

Optical beams and resonators

Introduction on transverse modes in optical resonators

"Lasers", A. E. Siegman, 1986.

Contents

Introduction

Optical resonators Fundamental and practical concepts

Eigenmodes and eigenvalues – basic definition Mathematical definitions and properties

Attenuation of modes Fox and Li approach

Resonator Eigenfrequencies Build-up of Laser oscillations

Alternative method to Fox and Li approach Conclusion

Introduction

Aim of this chapter:

 \rightarrow Describe the transverse mode properties of laser resonators

Optical resonator

Fundamental concepts – recirculating slab

Earlier chapters: plane-wave approximation, ignoring transverse spatial variation

<u>Now</u>: Recirculating "slab" of radiation \rightarrow this means the optical energy traveling in +z direction contained in a small segment of length Dz in the cavity.

Geometrically stable or unstable resonator \rightarrow linked to ray stability inside the cavity

The transverse profile $\tilde{E}(x, y, z)$ is modified each roundtrip due to:

- \rightarrow Propagation
- \rightarrow Diffraction
- → Bounces on end mirrors
- \rightarrow Passes through medium/rods/lenses/apertures... .

Determine transverse mode properties of the cavity !

Practical concept – Equivalent periodic lensguide

Equivalent periodic lens-guide method:

→ Replace roundtrips in resonator by repeated sections of an iterated periodic optical system

 $\frac{Ex:}{Curved mirrors}$ $\rightarrow thin lenses$

 \rightarrow Convert resonator geometry into waveguide design !

Definition: eigenmodes and eigenvalues

Introducing concept of transverse cavity mode \rightarrow Eigenmode

QUESTION: \exists ? $\widetilde{E_{nm}}(x,y)$; $\widetilde{E_{nm}}^{1}(x,y) = \widetilde{E_{nm}}(x,y)$ after one roundtrip

- → Same transverse form after one roundtrip but reduced amplitude (losses) and arbitrary phase-shift (propagation)
- \rightarrow Self-reproducing transverse pattern = transverse mode of the resonator

ANSWER: YES!

- \rightarrow Simplest ones in geometrically stable resonators with curved mirrors
 - → Modes are Hermite-Gaussian functions or Laguerre-Gaussian functions (cylindrical coordinates)
 - → Plane-waves (or slightly spherical) X $\widetilde{E_{nm}}(x, y)$
 - → Polarized \perp to direction of propagation → TEM_{nm}

Definition: eigenmodes and eigenvalues

Mathematical definition – Propagation Kernel

Problem: how to quantify propagation effects for the optical "slab" over 1 roundtrip how to find the self-reproducing transverse modes

General *linear* transformation between field amplitude after one roundtrip in the plane $z = z_0$ to the field amplitude in **the same plane** one roundtrip earlier \rightarrow Propagation integral

$$\widetilde{E^{(1)}}(x, y, z_0) = e^{-jkp} \iint_{\substack{\text{Input} \\ \text{plane}}} \widetilde{K}(x, y, x_0, y_0) \widetilde{E^{(0)}}(x_0, y_0, z_0) dx_0 dy_0$$

p: length of one roundtrip

K: propagation Kernel/propagator

 \rightarrow Depends on the reference plane

 \rightarrow Contains the details of the cavity (optical elements)

Mathematical definition – Eigen-equation

$$\widetilde{E^{(0)}(x,y)}$$
 \widetilde{K}
 $\widetilde{E^{(1)}(x,y)}$
 $Operator equation:$
 $\exists ? \widetilde{E_{nm}}(x,y) \text{ and } \exists ? \widetilde{\gamma_{nm}};$
 $\widetilde{\gamma_{nm}}\widetilde{E_{nm}}(x,y) = \iint \widetilde{K}(x,y,x_0,y_0)\widetilde{E_{nm}}(x_0,y_0)dx_0dy_0$
Solutions of the Eigen-equation
 \Rightarrow determine the transverse modes
 $\widetilde{E_{nm}}^{(1)}(x,y) = \widetilde{\gamma_{nm}}\widetilde{E_{nm}}^{(0)}(x,y)e^{-jkp}$

Mathematical definition – Eigenvalues

Complex eigenvalue γ_{nm} :

→ Indices (n,m) for the transverse dimensions of the considered mode → $|\tilde{\gamma_{nm}}| < 1$ in open side resonator, no gain in cavity

Lossless mirrors, power-loss per roundtrip:

From diffraction losses at mirror edges and apertures

No laser gain

 $\frac{\widetilde{E_{nm}}^{k}(x,y)}{\widetilde{E_{nm}}^{0}(x,y)} = \widetilde{\gamma_{nm}}^{k}$

 \rightarrow Exponential decay of amplitude

Laser gain

$$\widetilde{E_{nm}}^{1}(x,y) = \widetilde{\gamma_{nm}} e^{\alpha_{m} p_{m} - jkp} \widetilde{E_{nm}}^{0}(x,y)$$

Condition for laser threshold:

$$\left|\frac{\widetilde{E_{nm}}^{1}(x,y)}{\widetilde{E_{nm}}^{0}(x,y)}\right| = \left|\widetilde{\gamma_{nm}}e^{\alpha_{m}p_{m}-jkp}\right| = 1$$

Existence: \rightarrow not automatically guaranteed (\widetilde{K} is not always Hermitian)

Orthogonality: \rightarrow generally not power orthogonal but biorthogonal

$$\iint \widetilde{E_{nm}}(x,y)\widetilde{E_{pq}}^{*}(x,y)dxdy = \delta_{np}\delta_{mq} \quad \text{BUT} \quad \iint \widetilde{E_{nm}}(x,y)\widetilde{E_{pq}}^{\dagger}(x,y)dxdy = \delta_{np}\delta_{mq}$$
Transverse mode traveling in opposite direction

Completeness: \rightarrow generally not a complete basis set

$$\widetilde{E}(x,y) \stackrel{?}{\equiv} \sum_{n,m} c_{nm} \widetilde{E_{nm}}(x,y)$$

Attenuation of the modes

Become dominant after enough roundtrips

Fox and Li approach

Aim: \rightarrow Find the lowest-order resonator transverse mode (nm=00)

Numerical computation: → Iterative roundtrips

- \rightarrow Repeating integration of the propagation equation
- \rightarrow Huygens integral Kernel for simple cavities

First calculation: \rightarrow "Strip resonator", variation only in x-direction \rightarrow Uniform field pattern across mirror $\widetilde{E^{(0)}}(x, y) = 1$

Fox and Li approach - Results

Simple resonator with open sides → always has lowest-order transverse mode self-reproducing !

Fox and Li approach – "Mode Beating"

Plane mirrors

- Aim: → Finding higher-order transverse modes
- **Ex**: \rightarrow 2 dominant fields left \rightarrow Periodic beating/interference

How: \rightarrow Eigenvalue next higher mode deduce from "dying rate" of the beating

OBS! Have a look at Prony's method to derive N higher-order transverse modes.

q

Resonator eigenfrequencies

Aim: \rightarrow Find exact resonance frequencies of transverse modes

How: \rightarrow Total roundtrip phase-shift of cavity: $q * 2\pi$

- \rightarrow Roundtrip phase-shift due to laser medium: $\Delta\beta_m p_m$
- → Eigenvalue of transverse mode: $\gamma_{nm} = |\gamma_{nm}| e^{j\psi_{nm}}$
- → Propagation: e^{-jkp}

$$e^{-jkp-j\Delta\beta_m p_m+j\psi_{nm}} = e^{-j2\pi q}$$
(is a large integer
$$\omega = \omega_{qnm} = \frac{2\pi c}{p} \left(q + \frac{\psi_{nm}}{2\pi} - \frac{\Delta\beta_m p_m}{2\pi} \right)$$
Where: $k = \frac{\omega}{c}$
Small correction to plane-
wave resonance freq.
$$\rightarrow \omega_q = q. \frac{2\pi c}{p}$$
Small correction slightly \neq for
each transverse mode
$$\rightarrow$$
 due to χ' medium

Mode beating 2

Consequences:

 $\rightarrow \neq$ transverse modes have slightly \neq resonant frequencies (because of ψ_{nm})

Build-up operation

Previous results: optical resonator with initial injected field and NO GAIN

- Above threshold
- Initial field distribution circulates and grows in amplitude
- <u>Simple situation</u>: 00 mode grows to saturation (steady-state) and other modes die out.

Alternative to Fox and Li approach

Fox and Li approach \rightarrow Serious convergence problems !

Methods based on field tracing: $MPE \rightarrow Minimal Polynomial Extrapolation$ RRE \rightarrow Reduced Rank Extrapolation

Computational time 🌂 70%

Dominant resonator Eigen-mode:

$$\vec{V} = (V_1, V_2, V_3, V_4, V_5, V_6)^T = (E_x, E_y, E_z, H_x, H_y, H_z)^T$$

Calculated thanks to roundtrip operator:

$$\gamma \vec{V}(x, y, z_0) = \hat{\mathcal{R}} \vec{V}(x, y, z_0)$$

Classic Eigen-value problem: $\gamma_l \leftrightarrow V_l$

"Acceleration of dominant transversal laser resonator Eigen-mode calculation by vector extrapolation methods", D. Asoubar and Al., unpublished 2014.

21

Vector extrapolation

Fox and Li \rightarrow Relative power loss / roundtrip = $1 - |\gamma_l|^2$ \rightarrow Iterative power method Convergence of power method: $\left(\frac{|\gamma_{l,2}|}{|\gamma_{l,1}|}\right)^{j}$ Problem!

22

Determination of the following Eigen-mode:

$$\overrightarrow{V^{(j+1)}}(x, y, z_0) = \frac{1}{\alpha(j)} \widehat{\mathcal{R}} \overrightarrow{V^{(j)}}(x, y, z_0)$$

Solution: MPE and RRE \rightarrow can be applied to nonlinear and coupled $\hat{\mathcal{R}}$ types

 $\lim_{j \to \infty} V_l^{\ j}(x, y, z_0) = W_l(x, y, z_0)$ Weighted sum for k iterations: $W_l(x, y, z_0) = \sum_{j=0}^k \beta_l^{\ j} V_l^{\ j}(x, y, z_0)$

"Vector extrapolation methods with applications to solution of large systems of equations and to PageRank computations", A. Sidi, Computers and Mathematics with Applications, vol.56, 2008.

Comparison

"Acceleration of dominant transversal laser resonator Eigen-mode calculation by vector extrapolation methods", D. Asoubar and Al., unpublished 2014.

23

Conclusion

Real world: \rightarrow Competition between transverse modes

- \rightarrow Local saturation of the gain by 00
 - \rightarrow Leaves unsaturated gain at other transverse positions
- \rightarrow High-gain short pulse laser
 - \rightarrow Insufficient time to grow dominating mode 00
- \rightarrow \neq modes can see \neq gains
- \rightarrow Narrow atomic linewidth
 - \rightarrow Can favour higher-order modes

Problem: $\rightarrow \neq$ transverse modes can oscillate **simultaneously**

Single mode operation: → Minimize losses for 00 mode

 \rightarrow Allow mode discrimination

 \rightarrow Adjustable aperture inside the cavity

Tools: \rightarrow For evaluation of roundtrip propagation in resonators

 \rightarrow Ray matrix (chapter 15)

 \rightarrow Paraxial wave optics (Chapter 16)

References

Fox and Li numerical computation:

- → "Resonant Modes in a Maser Interferometer", A. G. Fox and T. Li, Bell System Technical Journal, 1961.
- → "Computation of Optical Resonator Modes by the Method of resonance Excitation", A. G. Fox and T. Li, IEEE Journal of Quantum Electronics, Vol.4, No. 7, 1968.
- → "Modes in a Maser Interferometer with Curved and Tilted Mirrors", A. G. Fox and T. Li, proceedings of the IEEE, 1963.
- → "Numerical Simulation of Laser Resonators", J. Yoo, Y. U. Jeong, B. C. Lee and Y. J. Rhee, Journal of the Korean Physical Society, Vol.44, No.2, 2004.

<u>A review of all works on optical resonator with spherical mirrors:</u>

→ "Laser Beams and Resonators", H. Kogelnik and T. Li, Applied Optics vol.5, 1966.

Random lasers and their modes

Self-consistency theory

Introduction on random lasers

Theoretical process Influence of the pump spread

Anderson localization of light Mode structure for random lasers Self-consistency theory – SALT tool

Applications of random lasers

Conclusion References

Random Lasers

Material: provides optical gain Cavity: traps the light

Total gain in cavity > losses

- → Threshold
- \rightarrow Lasing

Modes determined by the cavity!

Random laser

No confinement **BUT**:

- Multiple scattering
- Diffusive, longer paths

Gain path length > losses

→ Lasing effect

Modes determined by multiple scattering !

Which materials ?

Random laser = disordered amplifying material multiple scattering

Strong enough scattering to get optically thick material ($\ell \ll L$)

- **EX:** \rightarrow Reduced laser crystal into powder
 - → Suspension of micro-particles in laser dye (Laser paint)
 - \rightarrow Semi-conductor powder
 - → Assembling mono-disperse spheres in random fashion (favour resonant scattering and lasing at resonance freq.)

Random laser process

Random laser theory

Influence of pump spread on laser threshold

<u>Why ?</u>

Small pump spread \rightarrow Small gain volume \rightarrow Light undergoes short paths before leaving the gain volume \rightarrow Probability to return in gain volume is small (losses)

Anderson localization of light

Localization takes place in media where: $k\ell \leq 1$ (loffe-Regel criterion)

100 um

Mode structure of a Random Laser

Interference effects to describe mode structure \rightarrow Multiple scattering \rightarrow Granular distribution \rightarrow Speckle

Halt in free propagation of wave

 \rightarrow Formation of randomly shaped modes with exponentially decaying amplitude

Localized mode

Extended mode

- Easy to get extended modes
- Difficult to design material to get localized modes

- Strong scattering
- Scattering elements size of λ
- High refractive index (s-c !)

Emission spectra of random lasers

(c) 10,000 8,000 6,000 4,000 2,000 Emission Intensity (a.u.) 2,000 1,500 1,000 1 μm (b) 500 1,500 1,000 500 385 390 395 380 400 Wavelength (nm) ZnO nanorods for different pump powers

Suspension of ZnO microparticles in Rhodamine 640 for different pump powers

Localized light – Time dependent model

First approximation:

- → Localized modes in scattering system are like modes of standard optical cavities (FP)
- \rightarrow Quasi-bound states (QB)

Solve time dependent Maxwell equations coupled with population equations 4-level system

Localized light – First draft

The polarization obeys the following equation:

$$\frac{d^{2}P}{dt^{2}} + \Delta\omega_{a}\left(\frac{dP}{dt}\right) + \omega_{a}^{2}P = \kappa\Delta N.E$$

Where:

Localized light – Numerical solutions

QB states have similar features as Eigen-modes of a conventional cavity

Diffusive light – First draft

Recently shown:

→ Even diffusive systems with low-Q resonances can exhibit lasing with resonant feedback

Optical index contrast (between medium and scatterers) $\Delta n = 0.25$

Diffusive case:

- a) Lasing mode (TLM)
- b) Lasing mode with pump off + P=0 (resonances of passive system)

Modes extend outside the "cavity" and both cases differ outside cavity

(a)

Localized case vs Diffusive case

Localized case:

- a) Lasing mode
- b) QB state in same random system but without gain

Closeness of lasing modes and passive cavity resonances

Diffusive case:

- a) Lasing mode
- b) Lasing mode with pump off

Lasing modes rather close to QB states *inside scattering medium*.

2D random laser – Time independent method

Localized case: a) QB state b) Corresponding lasing mode

$$n_{s} = 2$$

Diffusive case: a) QB state b) Lasing mode $n_s = 1.25$

Time independent method - Comparison

Intensity of QB state (blue) and lasing mode (red).

Problem with previous descriptions:

Localized states: → QB and TLM undistinguishable *inside the cavity* → TLM defines threshold modes (alteration of the gain medium, spatial hole burning)

New approach:

<u>SALT</u> (Steady-state Ab initio Laser Theory)

 \rightarrow Stationary solutions of Maxwell Bloch lasing equations in multimode regime

g is the dipole matrix element and ϵ is the cavity dielectric function

Self-consistency theory: Lasing equations

Assuming the existence of steady-state multiperiodic solutions of MB equations:

As the pump increases, N increases depending on the number of thresholds we hit ! Self consistent equation → how many modes there are at a given pump?

<u>Assumptions</u>: → TLM single mode lasing (1 term in the sum) → E small at first threshold $(D(x, t) \approx D_0)$

$$P_{\mu}(x) = -\frac{iD_0g^2\psi_{\mu}(x)}{\hbar(\gamma_{\perp} - i(k_{\mu} - k_a))}$$

 $k_a = \frac{\omega_a}{c}$ is the frequency of the gain center

We substitute the polarization in Maxwell equation with also $\psi_{\mu}(x)$ for the electric field:

$$\left[\nabla^2 + \left(\epsilon(x) + \epsilon_g(x)\right)k_{\mu}^2\right]\psi_{\mu}(x) = 0$$

Where: $\epsilon_g(x)$ is the dielectric function of the gain medium.

$$\epsilon_{g}(x) = \frac{D_{0}}{k_{a}^{2}} \left[\frac{\gamma_{\perp}(k_{\mu} - k_{a})}{\gamma_{\perp}^{2} + (k_{\mu} - k_{a})^{2}} - \frac{i\gamma_{\mu}^{2}}{\gamma_{\perp}^{2} + (k_{\mu} - k_{a})^{2}} \right] \qquad \qquad \text{Where:} \\ D_{0} \rightarrow \frac{D_{0}}{\frac{\hbar\gamma_{\perp}}{4\pi k_{a}^{2}g^{2}}}$$

"Steady-state ab initio laser theory: generalizations and analytic results", Li Ge and al., Physical Review A 82, 2010.

Case of very broadband curve: $\gamma_{\perp} \rightarrow \infty$

(Constant imaginary part)

$$\epsilon_g \rightarrow -\frac{iD_0}{k_a^2} \propto pump \ strength$$

Define the TLM in the CF basis, solutions of MB equations as an eigenvalue problem.

From previously:

$$\left[\frac{1}{\epsilon(x)}\nabla^2 + k_{\mu}^2\right]\psi_{\mu}(x) = -\frac{\epsilon_g k_{\mu}^2}{\epsilon(x)}\psi_{\mu}(x)$$

Inversion of the equation with Green function:

$$\psi_{\mu}(x) = \frac{iD_0\gamma_{\perp}}{\gamma_{\perp} - i(k_{\mu} - k_a)} \frac{k_{\mu}^2}{k_a^2} \int_D dx' \frac{G(x, x'; k_{\mu})\psi_{\mu}(x')}{\epsilon(x')}$$

Spectral representation of the Green function:

$$G(x, x'|k) = \sum_{m} \frac{\phi_m(x, k)\bar{\phi}_m^{\dagger}(x', k)}{k^2 - k_m^2}$$

The functions $\phi_m(x, k)$ are the CF states and k_m are the eigenvalues, the CF states are biorthogonal.

Outside cavity: CF states complete basis (real wave vector + constant photon flux)

Define TLM modes in CF basis:

"Steady-state ab initio laser theory: generalizations and analytic results", Li Ge and al., Physical Review A 82, 2010.

<u>Previously</u>: stationary inversion approximation \rightarrow Uniform inversion ($D(x, t) \approx D_0$)

$$\psi_{\mu}(x) = \frac{iD_{0}\gamma_{\perp}}{\gamma_{\perp} - i(k_{\mu} - k_{a})} \frac{k_{\mu}^{2}}{k_{a}^{2}} \int_{D} dx' \frac{G(x, x'; k_{\mu})\psi_{\mu}(x')}{\epsilon(x')(1 + \sum_{\nu}\Gamma_{\nu}|\psi_{\nu}(x')|^{2})}$$

Each lasing mode interacts with itself and other lasing modes \rightarrow Mode competition via hole-burning!

Applications of Random Lasers

Domestication:

Tunability of emission spectrum and directionality → "pump-shaping" of the modes

- Display applications: Electrically tuned directionality, plane emission ↑
- → Cheap
- → Broad angular distribution (up to 4π)
- → Suspensions of particles -
- → Localization and random lasing (emission spectrum)

Can be applied as coatings on arbitrary shaped surfaces → Environment lightning (paint laser)

Unique emission spectrum:

Specific localized modes →Coding objects (bank notes...)

Medical application:

Emission spectrum of cancerous human tissues doped with laser dye

 \rightarrow Tumour diagnostics

Conclusion

Random lasers: Disordered/scattering medium

How to describe random laser mode structure ? → QB states of conventional cavities are not enough, especially in the weak scattering case...

SALT tool:

- Study random lasers with full nonlinear interactions in 2D/3D
- Eliminate time dependence (can study more complex cavities)
- Provides a new description of the lasing modes based on CF states

Further theories to explore: wave chaos theory, random matrix theory, etc.

References on Random Lasers

Basics:

- "The physics and applications of random lasers", D. S. Wiersma, Nature Physics vol.4, 2008.
- "Random lasers: development, features and applications", Hui Cao, Optics and Photonics News, 2005.
- "Anderson localization of light", M. Segev and al., Nature Photonics vol.7, 2013.

Mode theory:

- "Modes of random lasers", J. Andreasen and al., Advances in Optics and Photonics vol.3, 2011.
- "Steady-state ab initio laser theory: generalization and analytic results", Li Ge and al., Physical Review A 82, 2010.
- "Ab initio self-consistent laser theory and random lasers", H. E. Tureci and al., IOP Publishing Nonlinearity 22, 2009.

"Pump-shaping" applications:

- "Pump-controlled directional light emission from random lasers", T. Hisch and al., Phys. Rev. Lett. 111, 2013.