Assignments chapter 15

TASK 1

Problems for 15.1 - Ex. 1 - page 592 of the book "Laser" by Siegman

Suggestions:

- Use small angles approximation;
- Consider the thickness of the interface $t=0 \mathrm{~m}$.

TASK 2

Consider an optical resonator of length L made by two intracavity lenses of focal length $f=2 L$ equally spaced between two flat end mirrors.
a. The system is aligned. Find the general $A B C D$ matrix of the system for any round trip in the resonator.
b. The system is misaligned. The first lens is displaced below the optical axis of a distance $\Delta_{\mathrm{a}}=2 \varepsilon$ and the second lens is displaced upward of a distance $\Delta_{b}=\varepsilon$. Calculate the overall element axis passing through the two lenses. Consider the two lenses grouped in a single element of dimension $P=2 / 3 \mathrm{~L}$, cantered in $\mathrm{L} / 2$. Calculate the misalignment of the element respect the reference axis Δ^{\prime} and considering the element described by a general matrix $A B C D$, write the general equations for E and F.

Suggestion: Consider the thin lenses approximation.

