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Introduction 

Aim of this chapter: 

 

 Describe the transverse mode properties of laser resonators 

What is a 

transverse mode ? 

How can we 

analyzed it ? 

Laser resonator 



4 

Optical resonator 

Microwave cavities 

 Closed cavities 

Prof. K. R. Chu lecture notes, university of Taiwan. 

Optical resonator 

 Open side cavities 

 Diffraction losses 
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Fundamental concepts – recirculating slab 

Earlier chapters: plane-wave approximation, ignoring transverse spatial 

variation 

z 

Now: Recirculating “slab” of radiation  this means the optical energy traveling 

in +z direction contained in a small segment of length       in the cavity. Dz

z 

x,y 

𝐿𝑐𝑎𝑣𝑖𝑡𝑦 ≫ ∆𝑧 ≫ 𝜆 

Dz

E x, y, z = Re{𝐸 𝑥, 𝑦, 𝑧 . 𝑒𝑗(𝜔𝑡−𝑘𝑧)} 

𝐸 = 𝑒𝑗(𝜔𝑡−𝑘𝑧) 

Plane-wave aspect 

|𝐸 (𝑥, 𝑦, 𝑧)|𝑒𝑗𝜙(𝑥,𝑦,𝑧) 

Complex phasor describing transverse amplitude and 

phase of the “slab” 

𝑘 =
𝜔

𝑐
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Fundamental concepts – Stable/unstable resonators 

“Lasers”, A. E. Siegman, 1986 p561. 

Geometrically stable or unstable resonator  linked to ray stability inside the cavity 

The transverse profile 𝐸 (𝑥, 𝑦, 𝑧) is modified each roundtrip due to: 

 

 Propagation 

 Diffraction 

 Bounces on end mirrors 

 Passes through medium/rods/lenses/apertures… 

Determine transverse 

mode properties of 

the cavity ! 
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Practical concept – Equivalent periodic lensguide 

Equivalent periodic lens-guide method: 

 Replace roundtrips in resonator by repeated sections of an iterated periodic 

optical system 

“Lasers”, A. E. Siegman, 1986 p562. 

Ex: 

Curved mirrors  

 thin lenses 

 Convert resonator geometry into waveguide design ! 
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Definition: eigenmodes and eigenvalues 

Introducing concept of transverse cavity mode  Eigenmode 

QUESTION: ∃? 𝐸𝑛𝑚 𝑥, 𝑦  ; 𝐸𝑛𝑚 
1 𝑥, 𝑦 = 𝐸𝑛𝑚 𝑥, 𝑦  after one roundtrip  

 Same transverse form after one roundtrip but reduced amplitude (losses) 

and arbitrary phase-shift (propagation) 

 

 Self-reproducing transverse pattern = transverse mode of the resonator 

ANSWER:        YES! 

 Simplest ones in geometrically stable resonators with curved mirrors 

 Modes are Hermite-Gaussian functions or Laguerre-Gaussian functions 

(cylindrical coordinates) 

 Plane-waves (or slightly spherical) X 𝐸𝑛𝑚 (𝑥, 𝑦) 
 Polarized ⊥ to direction of propagation  TEMnm 
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Definition: eigenmodes and eigenvalues 

“Lasers”, A. E. Siegman, 1986 p564. 

Stable cavity 

transverse modes 

Curved mirrors 

Flat mirrors 

“Like Bessel functions” 

 Diffraction losses: amount of energy 

lost past the mirror edges 
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Mathematical definition – Propagation Kernel 

Problem: how to quantify propagation effects for the optical “slab” over 1 roundtrip 

   how to find the self-reproducing transverse modes 

General linear transformation between field amplitude after one roundtrip in the 

plane 𝒛 = 𝒛𝟎 to the field amplitude in the same plane one roundtrip earlier 

 Propagation integral 

𝐸 1 (𝑥, 𝑦, 𝑧0) = 𝑒−𝑗𝑘𝑝 𝐾 𝑥, 𝑦, 𝑥0, 𝑦0 𝐸 0 𝑥0, 𝑦0, 𝑧0 𝑑𝑥0𝑑𝑦0 

Input 

plane 

p: length of one roundtrip 

K: propagation Kernel/propagator  

 Depends on the reference plane 

        Contains the details of the cavity (optical elements) 

Evaluation of K in the next chapters! 
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Mathematical definition – Eigen-equation 

𝐸 0 (𝑥, 𝑦) 

𝐸 1 (𝑥, 𝑦) 

𝐾  Operator equation: 

∃? 𝐸𝑛𝑚 𝑥, 𝑦  and ∃? 𝛾𝑛𝑚  ; 

𝛾𝑛𝑚 𝐸𝑛𝑚 𝑥, 𝑦 =  𝐾 𝑥, 𝑦, 𝑥0, 𝑦0 𝐸𝑛𝑚 𝑥0, 𝑦0 𝑑𝑥0𝑑𝑦0 

Solutions of the Eigen-equation  

 determine the transverse modes 
𝐸𝑛𝑚 

1 𝑥, 𝑦 = 𝛾𝑛𝑚 𝐸𝑛𝑚 
0 𝑥, 𝑦 𝑒−𝑗𝑘𝑝 
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Mathematical definition – Eigenvalues 

Complex eigenvalue 𝛾𝑛𝑚 : 
 

 Indices (n,m) for the transverse dimensions of the considered mode 

 𝛾𝑛𝑚 < 1 in open side resonator, no gain in cavity 

Lossless mirrors, power-loss per roundtrip: 

Π𝑑𝑖𝑓𝑓 = 1 − |𝛾𝑛𝑚 |2    
From diffraction losses at mirror edges and 

apertures 

No laser gain Laser gain 

𝐸𝑛𝑚 
𝑘 𝑥, 𝑦

𝐸𝑛𝑚 
0 𝑥, 𝑦

= 𝛾𝑛𝑚 
𝑘 

 Exponential decay of amplitude 

𝐸𝑛𝑚 
1 𝑥, 𝑦 = 𝛾𝑛𝑚 𝑒𝛼𝑚𝑝𝑚−𝑗𝑘𝑝𝐸𝑛𝑚 

0 𝑥, 𝑦  

 

Condition for laser threshold: 

𝐸𝑛𝑚 
1 𝑥, 𝑦

𝐸𝑛𝑚 
0 𝑥, 𝑦

= 𝛾𝑛𝑚 𝑒𝛼𝑚𝑝𝑚−𝑗𝑘𝑝 = 1 
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Mathematical definition – Properties of eigenmodes 

Existence:  not automatically guaranteed (𝐾  is not always Hermitian)     

Orthogonality:  generally not power orthogonal but biorthogonal 

 𝐸𝑛𝑚 𝑥, 𝑦 𝐸𝑝𝑞 
∗
𝑥, 𝑦 𝑑𝑥𝑑𝑦 = 𝛿𝑛𝑝𝛿𝑚𝑞  𝐸𝑛𝑚 𝑥, 𝑦 𝐸𝑝𝑞 

†
𝑥, 𝑦 𝑑𝑥𝑑𝑦 = 𝛿𝑛𝑝𝛿𝑚𝑞 BUT 

Completeness:  generally not a complete basis set 

Transverse mode traveling 

in opposite direction 

𝐸 (𝑥, 𝑦) ≡ 𝑐𝑛𝑚𝐸𝑛𝑚 (𝑥, 𝑦)

𝑛,𝑚

 
? 



14 

Attenuation of the modes 

Arbitrary initial field 𝐸(0)  such that: 

𝐸 0 𝑥, 𝑦 = 𝑐𝑛𝑚𝐸 𝑛𝑚(𝑥, 𝑦)

𝑛𝑚

 

𝐸 𝑘 𝑥, 𝑦 = 𝑐𝑛𝑚𝛾𝑛𝑚 
𝑘

𝑛,𝑚

𝐸𝑛𝑚 
(𝑘)(𝑥, 𝑦) 

Relative amplitude attenuates as |𝛾𝑛𝑚 |𝑘 

Number of round trips 
L
o
g
 o

f 
m

o
d
e
 a

m
p
lit

u
d
e
s
 

nm=00 transverse mode with 

largest eigenvalue/smallest loss 

Become dominant after enough roundtrips 

n=0 

n=1 

n=2 
n=3 

n=4 
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Fox and Li approach 

Aim:  Find the lowest-order resonator transverse mode (nm=00) 

Numerical computation:  Iterative roundtrips 

                Repeating integration of the propagation equation 

                Huygens integral Kernel for simple cavities 

First calculation:  “Strip resonator”, variation only in x-direction 

    Uniform field pattern across mirror 𝐸 0 𝑥, 𝑦 = 1 

x 

y 

z 
2a 

“Infinite 

length” 
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Fox and Li approach - Results 

“Resonant Modes in a Maser Interferometer”, A. G. Fox and T. Li, The Bell System Technical Journal, 1961. 

Simple resonator with open sides  

 always has lowest-order transverse 

mode self-reproducing ! 

𝛾00 = lim
𝑘→∞

𝐸 𝑘+1 (𝑥, 𝑦)

𝐸 𝑘 (𝑥, 𝑦)
 

Phase 

Field amplitude after 

k=300 bounces 
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Fox and Li approach – ”Mode Beating” 

Plane mirrors 

Aim:  Finding higher-order  

 transverse modes 

Ex:  2 dominant fields left 

       Periodic beating/interference 

How:  Eigenvalue next higher mode 

deduce from “dying rate” of the beating 

OBS! Have a look at Prony’s method to derive N higher-order transverse modes. 

“Resonant Modes in a Maser Interferometer”, A. G. Fox and T. Li, The Bell System Technical Journal, 1961. 
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Resonator eigenfrequencies 

Aim:  Find exact resonance frequencies of transverse modes 

 

How: Total roundtrip phase-shift of cavity: 𝑞 ∗ 2𝜋 

           Roundtrip phase-shift due to laser medium: Δ𝛽𝑚𝑝𝑚 

           Eigenvalue of transverse mode: 𝛾𝑛𝑚 = |𝛾𝑛𝑚 |𝑒𝑗𝜓𝑛𝑚 

           Propagation: 𝑒−𝑗𝑘𝑝  

𝑒−𝑗𝑘𝑝−𝑗Δ𝛽𝑚𝑝𝑚+𝑗𝜓𝑛𝑚 = 𝑒−𝑗2𝜋𝑞 

 

𝜔 = 𝜔𝑞𝑛𝑚 =
2𝜋𝑐

𝑝
𝑞 +

𝜓𝑛𝑚
2𝜋

−
Δ𝛽𝑚𝑝𝑚
2𝜋

 Where: 𝑘 =
𝜔

𝑐
 

q is a large integer 

 q~
𝑝

𝜆
 

Small correction slightly ≠ for 

each transverse mode  

 due to 𝜒′ medium 

Small correction to plane-

wave resonance freq. 

 𝜔𝑞 = 𝑞.
2𝜋𝑐

𝑝
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Mode beating 2  

Consequences: 

 ≠ transverse modes have slightly ≠ resonant frequencies (because of 𝜓𝑛𝑚) 

Axial + Transverse mode beating ! 

𝜔 

n=0 

n=1 

n=2 
n=3 

0 

1 
2 

3 

q q+1 

∆𝜔𝑎𝑥 
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Build-up operation 

Previous results: optical resonator with initial injected field and NO GAIN 

 

OBS! What if we consider gain ? 

- Above threshold 

 

- Initial field distribution circulates 

and grows in amplitude 

 

- Simple situation: 00 mode grows 

to saturation (steady-state) and 

other modes die out. 

L
o
g
 i
n
te

n
s
it
y
 

Number of bounces 

Gain saturation 

point 

Steady-state 



21 

Alternative to Fox and Li approach 

“Acceleration of dominant transversal laser resonator Eigen-mode calculation by vector extrapolation methods”, D. Asoubar and Al., 

unpublished 2014. 

Fox and Li approach  Serious convergence problems ! 

 

Methods based on field tracing: MPE  Minimal Polynomial Extrapolation 

           RRE  Reduced Rank Extrapolation 

Computational time      70% 

𝑉 = 𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5, 𝑉6
𝑇 = 𝐸𝑥 , 𝐸𝑦, 𝐸𝑧, 𝐻𝑥 , 𝐻𝑦 , 𝐻𝑧

𝑇 

Calculated thanks to roundtrip operator: 

Dominant resonator Eigen-mode: 

𝛾𝑉 𝑥, 𝑦, 𝑧0 = ℛ 𝑉(𝑥, 𝑦, 𝑧0) 

Classic Eigen-value 

problem:     𝛾𝑙 ↔ 𝑉𝑙 
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Fox and Li  Relative power loss / roundtrip 

= 1 − |𝛾𝑙|
2  

     Iterative power method 

Vector extrapolation 

Determination of the following Eigen-mode: 

𝑉 𝑗+1 (𝑥, 𝑦, 𝑧0) =
1

𝛼 𝑗
ℛ 𝑉 𝑗 (𝑥, 𝑦, 𝑧0) 

“Vector extrapolation methods with applications to solution of large systems of equations and to PageRank computations”, A. Sidi, 

Computers and Mathematics with Applications, vol.56, 2008. 

Convergence of 

power method: 

𝛾𝑙,2

𝛾𝑙,1

𝑗

 

Problem! 

Solution: MPE and RRE  can be applied to nonlinear and coupled ℛ  types 

lim
𝑗→∞

𝑉𝑙
𝑗 𝑥, 𝑦, 𝑧0 = 𝑊𝑙(𝑥, 𝑦, 𝑧0) 

Weighted sum for k iterations: 

𝑊𝑙 𝑥, 𝑦, 𝑧0 = 𝛽𝑙
𝑗𝑉𝑙

𝑗
𝑥, 𝑦, 𝑧0

𝑘

𝑗=0
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Comparison 

“Acceleration of dominant transversal laser resonator Eigen-mode calculation by vector extrapolation methods”, D. Asoubar and Al., 

unpublished 2014. 

MPE, RRE: several iteration 

results used to construct 

dominant Eigen-mode 

Fox and Li: only the previous iteration result 𝑉𝑙
𝑗
 

is used to construct the next step 

Convergence for 

both methods 

Fox & Li 

RRE/MPE 𝐸𝑥 𝐸𝑦 

Single roundtrip method Multi roundtrip method 
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Conclusion 

Real world:  Competition between transverse modes 

                     Local saturation of the gain by 00  

   Leaves unsaturated gain at other transverse positions 

                     High-gain short pulse laser 

   Insufficient time to grow dominating mode 00 

       ≠ modes can see ≠ gains 

       Narrow atomic linewidth 

   Can favour higher-order modes 

Problem:  ≠ transverse modes can oscillate simultaneously 

Single mode operation:  Minimize losses for 00 mode 

               Allow mode discrimination 

     Adjustable aperture inside the cavity 

Tools:  For evaluation of roundtrip propagation in resonators 

   Ray matrix (chapter 15) 

   Paraxial wave optics (Chapter 16) 
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Random Lasers 

Conventional laser Random laser 

Laser 

medium 

Material: provides optical gain 

Cavity: traps the light 

 

Total gain in cavity > losses 

 Threshold 

 Lasing 

 

Modes determined by the cavity! 

No confinement BUT: 

- Multiple scattering 

- Diffusive, longer paths 

Gain path length > losses 

 Lasing effect 

 

Modes determined by multiple 

scattering ! 

Laser 

medium 
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Which materials ? 

Random laser = disordered amplifying material 

               multiple scattering 

 

Strong enough scattering to get optically thick material (ℓ ≪ 𝐿) 

EX:  Reduced laser crystal into powder 

        Suspension of micro-particles in   

 laser dye (Laser paint) 

        Semi-conductor powder 

        Assembling mono-disperse spheres 

 in random fashion (favour resonant 

 scattering and lasing at resonance 

 freq.) 

Matthias Liertzer and Stefan Rotter, SPIE 2013. 
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Parameters: 

- Mean free path 

- Diffusion constant 

- Gain volume governed 

by the pump spread* 

Random laser process 

Advantages: 

- No confining mirrors 

- Coherent 

Emission drawbacks: 

- At different wavelengths 

- In all directions 

Random laser process: 

- Disordered medium 

- Light trapped by multiple scattering 

- Efficient amplification 

- Excited gain material to get population inversion 

“Modes of random lasers“, J. Andreasen and al., Advances in Optics and Photonics vol.3, 2011. 
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Random laser theory 

Spontaneously 

emitting seed 

Scattering 

medium ℓ 

ℓ is the mean free path 

Amplified emission 

Multiple scattering: light paths are 

folded in a limited pumped volume 

𝐿: sample length 

• ℓ ≫ 𝐿  linear 

propagation 

• ℓ ≪ 𝐿  diffusion 

• ℓ → 0  Strong 

scattering: Anderson 

localization of light 
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Influence of pump spread on laser threshold 

Diameter of the 

pump is changed 

Results obtained by Gijs Van Soest at Amsterdam University, Optics Letters vol. 24, 1999. 

Sample Sample 
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Influence of pump spread on laser threshold 

Why ? 

 

Small pump spread  Small gain volume  Light undergoes short paths before 

leaving the gain volume  Probability to return in gain volume is small (losses) 

High laser threshold 

Scattering 

medium Pump 

spread 

??? 

Scattering 

medium 
Pump 

spread 

Small path  

vs  

longer paths 
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Anderson localization of light 

“Anderson localization of light”, M. Segev and al., Nature Photonics, vol.7, 2013. 

Localization takes place in media where: 𝒌ℓ ≤ 𝟏 (Ioffe-Regel criterion) 
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Mode structure of a Random Laser 

Interference effects to describe mode structure 

 Multiple scattering  Granular distribution  Speckle 

Halt in free propagation of wave 

 Formation of randomly shaped modes with exponentially decaying amplitude 

“The physics and applications of random lasers”, D. S. Wiersma, Nature Physics, vol.4, 2008. 

Localized mode Extended mode 

- Easy to get 

extended modes 

- Difficult to design 

material to get 

localized modes 

- Strong scattering 

- Scattering elements size of λ 

- High refractive index (s-c !) 
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Emission spectra of random lasers 

“Random lasers: Development, features and applications”, Hui Cao, Optics and Photonics News, 2005. 

Suspension of ZnO microparticles 

in Rhodamine 640 for different 

pump powers 

ZnO nanorods for different pump 

powers 
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Localized light – Time dependent model 

First approximation:  

 Localized modes in scattering system are like modes of standard optical 

cavities (FP) 

 Quasi-bound states (QB) 

 
Solve time dependent Maxwell equations coupled 

with population equations 4-level system 

4 

3 

2 

1 𝑁1 

𝑁2 

𝑁3 

𝑁4 

P
u
m

p
in

g
 

𝑑𝑁1
𝑑𝑡

=
𝑁2
𝜏21

−𝑊𝑝𝑁1 

𝑑𝑁2
𝑑𝑡

=
𝑁3
𝜏32

−
𝑁2
𝜏21

−
𝐸

ℏ𝜔𝑎

𝑑𝑃

𝑑𝑡
 

𝑑𝑁3
𝑑𝑡

=
𝑁4
𝜏43

−
𝑁3
𝜏32

+
𝐸

ℏ𝜔𝑎

𝑑𝑃

𝑑𝑡
 

𝑑𝑁4
𝑑𝑡

= −
𝑁4
𝜏43

+𝑊𝑝𝑁1 

“Lasers”, A. Siegman, University Science Books, 1986. 

Laser transition 

at 𝜔𝑎 
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Localized light – First draft 

The polarization obeys the following equation: 

𝑑2𝑃

𝑑𝑡2
+ Δ𝜔𝑎

𝑑𝑃

𝑑𝑡
+ 𝜔𝑎

2𝑃 = 𝜅Δ𝑁. 𝐸 

Where: 

Δ𝑁 = 𝑁2 − 𝑁3  

Δ𝜔𝑎 =
1

𝜏32
+
2

𝑇2
  

𝜅 =
3𝑐3

2𝜔𝑎
2𝜏32

 

“Lasers”, A. Siegman, University Science Books, 1986. 

P being a source term of Maxwell 

equations: 
𝜕𝐻

𝜕𝑡
= −𝑐∇ × 𝐸  

𝜖 𝑟
𝜕𝐸

𝜕𝑡
= 𝑐∇ × 𝐻 − 4𝜋

𝜕𝑃

𝜕𝑡
 

Describe the randomness 

of the system 
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Localized light – Numerical solutions 

Localized case: 

a) Lasing mode (TLM) 

b) QB state in same random 

system but without gain 

QB states have similar features as Eigen-modes of a conventional cavity 

Optical index contrast (between 

medium and scatterers) Δ𝑛 = 1 

“Modes of random lasers”, J. Andreasen and al., Advances in Optics and Photonics vol.3, 2011. 

896 scatterers 

L=5µm 

n=1 
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Diffusive light – First draft 

Recently shown:  

 Even diffusive systems with low-Q resonances can exhibit lasing 

with resonant feedback 

Diffusive case: 

a) Lasing mode (TLM) 

b) Lasing mode with pump off + 

P=0 (resonances of passive 

system) 

Optical index contrast (between 

medium and scatterers) Δ𝑛 = 0.25 

Modes extend outside the 

“cavity” and both cases 

differ outside cavity 

“Modes of random lasers”, J. Andreasen and al., Advances in Optics and Photonics vol.3, 2011. 
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Localized case vs Diffusive case 

Diffusive case: 

a) Lasing mode 

b) Lasing mode with pump off 

Localized case: 

a) Lasing mode 

b) QB state in same random system but 

without gain 

Closeness of lasing modes and 

passive cavity resonances 

Lasing modes rather close to QB 

states inside scattering medium. 
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2D random laser – Time independent method 

Localized case: 

a) QB state 

b) Corresponding lasing 

mode 

𝑛𝑠 = 2 

Diffusive case: 

a) QB state 

b) Lasing mode 

𝑛𝑠 = 1.25 

𝜎𝑑 = 14.5% 

𝜎𝑑 = 0.05% 

“Modes of random lasers”, J. Andreasen and al., Advances in Optics and Photonics vol.3, 2011. 
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Time independent method - Comparison 

a) 𝑛𝑠 = 1.75 

b) 𝑛𝑠 = 1.5 

c) 𝑛𝑠 = 1.25 

Localized case 

Intensity of QB state (blue) and 

lasing mode (red). 

Decrease of 

scattering 

“Modes of random lasers”, J. Andreasen and al., Advances in Optics and Photonics vol.3, 2011. 
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Summary 

Localized states:  QB and TLM undistinguishable inside the cavity 

               TLM defines threshold modes (alteration of the gain medium,  

  spatial hole burning) 

Problem with previous descriptions: 

New approach: 

SALT (Steady-state Ab initio Laser Theory) 

 

 Stationary solutions of Maxwell Bloch lasing equations in multimode regime 
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Self-consistency theory: Maxwell Bloch 

Pump 𝐷0 
ℏ𝜔𝑎 

1 

2 Cavity: 𝜖 𝑥  

Population inversion: 𝐷 𝑥, 𝑡  

 

 
        

                    𝑃(𝑥, 𝑡) 

𝐸(𝑥, 𝑡) 

Induced polarization relaxation rate: 𝛾⊥ (width of gain 

curve) 

Inversion relaxation rate: 𝛾∥ 
 Inversion stationary 𝜸⊥ ≫ 𝜸∥ 

 𝐸 + =
1

𝜖 𝑥
∇2𝐸+ −

4𝜋

𝜖 𝑥
𝑃 + 

𝑃 + = − 𝑖𝜔𝑎 + 𝛾⊥ 𝑃+ +
𝑔2

𝑖ℏ
𝐸+𝐷 

𝐷 = 𝛾∥ 𝐷0 − 𝐷 −
2

𝑖ℏ
(𝐸+ 𝑃+ ⋆ − 𝑃+ 𝐸+ ⋆) 

Maxwell Bloch equations: 

𝐸 = 𝐸+ + 𝐸− 

𝑃 = 𝑃+ + 𝑃− 
𝑐 = 1 

(Positive and negative frequency 

components) 

“Ab initio self-consistent laser theory and random lasers”, H. E. Tureci and al., IOP Publishing Nonlinearity 22, 2009. 

g is the dipole matrix element and 𝜖 is the cavity dielectric function 
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Self-consistency theory: Lasing equations 

Assuming the existence of steady-state multiperiodic solutions of MB equations: 

𝐸+ 𝑥, 𝑡 =  𝜓𝜇 𝑥 𝑒−𝑖𝑘𝜇𝑡
𝑁

𝜇=1

 

𝑃+ 𝑥, 𝑡 =  𝑃𝜇 𝑥 𝑒−𝑖𝑘𝜇𝑡
𝑁

𝜇=1

 

Unknown lasing 

mode(s) 

As the pump increases, 

N increases depending 

on the number of 

thresholds we hit ! 

Self consistent equation  how many 

modes there are at a given pump? 

“Ab initio self-consistent laser theory and random lasers”, H. E. Tureci and al., IOP Publishing Nonlinearity 22, 2009. 

Unknown lasing 

frequencies 
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Assumptions:  TLM single mode lasing (1 term in the sum) 

          E small at first threshold (𝐷 𝑥, 𝑡 ≈ 𝐷0) 

 

Self-consistency theory: Lasing equations 

“Steady-state ab initio laser theory: generalizations and analytic results”, Li Ge and al., Physical Review A 82, 2010. 

𝑃𝜇 𝑥 = −
𝑖𝐷0𝑔

2𝜓𝜇 𝑥

ℏ(𝛾⊥−𝑖(𝑘𝜇−𝑘𝑎))
 

𝑘𝑎 =
𝜔𝑎

𝑐
 is the frequency of the gain center 

We substitute the polarization in Maxwell equation with also 𝜓𝜇 𝑥  for the electric 

field: 

∇2 + 𝜖 𝑥 + 𝜖𝑔 𝑥 𝑘𝜇
2 𝜓𝜇 𝑥 = 0 

Where: 𝜖𝑔 𝑥  is the dielectric function of the gain medium. 

𝜖𝑔 𝑥 =
𝐷0

𝑘𝑎
2

𝛾⊥ 𝑘𝜇 − 𝑘𝑎

𝛾⊥
2 + 𝑘𝜇 − 𝑘𝑎

2 −
𝑖𝛾𝜇

2

𝛾⊥
2 + 𝑘𝜇 − 𝑘𝑎

2  
Where: 

𝐷0  →
𝐷0
ℏ𝛾⊥

4𝜋𝑘𝑎
2𝑔2
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Self-consistency theory: Lasing equations 

“Steady-state ab initio laser theory: generalizations and analytic results”, Li Ge and al., Physical Review A 82, 2010. 

Case of very broadband curve: 𝛾⊥  → ∞ 

𝜖𝑔 → −
𝑖𝐷0

𝑘𝑎
2 ∝ 𝑝𝑢𝑚𝑝 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 

(Constant imaginary part) 
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Self-consistency theory: CF states 

“Steady-state ab initio laser theory: generalizations and analytic results”, Li Ge and al., Physical Review A 82, 2010. 

Define the TLM in the CF basis, solutions of MB equations as an eigenvalue 

problem. 

 

From previously: 

1

𝜖 𝑥
∇2 + 𝑘𝜇

2 𝜓𝜇 𝑥 = −
𝜖𝑔𝑘𝜇

2

𝜖 𝑥
𝜓𝜇(𝑥) 

 
Inversion of the equation with Green function: 

𝜓𝜇 𝑥 =
𝑖𝐷0𝛾⊥

𝛾⊥ − 𝑖(𝑘𝜇−𝑘𝑎) 

𝑘𝜇
2

𝑘𝑎
2 𝑑𝑥′

𝐺 𝑥, 𝑥′; 𝑘𝜇 𝜓𝜇 𝑥′

𝜖 𝑥′𝐷

 

 

 
Spectral representation of the Green function: 

𝐺 𝑥, 𝑥′ 𝑘 = 
𝜙𝑚 𝑥, 𝑘 𝜙 𝑚

† 𝑥′, 𝑘

𝑘2 − 𝑘𝑚
2

𝑚

 

The functions 𝜙𝑚 𝑥, 𝑘  are the CF states and 𝑘𝑚 are the eigenvalues, the CF 

states are biorthogonal. 

Outside cavity: CF states complete basis (real wave vector + constant photon flux) 
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SALT theory: CF states 

“Steady-state ab initio laser theory: generalizations and analytic results”, Li Ge and al., Physical Review A 82, 2010. 

Define TLM modes in CF basis: 

𝜓𝜇 𝑥 =  𝑎𝑚
𝜇
𝜙𝑚
𝜇
(𝑥)

∞

𝑚=1

 

In previous equation! 

𝑎𝑚
𝜇
=

𝐷0𝑖𝛾⊥𝑘𝜇
2

𝑘𝑎
2

𝛾⊥ − 𝑖 𝑘𝜇 − 𝑘𝑎 𝑘𝜇
2 − 𝑘𝑚

2 𝑘𝜇
 𝑑𝑥 𝜙 𝑚

𝜇†
𝑥  

𝑎𝑝
𝜇
𝜙𝑝
𝜇
𝑥

𝜖 𝑥

𝑁

𝑝𝐷

= 𝐷0 𝑇𝑚𝑝
(0)
𝑎𝑝
𝜇

𝑁

𝑝

 

Threshold matrix with 

eigenvalues 𝜆𝜇 

In general: TLM very close to a single CF state 

at lasing frequency 𝑘𝜇. 

For weak scattering 
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Nonlinear SALT  

Tureci – Stone - Ge 

Previously: stationary inversion approximation  Uniform inversion (𝐷 𝑥, 𝑡 ≈ 𝐷0) 

Nonlinear approach: 𝐷0 →
𝐷0

1+ Γ 𝑘𝜈 𝜓𝜈 𝑥 2
𝜈

 where 𝜈 defines all the above 

threshold modes 
Lorentzian centered at the 

lasing frequency of mode 𝜈 

with width 𝛾⊥. 
In the previous equation: 

 

𝜓𝜇 𝑥 =
𝑖𝐷0𝛾⊥

𝛾⊥ − 𝑖 𝑘𝜇 − 𝑘𝑎

𝑘𝜇
2

𝑘𝑎
2 𝑑𝑥′

𝐺 𝑥, 𝑥′; 𝑘𝜇 𝜓𝜇 𝑥′

𝜖 𝑥′ 1 +  Γ𝜈 𝜓𝜈 𝑥′ 2
𝜈𝐷

 

 

Each lasing mode interacts with itself and other lasing modes  Mode competition 

via hole-burning! 
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Applications of Random Lasers 

 Cheap  

 Broad angular distribution 

(up to 4𝜋) 

 Suspensions of particles 

 Localization and random 

lasing (emission spectrum) 

Display applications: 

Electrically tuned 

directionality, plane 

emission 

Can be applied as 

coatings on arbitrary 

shaped surfaces 

 Environment 

lightning (paint laser) 

Unique emission spectrum: 

Specific localized modes 

Coding objects (bank notes…) 

Medical application: 

Emission spectrum of cancerous 

human tissues doped with laser 

dye 

 Tumour diagnostics 

Domestication: 
Tunability of emission 

spectrum and directionality 

 “pump-shaping” of 

the modes 
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Conclusion 

Random lasers: Disordered/scattering medium 

 

 

 

 

 

 

 

 

 

 

How to describe random laser mode structure ?  QB states of conventional 

cavities are not enough, especially in the weak scattering case… 

 

SALT tool: 

- Study random lasers with full nonlinear interactions in 2D/3D 

- Eliminate time dependence (can study more complex cavities) 

- Provides a new description of the lasing modes based on CF states 

 

Further theories to explore: wave chaos theory, random matrix theory, etc. 



54 

References on Random Lasers 

Basics: 

- “The physics and applications of random lasers”, D. S. Wiersma, Nature Physics 

vol.4, 2008. 

- “Random lasers: development, features and applications”, Hui Cao, Optics and 

Photonics News, 2005. 

- “Anderson localization of light”, M. Segev and al., Nature Photonics vol.7, 2013. 

 

Mode theory: 

- “Modes of random lasers”, J. Andreasen and al., Advances in Optics and 

Photonics vol.3, 2011. 

- “Steady-state ab initio laser theory: generalization and analytic results”, Li Ge 

and al., Physical Review A 82, 2010. 

- “Ab initio self-consistent laser theory and random lasers”, H. E. Tureci and al., 

IOP Publishing Nonlinearity 22, 2009. 

 

“Pump-shaping” applications: 

- “Pump-controlled directional light emission from random lasers”, T. Hisch and al., 

Phys. Rev. Lett. 111, 2013. 

 

 




