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Introduction on transverse modes in optical resonators
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Introduction

Aim of this chapter:

—> Describe the transverse mode properties of laser resonators

Laser resonator

What is a
transverse mode ?

)

How can we
analyzed it ?




Optical resonator

Microwave cavities Optical resonator
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- Open side cavities

> Closed cavities - Diffraction losses

Prof. K. R. Chu lecture notes, university of Taiwan.



Fundamental concepts — recirculating slab

Earlier chapters: plane-wave approximation, ignoring transverse spatial
variation
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Now: Recirculating “slab” of radiation - this means the optical energy traveling
in +z direction contained in a small segment of length Dz in the cavity.

X, - ,
Y E(x,y,z) = Re{E(x,y,z). el (@t=k2)}
|_'_l
Leavity » Az 5> A / Plane-wave aspect
> ~ .
! | z  |E(xy,2)|e/?r?)
‘o Complex phasor describing transverse amplitude and

phase of the “slab”
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undamental concepts — Stable/unstable resonators

Geometrically stable or unstable resonator - linked to ray stability inside the cavity

The transverse profile E(x, y, z) is modified each roundtrip due to:

- Propagation
- Diffraction
- Bounces on end mirrors

P

- Passes through medium/rods/lenses/apertures... .

Determine transverse
mode properties of
the cavity !

“Lasers”, A. E. Siegman, 1986 p561.



Practical concept — Equivalent periodic lensguide

Equivalent periodic lens-guide method:

- Replace roundtrips in resonator by repeated sections of an iterated periodic
optical system

stable lenasguids
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- Convert resonator geometry into waveguide design !

“Lasers”, A. E. Siegman, 1986 p562.




Definition: eigenmodes and eigenvalues

Introducing concept of transverse cavity mode - Eigenmode

QUESTION: 3? E,,(x,y) ; E,mi(x,y) = E,,(x,y) after one roundtrip

- Same transverse form after one roundtrip but reduced amplitude (losses)
and arbitrary phase-shift (propagation)

- Self-reproducing transverse pattern = transverse mode of the resonator

ANSWER: YES!

- Simplest ones in geometrically stable resonators with curved mirrors
- Modes are Hermite-Gaussian functions or Laguerre-Gaussian functions
(cylindrical coordinates)
- Plane-waves (or slightly spherical) X E,,,,(x,y)
—> Polarized 1 to direction of propagation - TEM,,




Definition: eigenmodes and eigenvalues
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transverse modes _
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Like Bessel functions

e TFs0 - Diffraction losses: amount of energy
lost past the mirror edges

“Lasers”, A. E. Siegman, 1986 p564.



Mathematical definition — Propagation Kernel

Problem: how to quantify propagation effects for the optical “slab” over 1 roundtrip
how to find the self-reproducing transverse modes

i General linear transformation between field amplitude after one roundtrip in the i
| plane z = z, to the field amplitude in the same plane one roundtrip earlier |
i - Propagation integral i

E (e, ,20) = % [[ Rx,v,30,70) EO (o, v0,20)dxodye
Input
plane
p: length of one roundtrip
K: propagation Kernel/propagator
- Depends on the reference plane
—> Contains the details of the cavity (optical elements)

Evaluation of K in the next chapters!




Mathematical definition — Eigen-equation

E@(x,y)

K Operator equation:
3? E,,(x,y)and 3? v, ;

ED(x,y)

Vo Erm (6, y) = j j R (%, , %0, ¥0) Enn Cror o) dxodVs

//

Solutions of the Eigen-equation :|. E1(x,y) = Y Enr 0(x, y)e kP

- determine the transverse modes




Complex eigenvalue y,,,:

Mathematical definition — Eigenvalues

—> Indices (n,m) for the transverse dimensions of the considered mode
- [Vnm| < 1 in open side resonator, no gain in cavity

Lossless mirrors, power-loss per roundtrip:

Myirr = 1= [Vim|?
aiff [V | apertures

From diffraction losses at mirror edges and

No laser gain

Laser gain

E;mk(x» y) =y k
Enm®(x,y) "

- Exponential decay of amplitude

E:ml(x» Y) = V%eampm_jka:mo(x: Y)

Condition for laser threshold:

E;ml(xr y)

E:mo(x: y)

— |y;;;neampm_jkp| =1
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B Mathematical definition — Properties of eigenmodes

Yoeat®

Existence: = not automatically guaranteed (K is not always Hermitian)

Orthogonality: = generally not power orthogonal but biorthogonal

—~ —_~ % —~ P -l-
H Epm(x,y)Ey,; (x,y Yy = Oppbmg BUT jf Enm(,y)Eyg  (x,y)dxdy = 65,6,

/

Transverse mode traveling
In opposite direction

Completeness: - generally not a complete basis set

?
ECO) = ) cambam(6,9)

nm




Arbitrary initial field E© such that;
EO@Y) = cumBam(x,)

nm

Ep@)(x; Y) = Z Cnmy%k :m(k)(xr Y)

nm
Relative amplitude attenuates as |y, |*

n=4

n=3

Log of mode amplitudes

Number of round trips

Become dominant after enough roundtrips




Fox and Li approach

Aim: = Find the lowest-order resonator transverse mode (nm=00)

Numerical computation: - Iterative roundtrips
- Repeating integration of the propagation equation
- Huygens integral Kernel for simple cavities

First calculation: - “Strip resonator”, variation only in x-direction
- Uniform field pattern across mirror E©(x,y) = 1

Z 13 L.
ZaI Infinite

length”




_I approach - Results
& L Field amplitude after
k=300 bounces
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‘Resonant Modes in a Maser Interferometer”, A. G. Fox and T. Li, The Bell System Technical Journal, 1961.



Fox and Li approach — "Mode Beating”

078 Plane mirrors
== @= 25, b= 00k, oF/b = 0.2 Aim: = Finding higher-order
i oz8 {\ - transverse modes
A Ex: > 2 dominant fields left
$ o [ | i T\, /,A N e - Periodic beating/interference
. [ \/
02 ’ How: = Eigenvalue next higher mode
o ‘T deduce from “dying rate” of the beating

80 100 120 140 160 180 200 220 240 260 280 300 320
NUMBER OF TRANSITS

OBS! Have a look at Prony’s method to derive N higher-order transverse modes.

‘Resonant Modes in a Maser Interferometer”, A. G. Fox and T. Li, The Bell System Technical Journal, 1961.



Resonator eigenfrequencies

Aim: - Find exact resonance frequencies of transverse modes

How: —>Total roundtrip phase-shift of cavity: g *x 2w
- Roundtrip phase-shift due to laser medium: AB,,pm
- Eigenvalue of transverse mode: ¥, = |V |e/¥nm
- Propagation: e /P

e —Jkp—JABmPm+i¥nm — e —j2nq

q is a large integer znc< Vnm Aﬁmpm)
W= Wgnm =——|q+ —

(Q"’ %) /Zn 37'[

|
Small correction to plane- Small correction slightly =+ for

21cC

éwq=q.7

| | | :
| |
| wave resonance freq. i i each transverse mode |
| I I |
| : ' |
|

- due to ¥y’ medium




Mode beating 2

Consequences:
—> # transverse modes have slightly # resonant frequencies (because of Y¥,,,,,)

# Axial + Transverse mode beating !

<€ >

n:O Awax O

n=1 1

n=2
n=3




Build-up operation

Previous results: optical resonator with initial injected field and NO GAIN

OBS! What if we consider gain ?

Log intensity

Gain saturation

/ point

————————— - Above threshold

Steady-state

- Initial field distribution circulates
and grows in amplitude

- Simple situation: 00 mode grows
to saturation (steady-state) and
other modes die out.

Number of bounces




Alternative to Fox and Li approach

Fox and Li approach - Serious convergence problems !

Methods based on field tracing: MPE - Minimal Polynomial Extrapolation
RRE - Reduced Rank Extrapolation
Computational time ™ 70%

Gominant resonator Eigen-mode: \
V= (Vy, Vo, Vs,V Vs, V)T = (Ex, Ey, Ey, Hy, Hy, Hy )T

Calculated thanks to roundtrip operator:

\_ YV (x, ¥, 20) = RV (%, y, 20) )

Classic Eigen-value
problem: y; eV,

21

“Acceleration of dominant transversal laser resonator Eigen-mode calculation by vector extrapolation methods”, D. Asoubar and Al.,
unpublished 2014.




Vector extrapolation

Convergence of

Fox and Li = Relative power loss / roundtrip | power method:

=1- |Vl|2 i | | J
- lterative power method § < Yi2 )
U
Determination of the following Eigen-mode: '
: 1 —
VUt (x,y,2,) = a—(].)RVU)(x; Y, Zo) Problem!

Solution: MPE and RRE - can be applied to nonlinear and coupled R types

lim Vlj (x,¥,20) = Wi (x,¥,20) —
j—oo

Weighted sum for k iterations:

k
W, (x,y,zy) = Z@Vl] (x,y,29)
j=0

22

“Vector extrapolation methods with applications to solution of large systems of equations and to PageRank computations”, A. Sidi,
Computers and Mathematics with Applications, vol.56, 2008.




Comparison

= a) Fox & Li method $% b) Vector extrapolation methods
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“Acceleration of dominant transversal laser resonator Eigen-mode calculation by vector extrapolation methods”, D. Asoubar and Al.,
unpublished 2014.




Conclusion

Real world: - Competition between transverse modes
- Local saturation of the gain by 00
—> Leaves unsaturated gain at other transverse positions
- High-gain short pulse laser
—> Insufficient time to grow dominating mode 00
- # modes can see # gains
- Narrow atomic linewidth
—> Can favour higher-order modes

Problem: - # transverse modes can oscillate simultaneously
Single mode operation: = Minimize losses for 00 mode

- Allow mode discrimination
- Adjustable aperture inside the cavity

Tools: = For evaluation of roundtrip propagation in resonators
- Ray matrix (chapter 15)
- Paraxial wave optics (Chapter 16
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Random lasers and their modes

Self-consistency theory
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Random Lasers

Conventional laser Random laser

< =N

Laser Laser
medium medium
Material: provides optical gain No confinement BUT:
Cavity: traps the light - Multiple scattering
- Diffusive, longer paths
Total gain in cavity > losses Gain path length > losses
—> Threshold —> Lasing effect
- Lasing
Modes determined by multiple
Modes determined by the cavity! scattering !




Which materials ?

Random laser = disordered amplifying material
multiple scattering

Strong enough scattering to get optically thick material (¢ «< L)

EX: = Reduced laser crystal into powder

—> Suspension of micro-particles in
laser dye (Laser paint) P

- Semi-conductor powder pump beam

- Assembling mono-disperse spheres
iIn random fashion (favour resonant
scattering and lasing at resonance
freq.)

Disordered medium

Matthias Liertzer and Stefan Rotter, SPIE 2013.



Parameters:
- Mean free path

- Diffusion constant

- Gain volume governed
A by the pump spread*
/

Random laser process: /

- Disordered medium

- Light trapped by multiple scattering

- Efficient amplification

- lExcited gain material to get pop\ulation iInversion

/

Advantages: ¥ Emission drawbacks:
- No confining mirrors - At different wavelengths
- Coherent - In all directions

“‘Modes of random lasers®, J. Andreasen and al., Advances in Optics and Photonics vol.3, 2011.



Random laser theory

L: sample length Multiple scattering: light paths are

—_
R

® o o o Scattering
<« medium

folded in a limited pumped volume

«‘:

Amplified emission

Spontaneously
emitting seed

£ > L - linear
propagation

? < L - diffusion

£ - 0 - Strong
scattering: Anderson
localization of light

£ is the mean free path




Influence of pump spread on laser threshold
d d

Sample
50 ¥ rromm T L T —_ !_--_'--_—l_____l___'r-
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10 LN . 14
01 —omm®  d_ =80pum E 7
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Results obtained by Gijs Van Soest at Amsterdam University, Optics Letters vol. 24, 1999.



Influence of pump spread on laser threshold

Why ?

Small pump spread - Small gain volume - Light undergoes short paths before
leaving the gain volume - Probability to return in gain volume is small (losses)

‘ High laser threshold

o ???
- Small path
VS
4 longer paths ‘

Scattering
Pump medium

spread

Scattering

Pump medium

spread




Anderson localization of light

Localization takes place in media where: k¢ < 1 (loffe-Regel criterion)

“Anderson localization of light”, M. Segev and al., Nature Photonics, vol.7, 2013.



Mode structure of a Random Laser

Interference effects to describe mode structure
- Multiple scattering - Granular distribution - Speckle

Halt in free propagation of wave
- Formation of randomly shaped modes with exponentially decaying amplitude

- Easy to get
extended modes

- Difficult to design
material to get
localized modes

¥

Strong scattering
Scattering elements size of A
- High refractive index (s-c !)

Localized mode Extended mode

“The physics and applications of random lasers”, D. S. Wiersma, Nature Physics, vol.4, 2008.



Emission spectra of random lasers

@) (9) 10,000
0.8 8,000 -
. ) 7333 i
0.6 f ) ’?5 3‘5‘%}“' 6,000
4 P
. TR 4,000-
0.4 / \ 3.::}0-,«. 4 (!
d " 3 v*&
—— - 'J,.! };ur"'fﬁ 2,000
02|, ~— p R = ¢ .
-~ » d - - - - - - - - - -
s 02 > 2,000
) J
£ 0.4 g 1,500,
w —
€ c 1,000-
e 0.16 S |
S g 500 -
4 Iz A | -
E 0.08 0 Jyrimamadeat Sl
0.12 1,500 -
A 2 A - \~ Y ]'000 J
0.08 -
r 2 ) 500-
M
0.04 O e - "‘vw,o.q,,
600 605 610 615 620 380 385 390 395 400
Wavelength (nm) Wavelength (nm)

Suspension of ZnO microparticles ZnO nanorods for different pump
in Rhodamine 640 for different powers
DUMpP powers

‘Random lasers: Development, features and applications”, Hui Cao, Optics and Photonics News, 2005.



Localized light — Time dependent model

First approximation:

- Localized modes in scattering system are like modes of standard optical
cavities (FP)

- Quasi-bound states (QB)

Solve time dependent Maxwell equations coupled
with population equations 4-level system

N, 4 dN, N,
\ = — W,N,
dt Ty1
2 3 dN, N; N, E (dP
g Laser transition dt  Tsy Ty oy \ dt
at
/ dt T3 T3z hwg\dt
N]_ 1 dN4_ N4_
L wN
dt Ty3 pTL

“Lasers”, A. Siegman, University Science Books, 1986.




Localized light — First draft

The polarization obeys the following equation:

dP

dt

)+ w2P = kAN.E

d?P
Pre] + Aw,
Where:
AN - NZ - N3
Ay, = 1 N 2
Yo = T3, Iy
3¢3
K= 5
20’)a”:a’»z

P being a source term of Maxwell

equations:
J0H

— —CVXE
ot

e(r)(aa—i):chH—éLn(

Describe the randomness
of the system

dP

at

)

“Lasers”, A. Siegman, University Science Books, 1986.



Localized light — Numerical solutions

Localized case:

a) Lasing mode (TLM)

b) QB state in same random
system but without gain

Optical index contrast (between
medium and scatterers) An = 1

e . - Oé‘_
oo 0 Or_?oO'S'U 05 B8 P

QB states have similar features as Eigen-modes of a conventional cavity

“Modes of random lasers”, J. Andreasen and al., Advances in Optics and Photonics vol.3, 2011.



Diffusive light — First draft

Recently shown:
- Even diffusive systems with low-Q resonances can exhibit lasing
with resonant feedback

a) Lasing mode (TLM)

b) Lasing mode with pump off +
P=0 (resonances of passive
system)

Modes extend outside the

Optical index contrast (between “cavity” and both cases
medium and scatterers) An = 0.25 differ outside cavity

“Modes of random lasers”, J. Andreasen and al., Advances in Optics and Photonics vol.3, 2011.



Localized case vs Diffusive case

Localized case:

a) Lasing mode

b) QB state in same random system but
without gain

Closeness of lasing modes and
passive cavity resonances

P Diffusive case:
’ a) Lasing mode
b) Lasing mode with pump off

Lasing modes rather close to QB
states inside scattering medium.




2D random laser — Time independent method

(@) (b) Localized case:
) Al a) QB state
e O “ j]‘\ e O3 “’!@ b) Corresponding lasing
o1l s 01} s A mode
0 2 y 0 - — 2 y ng = 2

(@) ®) Diffusive case;:

» a) OB state
4” o b) Lasing mode
4 ng = 1.25

O4 = 145%

“Modes of random lasers”, J. Andreasen and al., Advances in Optics and Photonics vol.3, 2011.



(a)
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|

Intensity of QB state (blue) and
lasing mode (red).

Time independent method - Comparison

0.035} 5 b q

0030f i i & ? ﬂ
0.020¢

B2 0015}
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0.005|
0.000L,

(c)

a) ng =175 Localized case
b) ng =15

c) ng =1.25
Decrease of
scattering

“Modes of random lasers”, J. Andreasen and al., Advances in Optics and Photonics vol.3, 2011.



Summary

Problem with previous descriptions:

Localized states: - QB and TLM undistinguishable inside the cavity
- TLM defines threshold modes (alteration of the gain medium,
spatial hole burning)

New approach:

SALT (Steady-state Ab initio Laser Theory)

—> Stationary solutions of Maxwell Bloch lasing equations in multimode regime




/ 2
hw,
Pump D, \
1

Induced polarization relaxation rate: y, (width of gain

curve)
Inversion relaxation rate: y,
- Inversion stationary y;, > y;

Self-consistency theory: Maxwell Bloch

Cavity: e(x)
Population inversion: D(x, t)

‘ E(x,t)

P(x,t)

Maxwell Bloch equations:

E=Et+4+E~
P=P"+pP"
c=1

(Positive and negative frequency
components)

1 4
Et =——V?E* — P
e(x) e(x)
2
Pt = —(iw, + Yy )P + ‘?—hEJ’D

, 2
D =yy(Do — D) = — (E*(P*)" = P*(E*)")

g is the dipole matrix element and € is the cavity dielectric function

“Ab initio self-consistent laser theory and random lasers”, H. E. Tureci and al., IOP Publishing Nonlinearity 22, 2009.




Self-consistency theory: Lasing equations

Assuming the existence of steady-state multiperiodic solutions of MB equations:

Unknown lasing

N
E+(x,t) = Z—i@ frequencies
u=1 > Unknown lasing
N

_ mode(s)
Pr(xt) = ) By(x)e tut
u=1
As the pump increases,
N increases depending Self consistent equation - how many
on the number of modes there are at a given pump?

thresholds we hit !

“Ab initio self-consistent laser theory and random lasers”, H. E. Tureci and al., IOP Publishing Nonlinearity 22, 2009.



Self-consistency theory: Lasing equations

Assumptions: - TLM single mode lasing (1 term in the sum)
—> E small at first threshold (D(x,t) = D,)

Dyg?y, (x
Py) = — 0 )
Ry —iCky—ka))
k, = =% is the frequency of the gain center

c

We substitute the polarization in Maxwell equation with also i, (x) for the electric
field:

[VZ + (e(x) + Eg(x)) kﬁ] P, (x) =0

Where: €,(x) is the dielectric function of the gain medium.

Dy h(ku _ ka) iy,f Where: .
€g (X) = k21. 2 2 2 2 DO - hy(j_
alyp + (ku - ka) Yi+t (ku - ka) kg2

“Steady-state ab initio laser theory: generalizations and analytic results”, Li Ge and al., Physical Review A 82, 2010.



Self-consistency theory: Lasing equations

Case of very broadband curve: y, — o _ _
(Constant imaginary part)
iD,
€g = — %z & pump strength
a

“Steady-state ab initio laser theory: generalizations and analytic results”, Li Ge and al., Physical Review A 82, 2010.



Self-consistency theory: CF states

Define the TLM in the CF basis, solutions of MB equations as an eigenvalue
problem.

From previously:

[L V2 4+ kzl Yu(x) = lliu(x)

e(x)

Inversion of the equation with Green function:
ST 7. WL AT
vy —ilky—ka) k& Jp e(x')
Spectral representation of the Green function:
Gl < 5 EnE DG )
— k% — k2,
The functions ¢,,, (x, k) are the CF states and k,,, are the eigenvalues, the CF

states are biorthogonal.
Qutside cavity: CF states complete basis (real wave vector + constant

e(x)

nhoton flux

“Steady-state ab initio laser theory: generalizations and analytic results”, Li Ge and al., Physical Review A 82, 2010.



SALT theory: CF states

Define TLM modes in CF basis:

co

() = ) adndh®)
m=1
‘ In previous equation!
Doiy, kj v N
k2 j _ a, ¢y (x)

u a pt prp 0) u
Ay, = . dx ¢, (x)Z—zDOZTmpap

(re = i(ky — ko)) (K2 — k& (ky)) /P i e(x) -

Threshold matrix with
eigenvalues 4,

In_ general: TLM very close to a single CF state
at lasing frequency k,,.

For weak scattering

“Steady-state ab initio laser theory: generalizations and analytic results”, Li Ge and al., Physical Review A 82, 2010.



Nonlinear SALT

Previously: stationary inversion approximation - Uniform inversion (D(x,t) = D,)

Do
(1+Xy Tk [Py (2)[2)

Nonlinear approach: D, — where v defines all the above

threshold modes

Lorentzian centered at the
lasing frequency of mode v
with width y, .

In the previous equation:

iDyy kj
Pa(r) = —— | ax
3 V1 — l(ku - ka) ké D

Each lasing mode interacts with itself and other lasing modes - Mode competition
via hole-burning!

Tureci — Stone - Ge



Domestication:
Tunability of emission
spectrum and directionality

- “pump-shaping” of
the modes

Applications of Random Lasers

Display applications:

Electrically tuned Can be applied as
directionality, plane coatings on arbitrary
emission T shaped surfaces

- Environment
- Cheap | lightning (paint laser)

—> Broad angular distribution

(up to 4m) /
- Suspensions of particles
—> Localization and random

lasing (emission spectrum)

: Medical application:

I
Unigue emission spectrum: ¥ | Emission spectrum of cancerous :
Specific localized modes : human tissues doped with laser |
- Coding objects (bank notes...) ; dye :
|

I 2 Tumour diagnostics




Conclusion

Random lasers: Disorde

L
-t

.s Y " \
’ QB‘tates of conventional

k scattering case...

How to describe random laser mode
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SALT tool:
- Study random lasers wi ' actions in 2D/3D
- Eliminate time depend omplex cavities)

- Provides a new descri ‘based on CF states
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Further theories to explore: wave ! andom matrix theory, etc.
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