
Chapter 15 : 

RAY OPTICS AND RAY MATRICES 
Eleonora De Luca



Aims of this chapter

• Introduction of the matrix ABCD and its properties;

• Application of the ABCD matrix for periodic focusing 

systems, e.g. optical resonator;

• Analysis of the stability for periodic optical focusing 

systems;

• Evaluate the effects of misalignment of individual elements  

on the overall ray matrix performances;

• Introduction of the matrix ABCDEF and its properties;

• Techniques to handle the misalignment of individual 

elements;

• Analysis of non-orthogonal systems.
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Overview

• Paraxial optical ray and ray matrices;

• Ray propagation through cascaded elements;

• Rays in periodic focusing systems;

• Ray optics with misaligned elements;

• Ray matrices in curved ducts;

• Non-orthogonal ray matrices.
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Paraxial optical ray and ray matrices
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𝑟2 = 𝑟1 + 𝐿
𝑑𝑟1
𝑑𝑧

𝑑𝑟2
𝑑𝑧

=
𝑑𝑟1
𝑑𝑧

OPTICAL RAY PROPAGATION IN FREE SPACE



Paraxial optical ray and ray matrices
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𝑟2 = 𝑟1

𝑑𝑟2
𝑑𝑧

= −
1

𝑓
𝑟1 +

𝑑𝑟1
𝑑𝑧

OPTICAL RAY PROPAGATION THROUGH A THIN LENS



Paraxial optical ray and ray matrices
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𝑟2 = 𝐴𝑟1 + 𝐵𝑟1
′

𝑟2
′ = 𝐶𝑟1 + 𝐷𝑟1

′

With Reduced slope  𝑟′ 𝑧 ≡ 𝑛 𝑧
𝑑𝑟 𝑧

𝑑𝑧

𝐴𝐷 − 𝐵𝐶 = 1

OPTICAL RAY PROPAGATION IN A GENERAL OPTICAL ELEMENT



Paraxial optical ray and ray matrices

Paraxial System 

Curved dielectric 
interfaces

Matrices can be 
derived from Snell’s 
law and elementary 

geometry.

(Ref. table 15.1 
LASER by Siegman)

Quadratically varying dielectric media

(ducts)

Dielectric medium 
which has a quadratic 
transverse variation in 
its index of reflection , 
with either a maximum 
or a minimum on the 

axis

Stable Vs Unstable 
ducts

7/52RAY OPTICS & RAY MATRICES

DIELECTRIC INTERFACES AND DUCTS



Paraxial optical ray and ray matrices
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QUADRATICALLY VARYING DIELECTRIC MEDIA

Suppose:

𝑛 𝑟, 𝑧 = 𝑛0 𝑧 −
1

2
𝑛2 𝑧 𝑟2

With 𝑛2 𝑧 =
𝜕2𝑛 r,z

𝜕𝑧2



Paraxial optical ray and ray matrices
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QUADRATICALLY VARYING DIELECTRIC MEDIA

• Ray propagation equation:
𝑑

𝑑𝑧
𝑛0 𝑧

𝑑𝑟 𝑧

𝑑𝑧
+ 𝑛2 𝑧 𝑟 𝑧 = 0

• But considering 

𝑟′ 𝑧 =
𝑑𝑟 𝑧

𝑑𝑧
𝑛0

• And separating the eq.:

𝑑𝑟 𝑧

𝑑𝑧
=

𝑟′ 𝑧

𝑛0 𝑧

𝑑𝑟′ 𝑧

𝑑𝑧
= −𝑛2 𝑧 𝑟(𝑧)



Paraxial optical ray and ray matrices
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STABLE VS UNSTABLE QUADRATIC DUCTS

𝑑2𝑟 𝑧

𝑑𝑧2 +
𝑛2𝑟 𝑧

𝑛0
=

𝑑2𝑟 𝑧

𝑑𝑧
+ 𝛾2𝑟 𝑧 = 0

with 𝛾2 =
𝑛2

𝑛0
and 𝛾 =

𝑛2

𝑛0

Solution:

𝑟 𝑧 = 𝑟0 cos 𝛾𝑧 + 𝑛0𝛾
−1𝑟0

′ sin 𝛾𝑧

𝑟
𝑟′

=
cos 𝛾𝑧 (𝑛0𝛾)−1sin 𝛾𝑧

−𝑛0𝛾 sin 𝛾𝑧 cos 𝛾𝑧

𝑟0
𝑟0′

with 𝛾2 = −|
𝑛2

𝑛0
| and 𝛾 = 𝑗

1

𝑛0

𝑑2𝑛

𝑑𝑟2

Solution:

𝑟 𝑧 = 𝑟0 cosh 𝛾𝑧 + 𝑛0𝛾
−1𝑟0

′ sinh 𝛾𝑧

𝑟
𝑟′

=
cosh 𝛾𝑧 (𝑛0𝛾)−1sinh 𝛾𝑧
𝑛0𝛾 sinh 𝛾𝑧 cosh𝛾𝑧

𝑟0
𝑟0

′

𝑛2 < 0 or
𝑑2𝑛

𝑑𝑟2
> 0



Paraxial optical ray and ray matrices
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AXIAL INDEX VARIATIONS

• No transverse variation of the index in the medium : 𝑛2 = 0;

• Axial variation of the index in the medium : 𝑛0= 𝑛0 𝑧 ;

• Relevant ray equation is:

𝑑𝑟′ 𝑧

𝑑𝑧
=

𝑑

𝑑𝑧
𝑛0 𝑧

𝑑𝑟

𝑑𝑧
= 0

with the solution

𝑟 𝑧 = 𝑟0 + 𝑟0
′  𝑧0

𝑧 1

𝑛0 𝑧
𝑑𝑧

• ABCD matrix through length L starting at 𝑧 = 0

𝑀 =
1 𝐵(𝐿)
0 1

with 𝐵 𝐿 ≡  0

𝐿 𝑑𝑧

𝑛0 𝑧



Paraxial optical ray and ray matrices
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RAY INVERSION

• Inversion of one optical ray with respect to one or the other of 

its transverse coordinate axes, e.g. mirrors, … ;

• Relation between displacement and slope before and after the 

reflection: 

• The ray matrices along the optical axis can be written  in the 

form:

𝒙𝟐 = 𝑰𝒙𝟏 𝒚𝟐 = −𝑰 𝒚𝟏

axis x

y

x

y

z

z

ray

y

z

z

y

x

x



Ray propagation through cascaded elements
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CASCADE RAY MATRICES

𝑟1 = 𝑀1𝑟0
𝑟2 = 𝑀2𝑟1 = 𝑀2𝑀1𝑟0

𝑟3 = 𝑀3𝑟2 = 𝑀3𝑀2𝑀1𝑟0

General case:

𝑟𝑛 = [𝑀𝑛𝑀𝑛−1𝑀𝑛−2 …𝑀1] 𝑟0 = 𝑀𝑇𝑂𝑇𝑟0



Ray propagation through cascaded elements
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SPHERICAL WAVE PROPAGATION

• Ray optics and geometrical optics : same content expressed in different 

fashion;

• Ideal spherical wave with radius of curvature R can be seen as 

collection of rays diverging from common point C.

• Slope and displacement of each ray at the plane z:

𝑟′ 𝑧 = 𝑛 𝑧
𝑑𝑟 𝑧

𝑑𝑧
= 𝑛 𝑧

𝑟 𝑧

𝑅 𝑧

Or 

𝑅 𝑧 ≡
𝑛 𝑧 𝑟 𝑧

𝑟′(𝑧)



Ray propagation through cascaded elements
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SPHERICAL WAVE PROPAGATION

𝑅2

𝑛2
≡

𝑟2
𝑟2

′ =
𝐴𝑟1 + 𝐵𝑟1

′

𝐶𝑟1 + 𝐷𝑟1
′ =

𝐴  𝑅1
𝑛1

+ 𝐵

𝐶  𝑅1
𝑛1

+ 𝐷

With Reduced slope   𝑅′ 𝑧 ≡
𝑅 𝑧

𝑛 𝑧
:

 𝑅2 =
𝐴 𝑅1 + 𝐵

𝐶 𝑅1 + 𝐷



Ray propagation through cascaded elements
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THICK LENSES AND ABCD MATRICES

PP = principal plane

FP = focal plane 

1

 𝑅2 − 𝐿2

=
1

 𝑅1 − 𝐿1

+
1

1/C

With 𝐿2 ≡
𝐴−1

𝐶
and 𝐿1 ≡

1−𝐷

𝐶

 𝑅1 and  𝑅2 obeys the lens law for a thin lens of focal length 

𝑓 = −
1

𝐶
if these quantities are measured from reference 

planes 𝐿1 and 𝐿2



Ray propagation through cascaded elements
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IMAGING PROPERTIES OF ABCD SYSTEMS

• Principal plane to principal plane: 𝑴 =
1 0
𝐶 1

• Focal plane to focal plane:   𝑴 = 0 −𝐶−1

𝐶 0

• Object plane to image plane: 𝑴 =
𝑀 0
𝐶 1/𝑀

, with M image 

magnification



Ray propagation through cascaded elements
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RAY MATRICES IN ASTIGMATIC SYSTEMS

• General ray propagating in 𝑧 direction has to be described by 

its transverse displacement in 𝑥 and 𝑦 directions;

• Simple optical elements, the ray matrix formalism applies 

separately and independently to 𝑥, 𝑥′ and 𝑦, 𝑦′ ;

• If the system is rotationally symmetric the same matrix ABCD 

applies to both 𝑥, 𝑥′ and 𝑦, 𝑦′ ;

• If the system is astigmatic different matrices ABCD apply to 

𝑥, 𝑥′ and 𝑦, 𝑦′.



Rays in periodic focusing systems
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EIGENVALUES AND EIGENRAYS

• 𝑴 – matrix for propagation through one period of periodic 

focusing system (PFS) from arbitrary reference plane in one 

period to the corresponding plane one period later;

• 𝒓𝑛 and 𝒓𝑛+1 - ray vectors at the 𝑛-th and 𝑛 + 1-th reference 

planes: 

𝒓𝑛+1 = 𝑴𝒓𝑛 = 𝑴𝑛+1𝒓0

with 𝒓0 initial ray at the input plane 𝑛 = 0;



Rays in periodic focusing systems
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EIGENVALUES AND EIGENRAYS

• Look for a set of “eigenrays” 𝒓 to satisfy eigenequation: 

𝑴𝒓 = 𝜆𝒓

• For  a 2x2 matrix :

𝑴 − 𝜆𝑰 𝒓 =
𝐴 − 𝜆 𝐵

𝐶 𝐷 − 𝜆

𝑟
𝑟′ = 0

• Determinant must satisfy:

𝐴 − 𝜆 𝐵
𝐶 𝐷 − 𝜆

≡ 𝜆2 − 𝐴 + 𝐷 𝜆 + 1 = 0



Rays in periodic focusing systems
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EIGENVALUES AND EIGENRAYS

• Definition of 𝑚 parameter :

𝑚 =
A + D

2

• Eigenvalues: 

𝜆𝑎 , 𝜆𝑏 = 𝑚 ± 𝑚2 − 1, which obeys 𝜆𝑎𝜆𝑏 ≡ 1;

• Eigenrays 𝒓𝒂, 𝒓𝑏 such that:

𝑴𝒓𝑎 = 𝜆𝑎𝒓𝑎 and 𝑴𝒓𝑏 = 𝜆𝑏𝒓𝑏



Rays in periodic focusing systems
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EIGENRAY EXPANSION

• Arbitrary ray at the input to the PFS: 

𝒓0 = 𝑐𝑎𝒓𝒂 + 𝑐𝑏𝒓𝑏

• Ray vector after any number of sections 𝑛 : 

𝒓𝑛 = 𝑴𝑛𝒓𝟎 = 𝑴𝑛 × (𝑐𝑎𝒓𝒂 + 𝑐𝑏𝒓𝑏) 

= (𝑐𝑎 × 𝜆𝑛𝒓𝒂 + 𝑐𝑏 × 𝜆𝑛𝒓𝑏) 



Rays in periodic focusing systems
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STABLE  VS UNSTABLE PERIODIC FOCUSING SYSTEMS

𝑚 < 1

𝑚 ≡ 𝑐𝑜𝑠θ

𝜆𝑎 , 𝜆𝑏 = 𝑚 ± 𝑗 1 − 𝑚2 = 𝑐𝑜𝑠𝜃 ± 𝑗𝑠𝑖𝑛𝜃 = 𝑒±𝑗𝜃

𝒓𝒏 = 𝑐𝑎 𝒓𝑎 × 𝑒𝑗𝑛𝜃 + 𝑐𝑏 𝒓𝑏 × 𝑒−𝑗𝑛𝜃 = 𝒓𝟎cos𝜃𝑛 + 𝒔𝟎𝑠𝑖𝑛𝜃𝑛

With

𝒓𝟎 = 𝑐𝑎𝒓𝒂 + 𝑐𝑏𝒓𝒃

𝒔𝟎 = 𝑗(𝑐𝑎𝒓𝒂 + 𝑐𝑏𝒓𝒃)

𝑚 =
𝐴 + 𝐷

2



Rays in periodic focusing systems
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STABLE  VS UNSTABLE PERIODIC FOCUSING SYSTEMS

𝑚 =
𝐴 + 𝐷

2

𝑚 > 1

𝜆𝑎 , 𝜆𝑏 = 𝑚 ± 𝑚2 − 1 = 𝑀, 𝑀−1
with 𝑀 transverse magnification per period

𝒓𝒏 = 𝑀𝑛 × 𝑐𝑎 𝒓𝑎 + 𝑀−𝑛 × 𝑐𝑏 𝒓𝑏 = 𝒓𝟎cosh𝜃𝑛 + 𝒔𝟎𝑠𝑖𝑛ℎ𝜃𝑛

With

𝜃 ≡ 𝑙𝑛𝑀

𝒓𝟎 = 𝑐𝑎𝒓𝒂 + 𝑐𝑏𝒓𝒃

𝒔𝟎 = 𝑗(𝑐𝑎𝒓𝒂 + 𝑐𝑏𝒓𝒃)



Ray optics with misaligned elements
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ANALYSIS OF MISALIGNED ELEMENTS

• Real physical axis of any individual paraxial element = Element 

axis – ray vectors 𝑠, 𝑠′;
• Reference optical axis arbitrarily chosen = Reference optical 

axis – ray vectors 𝑟, 𝑟′;

• Considering a small angle :

Δ′ ≡
Δ2 − Δ1

L



Ray optics with misaligned elements
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ANALYSIS OF MISALIGNED ELEMENTS

• Misalignment vectors:

𝚫𝟏 ≡
Δ1

Δ1′
and 𝚫𝟐 ≡

Δ2

Δ2′

With Δ1′ ≡ 𝑛1Δ′ and Δ2′ ≡ 𝑛2Δ′reduced values

• Connection between the two vectors:  

𝚫𝟐 =
Δ2

Δ2′
=

1  𝐿 𝑛1

0  
𝑛2

𝑛1

Δ1

Δ1′
≡ 𝑴𝚫 × 𝚫𝟏

• Ray vectors in the element axis and the optical axis related to 

the input plane:

𝒓𝟏 = 𝒔𝟏 + 𝚫𝟏

𝒓𝟐 = 𝒔𝟐 + 𝚫𝟐



Ray optics with misaligned elements
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ANALYSIS OF MISALIGNED ELEMENTS

• The ray vectors measured with respect to the element axis will 

transform through ABCD matrix:

𝒔𝟐 ≡
𝑠2

𝑠2′ =
𝐴 𝐵
𝐶 𝐷

𝑠1

𝑠1′
≡ 𝑴 × 𝒔𝟏

With 𝑀 the matrix for the aligned element

• Input and output displacements and slopes respect to the 

optical axis:

𝒓𝟐 = 𝒔𝟐 + 𝚫𝟐 = 𝑴𝒔𝟏 + 𝑴𝚫𝚫𝟏 = 𝑴𝒓𝟏 + 𝑴𝚫 − 𝑴 𝚫𝟏 = 𝑴𝒓𝟏 + 𝑬

With 𝑬 error vector which is given by :

𝑬 ≝
𝐸
𝐹

= 𝑴𝚫 − 𝑴 𝚫𝟏 =
1 − 𝐴 𝐿 − 𝑛1𝐵
−𝐶 𝑛2 − 𝑛1𝐷

Δ1

Δ′



Ray optics with misaligned elements
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3X3 MATRIX FORMALISM FOR MISALIGNED ELEMENTS 

Possible to put these result for a general misaligned paraxial 

system in a 3x3 matrix:

𝑟2
𝑟2′
1

=
𝐴 𝐵 𝐸
𝐶 𝐷 𝐹
0 0 1

𝑟1
𝑟1′
1

Where 

𝐸 = 1 − 𝐴 Δ1 + 𝐿 − 𝑛1𝐵 Δ′

and 

𝐹 = −𝐶Δ1 + 𝑛2 − 𝑛1𝐷 Δ′



Ray optics with misaligned elements
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CASCADE MISALIGNED ELEMENTS

• Several successive optical elements arranged in cascade 

where each of them is characterized by 𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖 , 𝐷𝑖 , 𝐸𝑖 , 𝐹𝑖 can 

be described by:

𝒓𝑖+1

1
=    

𝑴

𝑶

𝑬

1

𝒓𝑖

1

With 𝑀 is the ABCD matrix, 𝒓𝟏, 𝒓𝟐, 𝑬 are 2x1 column matrices, 𝑶 is 

a 2x1 row matrix with all elements 0 and 1 is 1x1 element.

• Example of two misaligned elements:

   
𝑴𝒕𝒐𝒕

𝑶

𝑬𝒕𝒐𝒕

1
=    

𝑴𝟐

𝑶

𝑬2

1
×    

𝑴1

𝑶

𝑬𝟏

1
=    

𝑴2𝑴𝟏

𝑶

𝑴𝟐𝑬𝟏 + 𝑬𝟐

1



Ray optics with misaligned elements
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CASCADE MISALIGNED ELEMENTS

The basic ray matrix properties and paraxial focusing properties of 

a cascade system are entirely unchanged by small misalignments 

of individual elements within the system.



Ray optics with misaligned elements
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OVERALL MISALIGNED SYSTEMS

• Initial ray 𝒓𝟎, 𝑁 elements, misalignment described by 𝑬𝒌 ≡
𝐸𝑘, 𝐹𝑘 ;

• The overall transformation is: 

𝒓𝑵 = 𝑴𝑇𝑂𝑇𝒓0 + 𝑬𝑇𝑂𝑇

Where

𝑴𝑇𝑂𝑇 = 𝑴𝑁 …𝑴𝟐𝑴𝟏

and

𝑬𝑇𝑂𝑇 = [𝑴𝑁…𝑴𝟐]𝑬𝟏 + [𝑴𝑁…𝑴𝟑]𝑬𝟐 + …+ 𝑴𝑁 𝑬𝑵−𝟏 + 𝑬𝑵
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SYSTEM ALIGNMENT AND OVERALL ELEMENT AXIS

• Any system can be converted into an effectively aligned overall 

system by bringing its overall element axis into coincidence with 

the system’s element axis;

• Any overall values 𝐸 = 𝐸𝑇𝑂𝑇 and 𝐹 = 𝐹𝑇𝑂𝑇 for an overall system 

can be cancelled out:

• Physical translation of entire system as a unit downward:

Δ0 =
1 − D E − L − B F

1 − A 1 − D + L − B C

• Physical rotation of entire system toward system axis, with 

the centre of rotation at the input plane, by an angle:

Δ′ =
CE + 1 − 𝐴 F

1 − A 1 − D + L − B C
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MISALIGNED RESONATOR OR PERIODIC SYSTEMS

• Consider an unfold optical resonator with one or more 

misaligned internal elements;

• Each round trip in the resonator (or individual period of the 

lensguide) will have an overall element axis, with respect to 

which that individual round trip will look like an aligned system;

• This element axis will not come back on itself after one round 

trip: the element axis of each may be tilted to the reference 

optical axis running through the repeated section of the 

lensguide, so that element axes in successive periods do not 

connect;

• “Is there any better or alternative way to define an effective axis 

in a misaligned resonator or periodic system?”
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MISALIGNED RESONATOR OR PERIODIC SYSTEMS

• Aligned paraxial systems require: a ray vector which starts 

perfectly aligned along the axis remains always aligned;

• Define this “unique” axis ray vector: 𝒓𝟎;
• Conditions necessary for 𝒓𝟎 for self-reproducing after a round 

trip:

𝑴𝒓𝟎 + 𝑬 = 𝒓𝟎 or  𝒓𝟎 = 𝑰 − 𝑴 −𝟏𝑬

• Displacement and slope of the axis ray vector: 

𝑟0 ≡
1 − 𝐷 𝐸 + 𝐵𝐹

2 − 𝐴 − 𝐷
, 𝑟0

′ ≡
𝐶𝐸 + 1 − 𝐴 𝐹

2 − 𝐴 − 𝐷

• Transformation of any other input ray 𝒓1 through the misaligned 

system is given by: 

(𝒓𝟐 − 𝒓𝟎) = 𝑴 × (𝒓𝟏 − 𝒓𝟎)
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DIFFERENCES BETWEEN THE AXIS RAY AND THE OVERALL ELEMENT AXIS

Axis Ray Overall Element Axis

• Bent curves and segments;

• Parallel to itself after one 

pass through the system.

• Straight line through the 

elements.
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DIFFERENTIAL MATRIX ANALYSIS

• Consider a quadratic ducts:

• Δ 𝑧 displacement of the axis of the duct at any plane 𝑧 from 

the optical axis;

• 𝑴(𝑧) 3x3 ABCDEF matrix from an input plane 𝑧0 up to a plane 

𝑧;
• 𝑴(𝑑𝑧) 3x3 ABCDEF matrix for a short distance 𝑑𝑧 from 𝑧 to 

z + 𝑑𝑧:

𝑴 𝑑𝑧 =
1 𝑛0

−1𝑑𝑧 0

−𝑛0𝛾
2𝑑𝑧 1 𝑛0𝛾2Δ 𝑧 𝑑𝑧

0 0 1

for 𝑑𝑧 → 0

• For the cascading properties of the ray matrix : 

𝑴 𝑧 + 𝑑𝑧 = 𝑴 𝑧 × 𝑴 (𝑑𝑧)
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DIFFERENTIAL MATRIX ANALYSIS

• Multiplying 𝑴 𝑑𝑧 and 𝑴 𝑧 and comparing with the matrix 

𝑴 𝑧 + 𝑑𝑧 , differential relations are given:

𝑑𝐴 𝑧

𝑑𝑧
= 𝑛0

−1𝐶 𝑧 ,          
𝑑𝐵 𝑧

𝑑𝑧
= 𝑛0

−1𝐷 𝑧

𝑑𝐶 𝑧

𝑑𝑧
= −𝑛0𝛾

2𝐴 𝑧 ,          
𝑑𝐷 𝑧

𝑑𝑧
= −𝑛0𝛾2𝐵 𝑧

𝑑𝐸 𝑧

𝑑𝑧
= −𝑛0

−1𝐹 𝑧 ,  
𝑑𝐹 𝑧

𝑑𝑧
= −𝑛0𝛾

2[𝐸 𝑧 − Δ(𝑧)]

• Solving the first four equations, starting from 𝑧0 gives the overall 

ABCD matrix as a function of the distance:

𝐴 𝑧 = 𝐷 𝑧 = 𝑐𝑜𝑠𝛾 𝑧 − 𝑧0

𝑛0𝛾𝐵 𝑧 = − 𝑛0𝛾
−1𝐶 𝑧 = sin 𝛾 𝑧 − 𝑧0

• The overall matrix is unchanged by curvature of duct.
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EFFECT OF DUCTS MISALIGNMENT

𝑑𝐸 𝑧

𝑑𝑧
= −𝑛0

−1𝐹 𝑧

𝑑𝐹 𝑧

𝑑𝑧
= −𝑛0𝛾2[𝐸 𝑧 − Δ(𝑧)]

• Formal solutions:

𝐸 𝑧 = 𝛾  
𝑧0

𝑧

Δ 𝑧′ sin 𝛾 𝑧 − 𝑧′ 𝑑𝑧′

𝐹 𝑧 = 𝑛0𝛾2  
𝑧0

𝑧

Δ 𝑧′ cos 𝛾 𝑧 − 𝑧′ 𝑑𝑧′
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EFFECT OF DUCTS MISALIGNMENT

𝐸 𝑧 = 𝛾  
𝑧0

𝑧

Δ 𝑧′ sin 𝛾 𝑧 − 𝑧′ 𝑑𝑧′

𝐹 𝑧 = 𝑛0𝛾2  
𝑧0

𝑧

Δ 𝑧′ cos 𝛾 𝑧 − 𝑧′ 𝑑𝑧′

• Case 1: Δ 𝑧 = cos 𝛾1𝑧 or Δ 𝑧 = sin 𝛾1𝑧, with 𝛾1 closely 

matches the natural ray oscillations at 𝑐𝑜𝑠𝛾𝑧 or 𝑠𝑖𝑛𝛾𝑧:

• Displacement parameters 𝐸 𝑧 , 𝐹 𝑧 will grow linearly with 

the distance,

• The periodic oscillations of rays in the duct will appear to 

grow linearly in amplitude with the distance;

• Case 2: Δ 𝑧 has random variations :

• Oscillations in off-axis rays will grow as the square root of 

distance along the guide,

• The growth rate will be proportional to the amplitude of the 

spatial frequency components of Δ 𝑧 in the vicinity of 𝛾.
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GENERAL ANLYSIS

• Non-orthogonal systems: 

• Systems which can not be described by separate and 

independent ray matrices in two principal plane that are 90°

apart,

• Exhibit some kind of “twist” or image rotation;

• Notation for a non-orthogonal 4x4 matrix:
𝑥2
𝑦2

𝑥2
′

𝑦2
′

=

𝐴𝑥𝑥

𝐴𝑦𝑥

𝐴𝑥𝑦

𝐴𝑦𝑦

𝐶𝑥𝑥 𝐶𝑥𝑦

𝐶𝑦𝑥 𝐶𝑦𝑦

𝐵𝑥𝑥

𝐵𝑦𝑥

𝐵𝑥𝑦

𝐵𝑦𝑦

𝐷𝑥𝑥 𝐷𝑥𝑦

𝐷𝑦𝑥 𝐷𝑦𝑦

𝑥1
𝑦1

𝑥1
′

𝑦1
′

• Or in short notation

𝒓𝟐

𝒓𝟐
′ =    

𝑨

𝑪

𝑩

𝑫
×

𝒓1

𝒓𝟏
′



Non-orthogonal Ray Matrices

41/52RAY OPTICS & RAY MATRICES

GENERAL ANLYSIS

𝑥2
𝑦2

𝑥2
′

𝑦2
′

=

𝐴𝑥𝑥

𝐴𝑦𝑥

𝐴𝑥𝑦

𝐴𝑦𝑦

𝐶𝑥𝑥 𝐶𝑥𝑦

𝐶𝑦𝑥 𝐶𝑦𝑦

𝐵𝑥𝑥

𝐵𝑦𝑥

𝐵𝑥𝑦

𝐵𝑦𝑦

𝐷𝑥𝑥 𝐷𝑥𝑦

𝐷𝑦𝑥 𝐷𝑦𝑦

𝑥1
𝑦1

𝑥1
′

𝑦1
′

• Constraints: 

𝑨𝑩𝑻 = 𝑩𝑨𝑻

𝑩𝑻𝑫 = 𝑫𝑻𝑩
𝑫𝑪𝑻 = 𝑪𝑫𝑻

𝑪𝑻𝑨 = 𝑨𝑻𝑪
𝑨𝑫𝑻 − 𝑩𝑪𝑻 = 𝑨𝑻𝑫 − 𝑩𝑻𝑪 = 𝑰
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ALTERNATIVE MATRIX NOTATION

• Alternative form:
𝑥2

𝑥′2
𝑦2

𝑦2
′

=

𝐴𝑥𝑥

𝐶𝑥𝑥

𝐵𝑥𝑥

𝐷𝑥𝑥

𝐴𝑦𝑥 𝐵𝑦𝑥

𝐶𝑦𝑥 𝐷𝑦𝑥

𝐴𝑥𝑦

𝐶𝑥𝑦

𝐵𝑥𝑦

𝐷𝑥𝑦

𝐴𝑦𝑦 𝐵𝑦𝑦

𝐶𝑦𝑦 𝐷𝑦𝑦

𝑥1

𝑥′1
𝑦1

𝑦1
′

• Or in short notation

𝒙𝟐

𝒚𝟐
=    

𝑴𝒙𝒙

𝑴𝒚𝒙

𝑴𝒙𝒚

𝑴𝒚𝒚
×

𝒙1

𝒚𝟏
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ROTATED ASTIGMATIC OPTICAL SYSTEMS

• Coordinate system rotation : 

• Matrix for an orthogonal system:
𝑥2

𝑥′2
𝑦2

𝑦2
′

=

𝐴𝑥𝑥

𝐶𝑥𝑥

𝐵𝑥𝑥

𝐷𝑥𝑥

0 0
0 0

0
0

0
0

𝐴𝑦𝑦 𝐵𝑦𝑦

𝐶𝑦𝑦 𝐷𝑦𝑦

𝑥1

𝑥′1
𝑦1

𝑦1
′

• At any 𝑧, coordinate rotation from original 𝑥1, 𝑦1 to 𝑥2, 𝑦2:
𝑥2

𝑥′2
𝑦2

𝑦2
′

=

𝑐𝑜𝑠𝜃
0

0
𝑐𝑜𝑠𝜃

−𝑠𝑖𝑛𝜃 0
0 𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃
0

0
𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃 0
0 𝑐𝑜𝑠𝜃

𝑥1

𝑥′1
𝑦1

𝑦1
′

Where subscript 1 refers to the old coordinate system and 

subscript 2 refers to the rotated coordinate system.
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ROTATED ASTIGMATIC OPTICAL SYSTEMS

• Short notation:

𝒙𝟐

𝒚𝟐
=    

𝐶𝜃

−𝑆𝜃

𝑆𝜃

𝐶𝜃
×

𝒙1

𝒚𝟏
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ROTATED ASTIGMATIC OPTICAL SYSTEMS

• To pass a ray through this rotated element analytically using the 

original 𝑥1, 𝑦1 axes: 

• Transform from the original axes into rotated principal axes 

of the element,

• Propagate through the element using ABCD matrix along 

its principal axes,

• Rotate back to original axes by amount −θ;

   
𝐶𝜃

𝑆𝜃

−𝑆𝜃

𝐶𝜃
×    

𝑴𝑥𝑥

0

0

𝑴𝑦𝑦
×    

𝐶𝜃

−𝑆𝜃

𝑆𝜃

𝐶𝜃

Which can be manipulated in the form:

   
𝐶𝜃

2𝑴𝒙𝒙 + 𝑆𝜃
2𝑴𝑦𝑦

𝐶𝜃𝑆𝜃(𝑴𝒙𝒙−𝑴𝑦𝑦)

𝐶𝜃𝑆𝜃(𝑴𝒙𝒙−𝑴𝑦𝑦)

𝑆𝜃
2𝑴𝒙𝒙 + 𝐶𝜃

2𝑴𝑦𝑦
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TWO ROTATED  ELEMENTS IN CASCADE

• Two orthogonal but astigmatic elements in cascade, rotated 

respectively of  𝜃1, 𝜃2;

• Overall matrix product:

   
𝑴𝒙𝒙

𝑴𝒚𝒙

𝑴𝒙𝒚

𝑴𝒚𝒚
= [𝑜𝑣𝑒𝑟𝑎𝑙𝑙 4 × 4 𝑚𝑎𝑡𝑟𝑖𝑥 𝑝𝑟𝑜𝑑𝑢𝑐𝑡]
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TWO ROTATED  ELEMENTS IN CASCADE

• After some calculation it is possible to demonstrate: 

𝑀𝑥𝑦 − 𝑀𝑦𝑥 = sin 𝜃2 − 𝜃1 𝑐𝑜𝑠 𝜃2 − 𝜃1 (𝑴𝑥𝑥,1 − 𝑴𝑦𝑦,1)(𝑴𝑥𝑥,𝟐 − 𝑴𝑦𝑦,𝟐)

• A cascade system of two rotated astigmatic elements can be 

orthogonal only if:

• 𝜃2 − 𝜃1 = 0°, so the principal planes of the two elements 

coincide,  

• 𝑴𝑥𝑥,1 = 𝑴𝑦𝑦,1 or  𝑴𝑥𝑥,𝟐 = 𝑴𝑦𝑦,𝟐, so one of the elements is 

not astigmatic;

• “An optical system having cascaded astigmatic elements 

rotated at arbitrary angles will in general not be orthogonal”.
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IMAGE ROTATION

• Image rotation: 

• Can be describe with the same matrix used for the 

coordinate system rotation

𝑥2

𝑥′2
𝑦2

𝑦2
′

=

𝑐𝑜𝑠𝜃
0

0
𝑐𝑜𝑠𝜃

−𝑠𝑖𝑛𝜃 0
0 𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃
0

0
𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃 0
0 𝑐𝑜𝑠𝜃

𝑥1

𝑥′1
𝑦1

𝑦1
′



Non-orthogonal Ray Matrices

49/52RAY OPTICS & RAY MATRICES

NON PLANAR RING RESONATOR

• Coordinates rotation Vs. image rotation very difficult to 

distinguish for a twisted or non planar ring resonator;

• Can be described by:

   
𝐶𝜃𝑴𝒙𝒙

−𝑆𝜃𝑴𝑦𝑦

𝑆𝜃𝑴𝒙𝒙

𝐶𝜃𝑴𝑦𝑦

If the rotation element comes first or by 

   
𝐶𝜃𝑴𝒙𝒙

−𝑆𝜃𝑴𝒙𝒙

𝑆𝜃𝑴𝑦𝑦

𝐶𝜃𝑴𝑦𝑦

If the astigmatic element comes first.
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TASK 1

Problems  for 15.1 – Ex.  1 - page 592 of the book “Laser” by 

Siegman

Suggestions:

• Use small angles approximation;

• Consider the thickness of the interface 𝑡 = 0 m.



Assignments

51/52RAY OPTICS & RAY MATRICES

TASK 2

Consider an optical resonator of length 𝐿 made by two intracavity

lenses of focal length 𝑓 = 2𝐿 equally spaced between two flat end 

mirrors. 

1. The system is aligned. Find the general ABCD matrix of the 

system for any round trip in the resonator.

2. The system is misaligned.  The first lens is displaced below the 

optical axis of a distance Δ𝑎 = 2𝜀 and the second lens is displaced 

upward of a distance Δ𝑏 = 𝜀. Calculate the overall element axis 

passing through the two lenses.  Consider the two lenses grouped 

in a single element of dimension 𝑃 = 2/3𝐿, cantered in 𝐿/2. 

Calculate the misalignment of the element respect the reference 

axis Δ’ and considering the element described by a general matrix 

ABCD, write the general equations for 𝐸 and 𝐹.
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TASK 2

Suggestion:

• Consider the thin lenses approximation.



Thank you for the attention!


