{2} \theta^{4}}{4}} \quad \begin{array}{|ll}
2 / 4 \ll 1, \text { i.e. } \theta<0.5 \mathrm{rad}
\end{array}
\end{array}
$$

Paraxial optical beams can diverge at cone angles up to $\approx 30 \mathrm{deg}$ before significant corrections to approximation become necessary

Huygens' Integral: Huygens' principle

"Every point which a luminous disturbance reaches becomes a source of a spherical wave; the sum of these secondary waves determines the form of the wave at any subsequent time"

$$
\begin{aligned}
& \tilde{E}\left(\boldsymbol{r} ; \boldsymbol{r}_{0}\right)=\frac{\exp \left[-j k \rho\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right)\right]}{\rho\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right)} \longrightarrow \text { WE } \\
& \text {, where } \\
& \rho\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right) \equiv \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}
\end{aligned}
$$

Huygens' Integral: Fresnel approximation

Paraxial-spherical wave
$\tilde{E}(x, y, z) \approx \frac{1}{z-z_{0}} \exp \left[-j k\left(z-z_{0}\right)-j k \frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}{2\left(z-z_{0}\right)}\right]$
$\check{u}(x, y, z)=\frac{1}{z-z_{0}} \exp \left[-j k \frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}{2\left(z-z_{0}\right)}\right]$
PWE

Huygens' Integral

Huygens' principle

$$
\tilde{E}(\boldsymbol{s}, z)=\frac{j}{\lambda} \iint_{S_{0}} \tilde{E}_{0}\left(s_{0}, z_{0}\right) \frac{\exp \left[-j k \rho\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right)\right]}{\rho\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right)} \cos \theta\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right) d \boldsymbol{S}_{0}
$$

,where $\rho\left(r, r_{0}\right)$ - distance between source and observation points $d S_{0}$ - incremental element of surface are at ($\mathbf{s}_{0}, \mathbf{z}_{0}$) $\cos \theta\left(r, r_{0}\right)$ - obliquity factor j / λ - normalization factor

Huygens' Integral

Huygens' integral

$$
\tilde{E}(\boldsymbol{s}, z)=\frac{j}{\lambda} \iint_{S_{0}} \tilde{E}_{0}\left(\boldsymbol{s}_{0}, z_{0}\right) \frac{\exp \left[-j k \rho\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right)\right]}{\rho\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right)} \cos \theta\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right) d \boldsymbol{S}_{0}
$$

Huygens' Integral

Huygens' integral

$$
\tilde{E}(\boldsymbol{s}, z)=\frac{j}{\lambda} \iint_{S_{0}} \tilde{E}_{0}\left(\boldsymbol{s}_{0}, z_{0}\right) \frac{\exp \left[-j k \rho\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right)\right]}{\rho\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right)} \cos \theta\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right) d \boldsymbol{S}_{0}
$$

, or the reduced wavefunction (with $L=z-z_{0}$)

$$
\tilde{u}(x, y, z)=\frac{j}{L \lambda} \iint \tilde{u}_{0}\left(x_{0}, y_{0}, z_{0}\right) \exp \left[-j k \frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}{2 L}\right] d x_{0} d y_{0}
$$

Huygens' Integral

Huygens' integral in Fresnel approximation
$\tilde{u}(x, y, z)=\frac{j}{L \lambda} \iint \tilde{u}_{0}\left(x_{0}, y_{0}, z_{0}\right) \exp \left[-j k \frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}{2 L}\right] d x_{0} d y_{0}$
General form:

$$
\tilde{u}(s, z)=\iint \tilde{K}\left(r, r_{0}\right) \tilde{u}_{0}\left(s_{0}, z_{0}\right) d s_{0}
$$

$$
\tilde{K}\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right)=\tilde{K}_{1}\left(x-x_{0}\right) \times \tilde{K}_{1}\left(y-y_{0}\right) \quad \text { - Huygens kernel }
$$

$$
\tilde{K}_{1}\left(x-x_{0}\right)=\sqrt{\frac{j}{L \lambda}} \exp \left[-j \frac{\pi\left(x-x_{0}\right)^{2}}{L \lambda}\right]
$$

- 1D kernel
cilindrical wave
an initial phase shift of the Huygens' wavelet compared to the actual field value at the input point

Then, if u_{0} can be separated

$$
\tilde{u}(x, z)=\sqrt{\frac{j}{L \lambda}} \int \tilde{u}_{0}\left(x_{0}, z_{0}\right) \exp \left[-j \frac{\pi\left(x-x_{0}\right)^{2}}{L \lambda}\right] d x_{0}
$$

- 1D HuygensFresnel integral

Gaussian spherical waves

Paraxial approximation

$$
\begin{aligned}
\tilde{u}(x, y, z) & =\frac{1}{z-z_{0}} \exp \left[-j k \frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}{2\left(z-z_{0}\right)}\right] \\
& =\frac{1}{R(z)} \exp \left[-j k \frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}{2 R(z)}\right]
\end{aligned}
$$

Phase variations across transversal plane

$$
\phi(x, y, z) \equiv k \frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}{2\left(z-z_{0}\right)}=\frac{\pi}{\lambda} \frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}{R(z)}
$$

The radius of curvature of the wave plane

$$
R(z)=R_{0}+z-z_{0}
$$

Quadratic phase variation represents paraxial approximations, so it is valid close to z axis

Gaussian spherical waves

Paraxial approximation

$$
\begin{aligned}
\tilde{u}(x, y, z) & =\frac{1}{z-z_{0}} \exp \left[-j k \frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}{2\left(z-z_{0}\right)}\right] \\
& =\frac{1}{R(z)} \exp \left[-j k \frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}{2 R(z)}\right]
\end{aligned}
$$

Phase variations across transversal plane

$$
\phi(x, y, z) \equiv k \frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}{2\left(z-z_{0}\right)}=\frac{\pi}{\lambda} \frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}{R(z)}
$$

The radius of curvature of the wave plane

$$
R(z)=R_{0}+z-z_{0}
$$

Quadratic phase variation represents paraxial approximations, so it is valid close to z axis

Inherent problem - the wave extends out to infinity in transversal direction!

Gaussian spherical waves: Complex point source

$$
\begin{aligned}
& x_{0} \rightarrow 0 ; \\
& y_{0} \rightarrow 0 ; \quad q_{0} \text { - complex } \\
& z_{0} \rightarrow z_{0}-q_{0}
\end{aligned}
$$

The solution - to introduce a complex point source

Substitute radius of curvature $\mathrm{R}(\mathrm{z})$ by complex radius

$$
\tilde{q}(z)=\tilde{q}_{0}+z-z_{0}
$$

Then

$$
\tilde{u}(x, y, z)=\frac{1}{\tilde{q}(z)} \exp \left[-j k \frac{x^{2}+y^{2}}{2 \tilde{q}(z)}\right]
$$

Separate real and imaginary parts of q :

$$
-\frac{1}{\tilde{q}(z)} \equiv \frac{1}{q_{r}(z)}-j \frac{1}{q_{i}(z)}
$$

$$
\tilde{u}(x, y, z)=\frac{1}{\tilde{q}(z)} \exp \left[-j k \frac{x^{2}+y^{2}}{2 q_{r}(z)}-k \frac{x^{2}+y^{2}}{2 q_{i}(z)}\right]
$$

Gaussian spherical waves

Convert into standard notation by denoting: $\quad \frac{1}{\tilde{q}(z)} \equiv \frac{1}{R(z)}-j \frac{\lambda}{\pi w^{2}(z)}$
$\tilde{u}(x, y, z)=\frac{1}{\tilde{q}(z)} \exp \left[-j k \frac{x^{2}+y^{2}}{2 R(z)}-\frac{x^{2}+y^{2}}{w^{2}(z)}\right]$
the lowest-order spherical-gaussian beam solution in free space

Gaussian spherical waves

Convert into standard notation by denoting: $\quad \frac{1}{\tilde{q}(z)} \equiv \frac{1}{R(z)}-j \frac{\lambda}{\pi w^{2}(z)}$
$\tilde{u}(x, y, z)=\frac{1}{\tilde{q}(z)} \exp \left[-j k \frac{x^{2}+y^{2}}{2 R(z)}-\frac{x^{2}+y^{2}}{w^{2}(z)}\right]$
the lowest-order spherical-gaussian beam solution in free space
, where $R(z)$ - the radius of wave front curvature
w(z) - "gaussian spot size"

Note, that $\mathrm{R}(\mathrm{z})$ now should be derived from, while $\tilde{q}(z)=\tilde{q}_{0}+z-z_{0}$

The complex source point derivation used is only one of 4 different ways

Gaussian spherical waves: differential approach

From Paraxial Wave Equation approach: $\frac{\partial \tilde{u}(s, z)}{\partial z}=-\frac{j}{2 k} \nabla_{t}^{2} \tilde{u}(s, z)$
Assume a trial solution

$$
\tilde{u}(x, y, z)=A(z) \times \exp \left[-j k \frac{x^{2}+y^{2}}{2 \tilde{q}(z)}\right]
$$

, with $A(z)$ and $q(z)$ being unknown functions

$$
\begin{gathered}
{\left[\left(\frac{k}{2}\right)^{2}\left(\frac{d \tilde{q}}{d z}-1\right)\left(x^{2}+y^{2}\right)-\frac{2 j k}{\tilde{q}}\left(\frac{\tilde{q}}{A} \frac{d A}{d z}+1\right)\right] A(z)=0} \\
\frac{d \tilde{q}(z)}{d z}=1
\end{gathered} \frac{\frac{d A(z)}{d z}=-\frac{A(z)}{\tilde{q}(z)}}{\tilde{q}(z)=\tilde{q}_{0}+z-z_{0}} \quad \frac{A(z)}{A_{0}}=\frac{\tilde{q}_{0}}{\tilde{q}(z)} .
$$

Gaussian spherical waves: differential approach

From Paraxial Wave Equation approach: $\frac{\partial \tilde{u}(s, z)}{\partial z}=-\frac{j}{2 k} \nabla_{t}^{2} \tilde{u}(s, z)$

$$
\begin{array}{r}
\tilde{u}(x, y, z)=A(z) \times \exp \left[-j k \frac{x^{2}+y^{2}}{2 \tilde{q}(z)}\right] \\
\tilde{q}(z)=\tilde{q}_{0}+z-z_{0} \quad \frac{A(z)}{A_{0}}=\frac{\tilde{q}_{0}}{\tilde{q}(z)} \\
\tilde{u}(x, y, z)=\frac{A_{0} \tilde{q}_{0}}{\tilde{q}(z)} \exp \left[-j k \frac{x^{2}+y^{2}}{2 \tilde{q}(z)}\right]
\end{array}
$$

Leads to the exactly the same solution for the lowest-order sphericalgaussian beam

Higher-Order Gaussian Modes \#1

Let's again use a trial solution approach and restrict the problem to the 1D case
$\tilde{u}_{n m}(x, y, z)=\tilde{u}_{n}(x, z) \times \tilde{u}_{m}(y, z)$
$\frac{\partial^{2} \tilde{u}_{n}(x, z)}{\partial x^{2}}-2 j k \frac{\partial \tilde{u}_{n}(x, z)}{\partial z}=0$. the paraxial wave equation in 1D
Trial solution:
$\tilde{u}_{n}(x, z)=A(\tilde{q}(z)) \times h_{n}\left(\frac{x}{\tilde{p}(z)}\right) \times \exp \left[-j k \frac{x^{2}}{2 \tilde{q}(z)}\right]$
Considering the propagation rule $d \tilde{q} / d z=1$

$$
\begin{gathered}
h_{n}^{\prime \prime}-2 j k\left[\frac{\tilde{p}}{\tilde{q}}-\tilde{p}^{\prime}\right] x h_{n}^{\prime}-\frac{j k \tilde{p}^{2}}{\tilde{q}}\left[1+\frac{2 \tilde{q}}{A} \frac{d A}{d \tilde{q}}\right] h_{n}=0 \\
q=q(z) \quad p=p(z) \quad h=h\left(\frac{x}{p(z)}\right)
\end{gathered}
$$

Higher-Order Gaussian Modes \#1

Let's again use a trial solution approach and restrict the problem to the 1D case
$\tilde{u}_{n m}(x, y, z)=\tilde{u}_{n}(x, z) \times \tilde{u}_{m}(y, z)$
$\frac{\partial^{2} \tilde{u}_{n}(x, z)}{\partial x^{2}}-2 j k \frac{\partial \tilde{u}_{n}(x, z)}{\partial z}=0$. the paraxial wave equation in 1D
Trial solution:
$\tilde{u}_{n}(x, z)=A(\tilde{q}(z)) \times h_{n}\left(\frac{x}{\tilde{p}(z)}\right) \times \exp \left[-j k \frac{x^{2}}{2 \tilde{q}(z)}\right]$
Considering the propagation rule $d \tilde{q} / d z=1$
$h_{n}^{\prime \prime}-2 j k\left[\frac{\tilde{p}}{\tilde{q}}-\tilde{p}^{\prime}\right] x h_{n}^{\prime}-\frac{j k \tilde{p}^{2}}{\tilde{q}}\left[1+\frac{2 \tilde{q}}{A} \frac{d A}{d \tilde{q}}\right] h_{n}=0$
$H_{n}^{\prime \prime}-2(x / \tilde{p}) H_{n}^{\prime}+2 n H_{n}=0$
differential equation for the Hermite polynomials

Higher-Order Gaussian Modes \#1

$$
\begin{aligned}
& h_{n}^{\prime \prime}-2 j k\left[\frac{\tilde{p}}{\tilde{q}}-\tilde{p}^{\prime}\right] x h_{n}^{\prime}-\frac{j k \tilde{p}^{2}}{\tilde{q}}\left[1+\frac{2 \tilde{q}}{A} \frac{d A}{d \tilde{q}}\right] h_{n}=0 \\
& H_{n}^{\prime \prime}-2(x / \tilde{p}) H_{n}^{\prime}+2 n H_{n}=0 \\
& \left\{\begin{array}{l}
\frac{d \tilde{p}}{d z}=\frac{\tilde{p}}{\tilde{q}}+\frac{j}{k \tilde{p}} \quad \text { - defines different families of solutions } \\
\frac{2 q}{A} \frac{d A}{d \tilde{q}}=\frac{2 j n k \tilde{p}^{2}}{\tilde{q}}-1
\end{array}\right.
\end{aligned}
$$

The "Standard" Hermite Polynomial Solutions

Main assumption $\quad \frac{1}{\tilde{p}(z)} \equiv \frac{\sqrt{2}}{w(z)}$
Motivation: solutions with the same normalized shape at every transverse plane z
$\tilde{u}_{n}(x, z)=h_{n}\left(\frac{\sqrt{2} x}{w(z)}\right) \exp \left[\frac{-j k x^{2}}{2 R(z)}-\frac{x^{2}}{w^{2}(z)}\right]$
After proper normalization, one gets expression for the set of higher-order Hermite-Gaussian mode functions for a beam propagating in free space

$$
\begin{aligned}
\tilde{u}_{n}(x, z)=\left(\frac{2}{\pi}\right)^{1 / 4} & \left(\frac{1}{2^{n} n!w_{0}}\right)^{1 / 2}\left(\frac{\tilde{q}_{0}}{\tilde{q}(z)}\right)^{1 / 2}\left[\frac{\tilde{q}_{0}}{\tilde{q}_{0}^{*}} \frac{\tilde{q}^{*}(z)}{\tilde{q}(z)}\right]^{n / 2} \\
& \times H_{n}\left(\frac{\sqrt{2} x}{w(z)}\right) \exp \left[-j \frac{k x^{2}}{2 \tilde{q}(z)}\right]
\end{aligned}
$$

The "Standard" Hermite Polynomial Solutions

$$
\tilde{u}_{n}(x, z)=\left(\frac{2}{\pi}\right)^{1 / 4}\left(\frac{1}{2^{n} n!w_{0}}\right)^{1 / 2}\left(\frac{\tilde{q}_{0}}{\tilde{q}(z)}\right)^{1 / 2}\left[\frac{\tilde{q}_{0}}{\tilde{q}_{0}^{*}} \frac{\tilde{q}^{*}(z)}{\tilde{q}(z)}\right]^{n / 2} H_{n}\left(\frac{\sqrt{2} x}{w(z)}\right) \exp \left[-j \frac{k x^{2}}{2 \tilde{q}(z)}\right]
$$

Rewrite involving the real spot size $w(z)$ and a phase angle $\psi(z)$

$$
\begin{aligned}
& \frac{j}{\tilde{q}}=\frac{\lambda}{\pi w^{2}}\left[1+j \frac{\pi w^{2}}{R \lambda}\right] \equiv \frac{\exp [j \psi(z)]}{|\tilde{q}|} \quad \text { reason for the choice: } \psi(\mathrm{z})=0 \text { at the waist } \mathrm{w}(\mathrm{z})=\mathrm{w} 0 \\
& \tan \psi(z) \equiv \frac{\pi w^{2}(z)}{R(z) \lambda}
\end{aligned}
$$

"After some algebra":

$$
\tilde{u}_{n}(x)=\left(\frac{2}{\pi}\right)^{1 / 4} \sqrt{\frac{\exp \left[-j(2 n+1)\left(\psi(z)-\psi_{0}\right)\right]}{2^{n} n!w(z)}} H_{n}\left(\frac{\sqrt{2} x}{w(z)}\right) \exp \left[-j \frac{k x^{2}}{2 R(z)}-\frac{x^{2}}{w^{2}(z)}\right]
$$

And the lowest order gaussian beam mode:

$$
\tilde{u}_{0}(x, z)=\left(\frac{2}{\pi}\right)^{1 / 4} \sqrt{\frac{\exp j\left[\psi(z)-\psi_{0}\right]}{w(z)}} \exp \left[-j \frac{k x^{2}}{2 \tilde{q}(z)}\right]
$$

Guoy phase shift

$$
\tilde{u}_{n}(x, z)=\left(\frac{2}{\pi}\right)^{1 / 4}\left(\frac{1}{2^{n} n!w_{0}}\right)^{1 / 2}\left(\frac{\tilde{q}_{0}}{\tilde{q}(z)}\right)^{1 / 2}\left[\frac{\tilde{q}_{0}}{\tilde{q}_{0}^{*}} \frac{\tilde{q}^{*}(z)}{\tilde{q}(z)}\right]^{n / 2} H_{n}\left(\frac{\sqrt{2} x}{w(z)}\right) \exp \left[-j \frac{k x^{2}}{2 \tilde{q}(z)}\right]
$$

Rewrite involving the real spot size $w(z)$ and a phase angle $\psi(z)$

$$
\begin{aligned}
& \frac{j}{\tilde{q}}=\frac{\lambda}{\pi w^{2}}\left[1+j \frac{\pi w^{2}}{R \lambda}\right] \equiv \frac{\exp [j \psi(z)]}{|\tilde{q}|} \text { reason for the choice: } \psi(\mathrm{z})=0 \text { at the waist } \mathrm{w}(\mathrm{z})=\mathrm{w} 0 \\
& \tan \psi(z) \equiv \frac{\pi w^{2}(z)}{R(z) \lambda}
\end{aligned}
$$

"After some algebra":

$$
\tilde{u}_{n}(x)=\left(\frac{2}{\pi}\right)^{1 / 4} \sqrt{\frac{\exp \left[-j(2 n+1)\left(\psi(z)-\psi_{0}\right)\right]}{2^{n} n!w(z)}} H_{n}\left(\frac{\sqrt{2} x}{w(z)}\right) \exp \left[-j \frac{k x^{2}}{2 R(z)}-\frac{x^{2}}{w^{2}(z)}\right]
$$

$$
\left[\frac{\tilde{q}_{0}}{\tilde{q}_{0}^{*}} \frac{\tilde{q}^{*}(z)}{\tilde{q}(z)}\right]^{n / 2} \equiv \exp \left[j n\left[\psi(z)-\psi_{0}\right]\right] \quad \text { at } \mathrm{n}>0-\text { gives pure phase shift }
$$

Only half of the phase shift comes from each transversal coordinate

Properties of the "Standard" Hermite Polynomial Solutions

- Provide a complete basis set of orthogonal functions

$$
\begin{aligned}
& \int_{-\infty}^{\infty} u_{n}^{*}(x, z) \tilde{u}_{m}(x, z) d x=\delta_{n m} \\
& \tilde{E}(x, y, z)=\sum_{n} \sum_{m} c_{n m} \tilde{u}_{n}(x, z) \tilde{u}_{m}(y, z) e^{-j k z}
\end{aligned}
$$

arbitrary paraxial optical beam
And expansion coefficients depending on arbitrary choice of w_{0} and z_{0}
$c_{n m}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{E}(x, y, z) u_{n}^{*}(x, z) u_{m}^{*}(y, z) d x d y$

Properties of the "Standard" Hermite Polynomial Solutions

- Provide a complete basis set of orthogonal functions

$$
\begin{aligned}
& \int_{-\infty}^{\infty} u_{n}^{*}(x, z) \tilde{u}_{m}(x, z) d x=\delta_{n m} \\
& \tilde{E}(x, y, z)=\sum_{n} \sum_{m} c_{n m} \tilde{u}_{n}(x, z) \tilde{u}_{m}(y, z) e^{-j k z}
\end{aligned}
$$

- Astigmatic modes

$$
u_{n m}(x, y, z)=u_{n}(x, z) \cdot u_{m}(y, z)
$$

q_{0} (and $\mathrm{w}_{0}, \mathrm{z}_{0}$) can have different values in x and y directions of transversal plane astigmatic Gaussian beam modes

Properties of the "Standard" Hermite Polynomial Solutions

- Provide a complete basis set of orthogonal functions

$$
\begin{aligned}
& \int_{-\infty}^{\infty} u_{n}^{*}(x, z) \tilde{u}_{m}(x, z) d x=\delta_{n m} \\
& \tilde{E}(x, y, z)=\sum_{n} \sum_{m} c_{n m} \tilde{u}_{n}(x, z) \tilde{u}_{m}(y, z) e^{-j k z}
\end{aligned}
$$

- Astigmatic modes

$$
u_{n m}(x, y, z)=u_{n}(x, z) \cdot u_{m}(y, z)
$$

q_{0} (and $\mathrm{w}_{0}, \mathrm{z}_{0}$) can have different values in x and y directions of transversal plane astigmatic Gaussian beam modes

- Cylindrical coordinates: Laguerre-Gaussian modes

$$
\begin{gathered}
\tilde{u}_{p m}(r, \theta, z)=\sqrt{\frac{2 p!}{\left(1+\delta_{0 m}\right) \pi(m+p)!}} \frac{\exp j(2 p+m+1)\left(\psi(z)-\psi_{0}\right)}{w(z)}\left(\frac{\sqrt{2} r}{w(z)}\right)^{m} L_{p}^{m}\left(\frac{2 r^{2}}{w(z)^{2}}\right) \exp \left[-j k \frac{r^{2}}{2 \tilde{q}(z)}+i m \theta\right] \\
p \geq 0 \quad \text { - radial index } \quad m \text { - asimuthal index }
\end{gathered}
$$

Properties of the "Standard" Hermite Polynomial Solutions

Hermite-Gaussian laser modes

Laguerre-Gaussian laser modes

The "Elegant" Hermite Polynomial Solutions

Main assumption $\frac{1}{\tilde{p}(z)} \equiv \sqrt{\frac{j k}{2 \tilde{q}(z)}}$
Motivation: having the same complex argument in Hermite ploynomial and gaussian exponent

$$
\hat{u}_{n}(x, z)=\hat{u}_{0}\left[\frac{\tilde{q}_{0}}{\tilde{q}(z)}\right]^{n+1 / 2} H_{n}\left(\sqrt{\frac{j k x^{2}}{2 \tilde{q}(z)}}\right) \exp \left[-j \frac{k x^{2}}{2 \tilde{q}(z)}\right]
$$

- biorthogonal to a set of adjoint functions $\hat{v}_{n}(x, z)=H_{n}\left(\sqrt{\frac{-j k}{2 \tilde{q}^{*}}} x\right)$

$$
\int_{-\infty}^{\infty} \hat{u}_{n}(x, z) \hat{v}_{n}^{*}(x, z) d x=c_{n} \delta_{n m}
$$

- significant difference in high order modes with "standard" sets

$\tilde{u}_{2}(x, z)=$ const $\times\left[\frac{4 x^{2}}{w^{2}}-1\right] \exp \left[-j \frac{k x^{2}}{2 \tilde{q}}\right]$

Gaussian beam propagation in ducts

Duct - is a graded index optical waveguided

$$
n(r)=n_{0}-\frac{1}{2} n_{2} r^{2}
$$

$$
\left[\nabla_{x y}^{2}-k^{2} n_{2}\left(x^{2}+y^{2}\right)-2 j k \frac{\partial}{\partial z}\right] \tilde{u}(x, y, z)=0
$$

Solution:

$$
\begin{aligned}
& \tilde{u}(x, y, z)=\tilde{u}_{0} \exp \left[-\frac{x^{2}+y^{2}}{w_{1}^{2}}+j \frac{\lambda z}{w_{1}^{2}}\right] \\
& w_{1}^{2}=\frac{\lambda}{\pi \sqrt{n_{2}}}
\end{aligned}
$$

Gaussian eigenmode of the duct

$$
w \ll 1 / n_{2}^{1 / 2}
$$

Gaussian beam propagation in ducts

Duct - is a graded index optical waveguided $n(r)=n_{0}-\frac{1}{2} n_{2} r^{2}$

$$
\tilde{u}(x, y, z)=\tilde{u}_{0} \exp \left[-\frac{x^{2}+y^{2}}{w_{1}^{2}}+j \frac{\lambda z}{w_{1}^{2}}\right]
$$

Numerical Beam Propagation Methods

1. Finite Difference Apdroach

$$
\frac{\partial \tilde{u}(s, z)}{\partial z}=-\frac{j}{2 k} \nabla_{t}^{2} \tilde{u}(s, z)
$$

Beam propagation through inhomogeneous regions

Numerical Beam Propagation Methods

1. Finite Difference Approach

$$
\frac{\partial \tilde{u}(s, z)}{\partial z}=-\frac{j}{2 k} \nabla_{t}^{2} \tilde{u}(s, z)
$$

2. Fourier Transform Interpretation of Huygens Integral

$$
\begin{gathered}
\tilde{u}(x, z)=\sqrt{\frac{j}{L \lambda}} \int \tilde{u}_{0}\left(x_{0}, z_{0}\right) \exp \left[-j \frac{\pi\left(x-x_{0}\right)^{2}}{L \lambda}\right] d x_{0} \\
\tilde{u}(x, z)=\tilde{u}_{0}\left(x_{0}\right) * \exp \left[-j \pi x_{0}^{2} /\left(z-z_{0}\right) \lambda\right] \\
x \text { FNFT } \mid x 1 \text { FFT } \\
\downarrow * g=\mathcal{F}^{-1}\{\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}\} \longrightarrow \text { remains a Gaussian }
\end{gathered}
$$

Numerical Beam Propagation Methods

3. Alternative Fourier Transform Approach

$$
\begin{aligned}
& \tilde{u}(x, z)=\exp \left(\frac{-j \pi x^{2}}{L \lambda}\right) \sqrt{\frac{j}{L \lambda}} \int_{-\infty}^{\infty} \tilde{u}_{0}^{\prime}\left(x_{0}, z_{0}\right) \times \exp \left[j(2 \pi / L \lambda) x x_{0}\right] d x_{0} \\
& \tilde{u}_{0}^{\prime}\left(x_{0}, z_{0}\right) \equiv \tilde{u}_{0}\left(x_{0}, z \tilde{0}\right) e^{-j \pi x_{0}^{2} / L \lambda}
\end{aligned}
$$

the Huygens-Fresnel propagation integral appears as a single (scaled) Fourier transform between the input and output functions u_{0} and u
single FT, but applied to a more complex input fucntion

Paraxial Plane Waves and Transverse Spatial Frequencies

FT \rightarrow expansion of the optical beam in a set of infinite plane waves traveling in slightly different directions

Set of infinite plane waves
$\boldsymbol{k c o s} \theta$
$k_{x}=k \sin \theta_{x} \equiv 2 \pi s_{x}$
$k_{y}=k \sin \theta_{y} \equiv 2 \pi s_{y} \longrightarrow \theta_{x}, \theta_{\mathrm{y}}$ or
$\boldsymbol{k} \longrightarrow \begin{aligned} & k_{y}=k \sin \theta_{y} \equiv 2 \pi s_{y} \\ & k_{z}=k-\pi \lambda\left(s_{x}^{2}+s_{y}^{2}\right)\end{aligned}$

$$
\tilde{u}_{p w}(x, y, z) \equiv \exp [-j \boldsymbol{k} \cdot \boldsymbol{r}]=\exp \left[-j\left(k_{x} x+k_{y} y+k_{z} z\right)\right]
$$

spatial frequencies: $\mathrm{s}_{\mathrm{x}}, \mathrm{S}_{\mathrm{y}}$

$$
\tilde{u}_{p w}(x, y, z)=\tilde{u}_{p w}(x, y, 0) \times \exp \left[-j k z+j \pi \lambda\left(s_{x}^{2}+s_{y}^{2}\right) z\right]
$$

$$
\tilde{u}(x, y, z)=\iint \tilde{U}_{p \dot{w}}\left(s_{x}, s_{y}, z\right) \times e^{-j 2 \pi\left(s_{x} x+s_{y} y\right)} d s_{x} d s_{y}
$$

Physical Properties of Gaussian Beams

Ruslan Ivanov OFO/ICT

Outline

- Gaussian beam propagation
- Aperture transmission
- Beam collimation
- Wavefront radius of curvature
- Gaussian beam focusing
- Focus spot sizes and focus depth
- Focal spot deviation
- Lens law and Gaussian mode matching
- Axial phase shifts
- Higher-order Gaussian modes
- Hermite-Gaussian patterns
- Higher-order mode sizes and aperturing
- Spatial-frequency consideration

Gaussian beam

Gaussian beam

Aperture transmission

The radial intensity variation of the beam

$$
I(r)=\frac{2 P}{\pi w^{2}} e^{-2 r^{2} / w^{2}}
$$

Aperture transmission

The radial intensity variation of the beam
power transmission $=\frac{2}{\pi w^{2}} \int_{0}^{a} 2 \pi r e^{-2 r^{2} / w^{2}} d r=1-e^{-2 a^{2} / w^{2}}$

Aperture transmission

The radial intensity variation of the beam
power transmission $=\frac{2}{\pi w^{2}} \int_{0}^{a} 2 \pi r e^{-2 r^{2} / w^{2}} d r=1-e^{-2 a^{2} / w^{2}}$

Gaussian beam collimation

Z_{R} characterizes switch from near-field (collimated beam) to far-field (linearly divergent beam)

Collimated Gaussian beam propagation

Far-field Gaussian beam propagation

$$
\begin{aligned}
& z=z_{R} \equiv \frac{\pi w_{0}^{2}}{\lambda}=\text { "Rayleigh range." } \\
& w(z) \approx \frac{w_{0} z}{z_{R}}=\frac{\lambda z}{\pi w_{0}} \\
& w_{0} \times w(z) \approx \frac{\lambda z}{\pi}
\end{aligned}
$$

1. The "Top-hat" criterion
$I_{\text {axis }}(z)=\frac{2 P}{\pi w^{2}(z)} \approx \frac{P}{\lambda^{2} z^{2} / 2 \pi w_{0}^{2}}$
$\Omega_{\mathrm{TH}}=\frac{\pi w^{2}(z)}{2 z^{2}}=\frac{\lambda^{2}}{2 \pi w_{0}^{2}} \quad A_{T H}=\frac{\pi w_{0}^{2}}{2}$ - effective source aperture area
$A_{\mathrm{TH}} \times \Omega_{\mathrm{TH}}=\left(\frac{\lambda}{2}\right)^{2}$

Far-field Gaussian beam propagation

1. The "Top-hat" criterion

$$
A_{\mathrm{TH}} \times \Omega_{\mathrm{TH}}=\left(\frac{\lambda}{2}\right)^{2}
$$

2. The 1/e criterion

$$
\begin{array}{ll}
A_{1 / e} \equiv \pi w_{0}^{2} & \theta_{1 / e}=\lim _{z \rightarrow \infty} \frac{w(z)}{z}=\frac{\lambda}{\pi w_{0}} \quad \Omega_{1 / e}=\pi \theta_{1 / e}^{2}=\frac{\lambda^{2}}{\pi w_{0}^{2}} \\
A_{1 / e} \Omega_{1 / e}=\pi w_{0}^{2} \times \pi \theta_{1 / e}^{2}=\lambda^{2} & \iint A(\Omega) d \Omega=\lambda^{2}
\end{array}
$$

Far-field Gaussian beam propagation

$$
\begin{aligned}
& z=z_{R} \equiv \frac{\pi w_{0}^{2}}{\lambda}=\text { "Rayleigh range." } \\
& w(z) \approx \frac{w_{0} z}{z_{R}}=\frac{\lambda z}{\pi w_{0}} \\
& w_{0} \times w(z) \approx \frac{\lambda z}{\pi}
\end{aligned}
$$

1. The "Top-hat" criterion

$$
A_{\mathrm{TH}} \times \Omega_{\mathrm{TH}}=\left(\frac{\lambda}{2}\right)^{2}
$$

2. The 1/e criterion

$$
A_{1 / e} \Omega_{1 / e}=\pi w_{0}^{2} \times \pi \theta_{1 / e}^{2}=\lambda^{2}
$$

3. The conservative criterion
far-field beam angle

$$
A_{\pi} \Omega_{\pi}=\left(\frac{\pi}{2}\right)^{4} \lambda^{2} \approx 6 \lambda^{2}
$$

Far-field Gaussian beam propagation

Wavefront radius of curvature

$$
R(z)=z+\frac{z_{R}^{2}}{z} \approx\left\{\begin{array}{rll}
\infty & \text { for } & z \ll z_{R} \\
2 z_{R} & \text { for } & z=z_{R} \\
z & \text { for } & z \gg z_{R}
\end{array}\right.
$$

Far-field Gaussian beam propagation

Wavefront radius of curvature

$$
R(z)=z+\frac{z_{R}^{2}}{z} \approx\left\{\begin{array}{rll}
\infty & \text { for } & z \ll z_{R} \\
2 z_{R} & \text { for } & z=z_{R} \\
z & \text { for } & z \gg z_{R}
\end{array}\right.
$$

Put two curved mirrors of radius R at the points $\pm \mathrm{z}_{\mathrm{R}}$ to match exactly the wavefronts $\mathrm{R}(\mathrm{z})$

- Symmetric confocal resonator

Gaussian beam focusing

$$
w_{0} \times w(f) \approx \frac{f \lambda}{\pi}
$$

Lens is in the far-field

1. Focused spot size

$$
d_{0} \approx \frac{2 f \lambda}{D} \quad\left[\begin{array}{ll}
f^{\#} \equiv \frac{f}{D} & d_{0} \approx 2 f^{\#} \lambda \\
N_{f} \equiv \frac{a^{2}}{f \lambda} & \frac{d_{0}}{D} \approx \frac{1}{2 N_{f}}
\end{array}\right.
$$

Larger gaussian beam is required for stronger focusing

Gaussian beam focusing

$w_{0} \times w(f) \approx \frac{f \lambda}{\pi}$

1. Focused spot size

$$
d_{0} \approx \frac{2 f \lambda}{D}
$$

2. Depth of focus

- Region in which the beam can be thought collimated
depth of focus $=2 z_{R} \approx 2 \pi f^{\#^{2}} \lambda \approx \frac{\pi}{2}\left(\frac{d_{0}}{\lambda}\right)^{2} \lambda$
The beam focused to a spot $N \lambda$ in diameter will be $N^{2} \lambda$ in length

Gaussian beam focusing

3. Focal spot deviation
$w_{0} \times w(f) \approx \frac{f \lambda}{\pi}$

1. Focused spot size

$$
d_{0} \approx \frac{2 f \lambda}{D}
$$

2. Depth of focus
depth of focus $=2 z_{R} \approx 2 \pi f^{\#^{2}} \lambda \approx \frac{\pi}{2}\left(\frac{d_{0}}{\lambda}\right)^{2} \lambda$
$R(z)=z+z_{R}^{2} / z=f$
$\Delta f \equiv f-z=z_{R}^{2} / z \approx z_{R}^{2} / f$.

$$
\frac{\Delta f}{f} \approx \frac{1}{2 N_{f}^{2}}
$$

$\Delta f \ll$ depth_of _ focus - The effect is usually negligible ($\mathrm{z}_{\mathrm{R}} \ll \mathrm{f}$)

Gaussian Mode Matching

The problem: convert w_{1} at z_{1} to w_{2} at z_{2}

$$
\begin{aligned}
& \text { Thin lens law } \\
& \frac{1}{R_{2}}=\frac{1}{R_{1}}-\frac{1}{f}
\end{aligned}
$$

The lens law for gaussian beams

$$
\frac{1}{\tilde{q}_{2}}=\frac{1}{\tilde{q}_{1}}-\frac{1}{f}
$$

Gaussian Mode Matching

The problem: convert w_{1} at z_{1} to w_{2} at z_{2}

$$
\begin{aligned}
& \text { Thin lens law: } \\
& \frac{1}{R_{2}}=\frac{1}{R_{1}}-\frac{1}{f}
\end{aligned}
$$

The lens law for gaussian beams

$$
\left\{\begin{array}{l}
\frac{1}{\tilde{q}_{2}}=\frac{1}{\tilde{q}_{1}}-\frac{1}{f} \\
\tilde{q}_{2}=\tilde{q}_{1}+z_{2}-z_{1}
\end{array}\right.
$$

Gaussian Mode Matching

The problem: convert w_{1} at z_{1} to w_{2} at z_{2}

The lens law for gaussian beams

$$
\begin{aligned}
& \frac{1}{\tilde{q}_{2}}=\frac{1}{\tilde{q}_{1}}-\frac{1}{f} \\
& \frac{1}{\tilde{q}(z)} \equiv \frac{1}{R(z)}-j \frac{\lambda}{\pi w^{2}(z)}
\end{aligned}
$$

Gaussian-beam (Collins) chart

Axial phase shifts

Cumulative phase shift variation on the optical axis:
$\bar{u}(z) \propto \frac{\tilde{q}_{0} e^{-j k z}}{\tilde{q}(z)}=\frac{e^{-j k z}}{1-j z / z_{R}}=\frac{\exp [-j k z+j \psi(z)]}{w(z)}$
Added phase shift
Plane wave phase shift

The phase factor yields a phase shift relative to the phase of a plane wave when a Gaussian beam goes through a focus.

Axial phase shifts: The Guoy effect

Valid for the beams with any reasonably simple cross section

More pronounced for the higher modes:

$$
\begin{aligned}
& (n+m+1) \times \psi(z) \\
1 \mathrm{D} \rightarrow & (n+1 / 2) \psi(z)
\end{aligned}
$$

Each wavelet will acquire exactly $\pi / 2$ of extra phase shift in diverging from its point source or focus to the far field

Higher-Order Gaussian Modes

Hermite-Gaussian TEM ${ }_{n m}$

$$
\tilde{u}_{n}(x, z)=\left(\frac{2}{\pi}\right)^{1 / 4}\left(\frac{\exp [j(2 n+1) \psi(z)]}{2^{n} n!w(z)}\right)^{1 / 2} H_{n}\left(\frac{\sqrt{2} x}{w(z)}\right) \exp \left[-j k z-j \frac{k x^{2}}{2 R(z)}-\frac{x^{2}}{w^{2}(z)}\right]
$$

Higher-Order Gaussian Modes

Hermite-Gaussian TEM ${ }_{n m}$

$$
\tilde{u}_{n}(x, z)=\left(\frac{2}{\pi}\right)^{1 / 4}\left(\frac{\exp [j(2 n+1) \psi(z)]}{2^{n} n!w(z)}\right)^{1 / 2} H_{n}\left(\frac{\sqrt{2} x}{w(z)}\right) \exp \left[-j k z-j \frac{k x^{2}}{2 R(z)}-\frac{x^{2}}{w^{2}(z)}\right]
$$

Higher－Order Gaussian Modes

The intensity pattern of any given TEM $_{\text {nm }}$ mode changes size but not shape as it propagates forward in z－a given TEM $_{\text {nm }}$ mode looks exactly the same
Inherent property of the
＂Standard＂Hermite－Gaussian
solution

絞等复

0,2

Higher-Order Mode Sizes

$x_{n} \approx \sqrt{n} \times w$
$\Lambda_{n} \approx \frac{4 w}{\sqrt{n}}$ - spatial period of the ripples

- An aperture with radius a

$$
\begin{aligned}
& x_{n} \leq a \\
& n \leq N_{\max } \approx\left(\frac{a}{w}\right)^{2} \quad \text { - works well for big } n \text { values } \\
& \quad \text { Common rule: } 2 a=\pi w
\end{aligned}
$$

Numerical Hermite-Gaussian Mode Expansion

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{N} c_{n} \tilde{u}_{n}(x ; w), \quad-a \leq x \leq a \\
& c_{n}=\int_{-a}^{a} f(x) \tilde{u}_{n}^{*}(x) d x
\end{aligned}
$$

Numerical Hermite-Gaussian Mode Expansion

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{N} c_{n} \tilde{u}_{n}(x ; w), \quad-a \leq x \leq a \\
c_{n} & =\int_{-a}^{a} f(x) \tilde{u}_{n}^{*}(x) d x
\end{aligned}
$$

Numerical Hermite-Gaussian Mode Expansion

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{N} c_{n} \tilde{u}_{n}(x ; w), \quad-a \leq x \leq a \\
& c_{n}=\int_{-a}^{a} f(x) \tilde{u}_{n}^{*}(x) d x
\end{aligned}
$$

Spatial Frequency Considerations

Expand arbitrary function $f(x)$ across an aperture 2a with a finite sum of $N+1$ gaussian modes $\tilde{u}_{n}(x ; w)$:
$\mathrm{w}, \mathrm{N}_{\max }-$?

1. Calculate maximum spatial frequency of fluctuations in the function $f(x)$ variations slower than $\approx \cos 2 \pi x / \Lambda$
2. Select w, N so that the highest order $\mathrm{TEM}_{\mathrm{N}}$:

- at least fill the aperture $\quad N \geq N_{\max } \equiv\left(\frac{a}{w}\right)^{2}$
- handle the highest spatial variation in the signal

$$
\Lambda_{N} \approx \frac{4 w}{\sqrt{N}} \leq \Lambda
$$

$$
w \leq \sqrt{\frac{a \Lambda}{4}} \quad N \geq \frac{4 a}{\Lambda}
$$

Thank you for the attention!

