Chapter 15
RAY OPTICS AND RAY MATRICES

Eleonora De Luca




Aims of this chapter

« Introduction of the matrix ABCD and its properties;

« Application of the ABCD matrix for periodic focusing
systems, e.g. optical resonator;

« Analysis of the stability for periodic optical focusing
systems;

« Evaluate the effects of misalignment of individual elements
on the overall ray matrix performances;

« Introduction of the matrix ABCDEF and its properties;

« Techniques to handle the misalignment of individual
elements;

« Analysis of non-orthogonal systems.
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Overview

Paraxial optical ray and ray matrices;

« Ray propagation through cascaded elements;
« Rays in periodic focusing systems;

« Ray optics with misaligned elements;

« Ray matrices in curved ducts;

« Non-orthogonal ray matrices.
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Paraxial optical ray and ray matrices
OPTICAL RAY PROPAGATION IN FREE SPACE

Displacement, 1,

>
zZ=2 L Z =12 Optical axis z
I dT'l
r,=rn+L—
dz
drz dT‘l
dz dz
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Paraxial optical ray and ray matrices
OPTICAL RAY PROPAGATION THROUGH A THIN LENS

zZ=12 z = z, Optical axis z
Focal length
f
H =7
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Paraxial optical ray and ray matrices
OPTICAL RAY PROPAGATION IN A GENERAL OPTICAL ELEMENT

v

Optical axis z

r, = Ar; + Br{

AD —BC =1

ry = Cry + Dr{

dr(z)
dz

With Reduced slope r'(z) = n(z)
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Paraxial optical ray and ray matrices
DIELECTRIC INTERFACES AND DUCTS

Paraxial System

Curved dielectric Quadratically varying dielectric media
interfaces (ducts)

Matrices can be Dielectric medium
derived from Snell’s which has a quadratic
law and elementary transverse variation in

geometry. its md_ex of reflec_tlon :
with either a maximum

(Ref. table 15.1 or a minimum on the
LASER by Siegman) axis

Stable Vs Unstable
ducts
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Paraxial optical ray and ray matrices
QUADRATICALLY VARYING DIELECTRIC MEDIA

'y

Az’ r
/
r+ Ar
Az
/
Optical axis z " n(‘;‘)
Suppose:
n(r,z) = ny(z) — SN2 (2)r?
. __9%n(r,z)
W|th n, (Z) = 522
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Paraxial optical ray and ray matrices
QUADRATICALLY VARYING DIELECTRIC MEDIA

« Ray propagation equation:

d dr(z)
E[nO(Z) P ] +n,(z)r(z) =0
» But considering
, dr(z)
r'(z) = Az No
» And separating the eq.:
dr(z) B r'(2)
dz  ng(z)
dr'(z)
== r@)
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Paraxial optical ray and ray matrices
STABLE VS UNSTABLE QUADRATIC DUCTS

d?n
n, <Oorﬁ>0

v

=
d?r(z) nzr(z) d? r(z)
r(z) =0
dz? T ng T )/ ( )
i 2 M2 — [R2 : 2 _ 1d’n
with y —noand)’— - with y= = |—|andy—] ,n =z
Solution: Solution:
r(z) = 1y cosyz + (ngy) 11y sinyz r(z) = 1y coshyz + (nyy) "1r§sinhyz

7"] _ [ cosyz (noy)~'sinyz ] [ ] [T] _|coshyz (nyy) lsinhyz [7”0
—NngYy sinyz cosyz r' nyy sinhyz coshyz| 1m0
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Paraxial optical ray and ray matrices
AXIAL INDEX VARIATIONS

* No transverse variation of the index in the medium : n, = 0;
« Axial variation of the index in the medium : ny= ny(z);

* Relevant ray equation is:

dr'(z) d dr
dz _ dz [nO(Z)E] =0

with the solution

z 1
r(z) =19+ 1} fZO _—

dz

« ABCD matrix through length L starting at z = 0

1 B(L)
0 1

M= [ ]with B(L) = [--%

0 ny(2)
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Paraxial optical ray and ray matrices
RAY INVERSION

ray X
z y
/

axis w\
N

* Inversion of one optical ray with respect to one or the other of

its transverse coordinate axes, e.g. mirrors, ... ;
» Relation between displacement and slope before and after the

reflection:

« The ray matrices along the optical axis can be written in the

form:
Xy = Ixq y2=-1y,

RAY OPTICS & RAY MATRICES




Ray propagation through cascaded elements
CASCADE RAY MATRICES

—

TZ ’ TZ
T3 ’ ?"3

>

r, = My Optical axis z

rp, = Mzrl = Mlero
r3 = M37‘2 = M3M2M1TO

General case;

Th = [MpMp_1M;y,_5 ...M1] 19 = Mrorty
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Ray propagation through cascaded elements
SPHERICAL WAVE PROPAGATION

» Ray optics and geometrical optics : same content expressed in different
fashion;

« Ideal spherical wave with radius of curvature R can be seen as
collection of rays diverging from common point C.

« Slope and displacement of each ray at the plane z:

d
Sore  rO=m0 =05

R (2)
Or
C
>
z rip =17
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Ray propagation through cascaded elements
SPHERICAL WAVE PROPAGATION

v

R
R, 1, Ar +Bry A( 1/n1)+B

n, r Cry+Drf C(R1/n1) +D

R(z)
n(z)

With Reduced slope R'(z) =

__ AR, +B
R2=A—
CR,+D
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Ray propagation through cascaded elements
THICK LENSES AND ABCD MATRICES

1

.y % PP = principal plane

‘ < | FP=focal plane
1 1 1
— = — +
R, -L, R, —L; 1/C
With L, = 272 and L, = D
C C

R, and R, obeys the lens law for a thin lens of focal length
f= —% If these quantities are measured from reference
planes L, and L,
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Ray propagation through cascaded elements
IMAGING PROPERTIES OF ABCD SYSTEMS

 Principal plane to principal plane: M = [é (1)
0 — -1
* Focal plane to focal plane: M = [C 0 ]

: . o M0 : :
» Object plane to image plane: M = [C 1/M]’ with M image

magnification
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Ray propagation through cascaded elements
RAY MATRICES IN ASTIGMATIC SYSTEMS

« General ray propagating in z direction has to be described by
its transverse displacement in x and y directions;

« Simple optical elements, the ray matrix formalism applies
separately and independently to x,x" and y, y';

« |If the system is rotationally symmetric the same matrix ABCD
applies to both x,x" and y,y';

* If the system is astigmatic different matrices ABCD apply to
x,x and y,y’. R

y

T r
_~‘optical axis z
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Rays in periodic focusing systems
EIGENVALUES AND EIGENRAYS

* M — matrix for propagation through one period of periodic
focusing system (PFS) from arbitrary reference plane in one
period to the corresponding plane one period later;

 r, and r,,, - ray vectors at the n-th and n + 1-th reference
planes:

— — mnt+l1
ny1 = Mrn =M LAV

with r, initial ray at the input plane n = 0;
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Rays in periodic focusing systems
EIGENVALUES AND EIGENRAYS

» Look for a set of “eigenrays” r to satisfy eigenequation:
Mr = Ar

* For a 2x2 matrix :

_[A-A B 71[T]1_
[M—/ll]r—[ . D_,1“r']‘0
» Determinant must satisfy:

A—-21

B |_ .2 _
. D_/1|_,1 A+D)1+1=0
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Rays in periodic focusing systems
EIGENVALUES AND EIGENRAYS

« Definition of m parameter:

_(A+D)
2

m

« Eigenvalues:

Ag Ay = m +Vm? — 1, which obeys 1,4, = 1;

« Eigenrays r,, r; such that:

Mr, = A,r, and Mr, = A,1},
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Rays in periodic focusing systems
EIGENRAY EXPANSION

« Arbitrary ray at the input to the PFS:

« Ray vector after any number of sections n :
r,=M"'Tryg=M" X (c,7rq+ Cp1p)

- (Ca X /1"1‘“ + Cp X /1"1‘1,)
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Rays in periodic focusing systems
STABLE VS UNSTABLE PERIODIC FOCUSING SYSTEMS
n-1n n+1

Number of A + D
periods m=—

> 2

n

N’
Im| < 1

m = cos0
Ay, Ay =m =+ j/1 —m?2 = cosf + jsind = ets?
r,=c, Ty Xe™ +c, ry xe 1m0 =rycoshn + sysinbn
With
Tog = Caqlg + CpTp

So = j(Cqlq + CpTp)
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Rays in periodic focusing systems
STABLE VS UNSTABLE PERIODIC FOCUSING SYSTEMS

M>1 n—-1n n+l 7 Number of

| periods
—

— > 1 n

*>

Number of

—A+D
LA AL / . 2
YTV TV TV

M< -1 |m| > 1
Apdp =mtVvm?—-1=M, M~ with M transverse magnification per period

r,=M"Xc,r,+M™ X ¢, 1, =1rycoshfn + sysinhfn

With
0 = InM
g = CqTq + CpTp

So = j(cqlq + CpTp)
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Ray optics with misaligned elements
ANALYSIS OF MISALIGNED ELEMENTS

« Real physical axis of any individual paraxial element = Element
axis — ray vectors s, s’;

» Reference optical axis arbitrarily chosen = Reference optical
axis — ray vectors r,r';

Optical axis

<
<

_V

L
« Considering a small angle :
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Ray optics with misaligned elements
ANALYSIS OF MISALIGNED ELEMENTS

« Misalignment vectors:
A = [ ] and A, = 2]
1= Al 2 Azl

With A" = n,A" and A,” = n,A’reduced values
« Connection between the two vectors:
] L/n1
0 "2/n,
* Ray vectors in the element axis and the optical axis related to
the input plane:

,]EMAXAI

T1=31+A1
T2=52+A2
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Ray optics with misaligned elements
ANALYSIS OF MISALIGNED ELEMENTS

* The ray vectors measured with respect to the element axis will
transform through ABCD matrix:

S S
s []-18 Bl =mn
With M the matrix for the aligned element
* Input and output displacements and slopes respect to the
optical axis:
ry=S,+A, =Ms{+ MpAy =Mry+[My— M| Ay =Mr,+E

With E error vector which is given by :

def E 1_A L—TlB A
E:[F]=[MA—M]A1=[ L 1]

—C n,—n{D]||A

RAY OPTICS & RAY MATRICES




Ray optics with misaligned elements
3X3 MATRIX FORMALISM FOR MISALIGNED ELEMENTS

Possible to put these result for a general misaligned paraxial
system in a 3x3 matrix:

I A B El[n
r,’'|=|C D F||ry
1 0O 0 11L1
Where

and

F = —CAl + (nz - nlD)A,

RAY OPTICS & RAY MATRICES




Ray optics with misaligned elements
CASCADE MISALIGNED ELEMENTS

« Several successive optical elements arranged in cascade
where each of them is characterized by A4;, B;, C;, D;, E;, F; can
be described by:

== Tol i)
1 Ol1]l1
With M is the ABCD matrix, r1,15,, E are 2x1 column matrices, 0 is

a 2x1 row matrix with all elements 0 and 1 is 1x1 element.

« Example of two misaligned elements:
Etot] _ | M2 Ez] 9 [M1 E1] _ [MZMl‘MZEl + Ez]
1 ol1 o

1 o 1

[M tot
0
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Ray optics with misaligned elements
CASCADE MISALIGNED ELEMENTS

The basic ray matrix properties and paraxial focusing properties of
a cascade system are entirely unchanged by small misalignments

of individual elements within the system.
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Ray optics with misaligned elements
OVERALL MISALIGNED SYSTEMS

« Initial ray rg, N elements, misalignment described by E}, =
[Ek: Fk];
« The overall transformation is:
Ty = MrorTo + Eror
Where
MTOT = MN ...M2M1
and

ETOT - [MNMZ]El + [MNM3]E2 + ...+ MN EN—l + EN
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Ray optics with misaligned elements
SYSTEM ALIGNMENT AND OVERALL ELEMENT AXIS

« Any system can be converted into an effectively aligned overall
system by bringing its overall element axis into coincidence with
the system’s element axis;

* Any overall values E = Eror and F = Fryr for an overall system
can be cancelled out:

* Physical translation of entire system as a unit downward:
~ (1-DE-(L-B)F
~ (1-A)(1-D)+ (L-B)C

Ao

« Physical rotation of entire system toward system axis, with
the centre of rotation at the input plane, by an angle:

CE + (1 — A)F

AI:(l—A)(l—D)+(L—B)C
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Ray optics with misaligned elements
MISALIGNED RESONATOR OR PERIODIC SYSTEMS

« Consider an unfold optical resonator with one or more
misaligned internal elements;

« Each round trip in the resonator (or individual period of the
lensguide) will have an overall element axis, with respect to
which that individual round trip will look like an aligned system;

« This element axis will not come back on itself after one round
trip: the element axis of each may be tilted to the reference
optical axis running through the repeated section of the
lensguide, so that element axes in successive periods do not
connect;

« “Is there any better or alternative way to define an effective axis
in a misaligned resonator or periodic system?”
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Ray optics with misaligned elements
MISALIGNED RESONATOR OR PERIODIC SYSTEMS

« Aligned paraxial systems require: a ray vector which starts
perfectly aligned along the axis remains always aligned;
« Define this “unique” axis ray vector: r;
« Conditions necessary for r( for self-reproducing after a round
trip:
Mro+E=1y or ro= (- M)"E

« Displacement and slope of the axis ray vector:
(1—D)E + BF CE 4+ (1 - A)F
2—A-D '’ 2—A—-D

g

To

« Transformation of any other input ray r; through the misaligned
system is given by:
(rz —ro) =M X (ry — 1o)
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Ray optics with misaligned elements

DIFFERENCES BETWEEN THE AXIS RAY AND THE OVERALL ELEMENT AXIS

Overall Element Axis

« Bent curves and segments; « Straight line through the
» Parallel to itself after one elements.

pass through the system.
P

"4
v

\
\
‘l
\ o
2.2
w

1- Reference
Optical Axis

\

\

A
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Ray matrices in curved ducts
DIFFERENTIAL MATRIX ANALYSIS

» Consider a quadratic ducts:
» A(z) displacement of the axis of the duct at any plane z from
the optical axis;
« M(z) 3x3 ABCDEF matrix from an input plane z, up to a plane

z;
* M(dz) 3x3 ABCDEF matrix for a short distance dz from z to
z+dz:
1 ngldz 0
M(dz) = | —n,y2dz 1 ney2A(z)dz| fordz = 0
0 0 1

« For the cascading properties of the ray matrix :
M(z+dz) =M(z) XM (dz)

optic axls
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Ray matrices in curved ducts
DIFFERENTIAL MATRIX ANALYSIS

* Multiplying M(dz) and M(z) and comparing with the matrix
M(z + dz), differential relations are given:

dA _ dB —
d(zZ) =ngC(2), d(ZZ) =ngy'D(2)
ac abD
O A, D a2
dE(z) _ dF(z)
——=—n5'F(2), —— = —noy?*[E(2) — A(2)]

« Solving the first four equations, starting from z, gives the overall
ABCD matrix as a function of the distance:

A(z) = D(z) = cosy(z — z,)
nogyB(z) = —(ngy) ™' C(2) = siny(z — z)
« The overall matrix is unchanged by curvature of duct.
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Ray matrices in curved ducts
EFFECT OF DUCTS MISALIGNMENT

dE(z2)
dz

= —ngy?[E(2) — A(2)]

= —ng'F(2)
dF(z)
dz

 Formal solutions:

E(z)=vy fZA(Z’) siny (z — z')dZz

0

Z
F(z) = nyy? f A(z") cosy (z — z")dZ'
Z

0
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Ray matrices in curved ducts
EFFECT OF DUCTS MISALIGNMENT

E(z)=y jzA(z’) siny (z — z')dZ

Z
F(z) = nyy? j A(z") cosy (z — z")dZ'
Zg

« Case 1: A(z) = cosy,z or A(z) = siny,z, with y; closely
matches the natural ray oscillations at cosyz or sinyz:
» Displacement parameters E(z), F(z) will grow linearly with
the distance,
« The periodic oscillations of rays in the duct will appear to
grow linearly in amplitude with the distance;
 Case 2: A(z) has random variations :
« Oscillations in off-axis rays will grow as the square root of
distance along the guide,
* The growth rate will be proportional to the amplitude of the
spatial frequency components of A(z) in the vicinity of y.
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Non-orthogonal Ray Matrices
GENERAL ANLYSIS

« Non-orthogonal systems:

« Systems which can not be described by separate and
independent ray matrices in two principal plane that are 90°
apart,

« Exhibit some kind of “twist” or image rotation;

* Notation for a non-orthogonal 4x4 matrix:

(X2 Ay Axy By Bxy_ (X1
V2| |Ayx Ayy|Byx By (|22
X3 |7 | Cax Cry |Dxx  Dxy X1
y2l |Cyx CyylDyx  Dyyllys

 Or in short notation

mMEHE=
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Non-orthogonal Ray Matrices
GENERAL ANLYSIS

T
Y1
X1
14
JLY1

8
b
b
<
b
<

N
NN

<2

=
N

<

<
<

o x>
2

RS IR

=
<
&
=
=
<

N

N~
‘<q Rﬁ
=

‘<q Xﬁ
<

S

<

=

S

<

<

e Constraints:
ABT = BAT
B'™D = D'B
DcT = cDT
cTA=A"cC
ADT —BCcT =ATD -B'c =1
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Non-orthogonal Ray Matrices
ALTERNATIVE MATRIX NOTATION

« Alternative form:

EYR _Axx B, Axy Bxy X1
x_’2 _ Cex  Dxx|Cxy Dxy x_ll
Y2 | |Ayx Byx Ayy  Byy || V1
BZE ny Dyx ny Dyy Vi

 Or iIn short notation

ﬂ] _ M,
Y2 M,,

Mxy x1]
X —
Myy Y1
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Non-orthogonal Ray Matrices
ROTATED ASTIGMATIC OPTICAL SYSTEMS

« Coordinate system rotation :
« Matrix for an orthogonal system:

[ X2 Ay Byl O 0 Jr*17
Yol _[Cax Dux| 0 O |[¥1
v2{" 0o oAy Byy|lwm
Lyl L0 0 [Gy Dyylly; |
« At any z, coordinate rotation from original x;, y; t0 x5, y,:
‘xlz‘ [ cosf 0 |sindf 0 ] 'x,1'
X2 _| 0 cosf| 0  sinf||X1
V2 —sinf 0 |cosB 0 V1
By 0 sinl 0  cosO]1|y;
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Where subscript 1 refers to the old coordinate system and
subscript 2 refers to the rotated coordinate system.




Non-orthogonal Ray Matrices
ROTATED ASTIGMATIC OPTICAL SYSTEMS

* Short notation:

] 1]
Sg Cg yl
Y2
\
\
\
\
\
\
\
\
\
\
\ X
2
\
\ *-'"'
\ -
\ P
\ ="
\ _-" 6
_-r'
e = >
- A X1
- A
- \
-"" ‘
\
\
\
\
\
\
\
\
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Non-orthogonal Ray Matrices
ROTATED ASTIGMATIC OPTICAL SYSTEMS

« To pass a ray through this rotated element analytically using the
original x,,y,; axes:

« Transform from the original axes into rotated principal axes
of the element,

* Propagate through the element using ABCD matrix along
its principal axes,
* Rotate back to orlglnal axes by amount —

e e sl

~0 _59 M,
Se| Co

Which can be manipulated in the form:;
CZMy + SEM,,, | CoSo(Mxx—M,,)
CoSe (Mxx_Myy) Sngx + CgMyy
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Non-orthogonal Ray Matrices
TWO ROTATED ELEMENTS IN CASCADE

« Two orthogonal but astigmatic elements in cascade, rotated
respectively of 64, 6,;

« Overall matrix product:

My, | M

M,,|M

Xy

yx yy

] = [overall 4 X 4 matrix product]
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Non-orthogonal Ray Matrices
TWO ROTATED ELEMENTS IN CASCADE

« After some calculation it is possible to demonstrate:
Myy — My, = sin(8; — 6,) cos(8; — 61)(Myy1 — Myy 1) (Myy 2 — My, )

« A cascade system of two rotated astigmatic elements can be
orthogonal only if:

« 6, —60; =0° so the principal planes of the two elements
coincide,

My,,=M,,,0or M,,,=M,,,, soone of the elements Is
not astigmatic;

« “An optical system having cascaded astigmatic elements
rotated at arbitrary angles will in general not be orthogonal’.
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Non-orthogonal Ray Matrices
IMAGE ROTATION

* Image rotation:
« Can be describe with the same matrix used for the
coordinate system rotation

‘X’z‘ [ cosf 0 |sin6 0 | ‘x,1‘
Y21 _| 0 cosf| 0 sinf||X1
V2 —sinf 0 |cosB 0 V1
ly,1 L O sin@| 0 cosO]11y; .
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Non-orthogonal Ray Matrices
NON PLANAR RING RESONATOR

« Coordinates rotation Vs. image rotation very difficult to
distinguish for a twisted or non planar ring resonator;

« Can be described by:

CGMxx

—SoM,,,

SHMxx
CoM,,,

If the rotation element comes first or by

SeM,,
CoM,,,

CGMxx
_SOMxx

If the astigmatic element comes first.

RAY OPTICS & RAY MATRICES




Assignments
TASK 1

Problems for 15.1 — Ex. 1 - page 592 of the book “Laser” by
Siegman

Suggestions:
« Use small angles approximation;
» Consider the thickness of the interface t = 0 m.
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Assignments
TASK 2

Consider an optical resonator of length L made by two intracavity
lenses of focal length f = 2L equally spaced between two flat end
mirrors.

1. The system is aligned. Find the general ABCD matrix of the
system for any round trip in the resonator.

2. The system is misaligned. The first lens is displaced below the
optical axis of a distance A, = 2¢ and the second lens is displaced
upward of a distance A, = ¢. Calculate the overall element axis
passing through the two lenses. Consider the two lenses grouped
In a single element of dimension P = 2/3L, cantered in L/2.
Calculate the misalignment of the element respect the reference
axis A’ and considering the element described by a general matrix
ABCD, write the general equations for E and F.
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Assignments

TASK 2
Suggestion:
« Consider the thin lenses approximation.
P

*

:

E - : >

| R : Reference

I - I

el fAq : Optical Axis

: :

RAY OPTICS & RAY MATRICES




Thank you for the attention!




