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Transformation of Zernike coefficients:
scaled, translated, and rotated wavefronts

with circular and elliptical pupils
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Zernike polynomials and their associated coefficients are commonly used to quantify the wavefront aberrations
of the eye. When the aberrations of different eyes, pupil sizes, or corrections are compared or averaged, it is
important that the Zernike coefficients have been calculated for the correct size, position, orientation, and
shape of the pupil. We present the first complete theory to transform Zernike coefficients analytically with
regard to concentric scaling, translation of pupil center, and rotation. The transformations are described both
for circular and elliptical pupils. The algorithm has been implemented in MATLAB, for which the code is given in
an appendix. © 2007 Optical Society of America

OCIS codes: 330.4460, 000.3870, 220.1010, 010.7350.
t
a
c
p
l
r
t
t
a
c
w
p
p
t

C
t
w
t
s
c
c
t
a
s
e
t
u
g
c
s

2
T
c
n

. INTRODUCTION
he optical quality of human eyes is often described in
erms of wavefront aberrations, represented by Zernike
olynomials and their associated coefficients. The values
f the Zernike coefficients will vary not only with the
mount of aberrations but also with the size, position, ori-
ntation, and shape of the pupil. This paper presents a
heory to analytically transform the Zernike coefficients
or arbitrary scaling, centering, and rotation of circular
nd elliptical pupils.
The interest for measurements of optical wavefront ab-

rrations of the human eye is growing both within re-
earch and industry. The result of a measurement is a
ampled map of either the wavefront gradient or the
avefront height itself.1 A convenient and popular
ethod to present the measured wavefront is to recon-

truct or expand the wavefront height with Zernike
olynomials.2–4 The Zernike polynomials constitute a
omplete, orthogonal set of functions defined over the unit
ircle. Each polynomial describes a mathematical wave-
ront shape, or aberration, and the associated Zernike co-
fficient gives the weight of that aberration in the total
avefront map.
The numerical values of the Zernike coefficients depend

n the size of the measured pupil, and therefore Zernike
oefficients have to be transformed between different pu-
ils. A recalculation is, for example, necessary when
ernike coefficients for different pupil sizes are to be com-
ared or averaged and when the optical aberrations for
ight-adapted pupils are to be found from wavefront mea-
urements performed with dark-adapted or dilated pu-
ils. Such a transformation to smaller pupil sizes has
een the topic of four recent papers.5–8 They all treat con-
entric contraction of circular pupils and reach the same
esult by slightly different methods. However, the pupil
oes not always contract concentrically; the center of the
upil can shift by as much as 0.4 mm.9–11 Consequently,
1084-7529/07/030569-9/$15.00 © 2
he change in centering should be taken into consider-
tion when the Zernike coefficients are scaled for an ac-
urate description of the smaller wavefront. The same
roblem is encountered in aberration-correcting contact
enses; the rotation and translation of the contact lens
elative to the pupil will limit the benefits of the correc-
ion. Guirao et al. theoretically investigated the impact of
ranslation and rotation on aberration correction by an
pproximated transformation of the Zernike
oefficients.12 Numerical methods, which translate the
avefront via a resampling process, have also been
roposed.2,13 However, a numerical approach does not ex-
licitly give the relationship between the coefficients and
he amount of translation.

In this paper we develop the analytical methodology of
ampbell6 further to include not only scaling but also

ranslation and rotation of the wavefront. Additionally,
e have included transformation of wavefronts with ellip-

ical apertures, because the pupil will appear elliptical in
hape, e.g., when measuring off axis. The Zernike coeffi-
ients for the elliptical pupil match the elliptical modifi-
ation used by Atchison and Scott.14 To our knowledge,
he theory presented here is the first complete method for
nalytical transformations of Zernike coefficients with re-
pect to scaling, translation, and rotation of circular and
lliptical pupils. The following sections (2–7) explain the
heory of the transformations and are not necessary for
sing the algorithm. If desired, the reader can therefore
o directly to Appendix B and Section 8 for the MATLAB

ode and a short description of how it should be used, re-
pectively.

. COMPLEX MATRIX REPRESENTATION
he wavefront is expressed as a sum of Zernike coeffi-
ients, cn

m, multiplied with their associated Zernike poly-
omial, Zm. Here the indices n and m are the radial order,
n

007 Optical Society of America
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=0. . .nmax, and the azimuthal frequency, m= ±n , ± �n
2� , ± �n−4�. . ., respectively. This paper will use a modi-
ed and extended version of the matrix representation de-
eloped by Campbell.6 The wavefront, W�� ,��, can be ex-
ressed as an inner product between �Z�, a row vector
ith the Zernike polynomials, and �c�, a column vector
ith the corresponding Zernike coefficients:

��,�� = �
n

�
m

cn
mZn

m��,�� = �Z�c�,

� =
physical radial coordinate

maximum value of radial coordinate
=

r

r0
, �1�

here � and � are the radial and azimuthal coordinates,
espectively, of the normalized entrance pupil of the eye2,3

� is measured from the positive horizontal axis and is
ositive counter clockwise). The Zernike polynomials con-
ist of a normalization factor, Nn, a radial polynomial,

n
m���, and an angular function, Mm���:

Zn
m��,�� = NnRn

m���Mm���, �2�

Nn = �n + 1, �3�

Rn
m��� = �

s=0

n−�m�
2

An,s
m �n−2s,

An,s
m =

�− 1�s�n − s�!

s ! �0.5�n + �m�� − s	 ! �0.5�n − �m�� − s	!
, �4�

Mm��� = eim�, �5�

0

1

0

2�

Zn
m��,��Zj

k*��,���d�d�

= ��mk�nj, �ab = �1 a = b

0 a � b
. �6�

quations (3) and (5) differ from the standard form;2,3

ere Mm��� is introduced as a complex function4(instead
f cos m� for m�0 and sin m� for m�0), to simplify fur-
her calculations, and Nn is therefore also changed to ful-
ll the standard condition of orthogonality in Eq. (6)

*�complex conjugate). This means that the Zernike poly-
omials in this paper, Zn

m�� ,��, are complex and that each
omplex polynomial Zn

m=Zn
−m* corresponds to a linear

ombination of two real, standard Zernike polynomials of
rder �n , +m� and �n ,−m�. Also the coefficients, cn

m, of Eq.
1) are complex and differ from the standard. Because the
avefront is real, the complex coefficients must satisfy

n
m= cn

−m*, and each cn
m is related to two real, standard

ernike coefficients, cm, of order �n , +m� and �n ,−m�:
n
cn
m = �cn

m − icn
−m�/�2,

cn
0 = cn

0 ,

cn
−m = �cn

m + icn
−m�/�2, m positive. �7�

he conversion from complex Zernike coefficients back to
he standard coefficients is given by

cn
m = �cn

m + cn
−m�/�2,

cn
0 = cn

0 ,

cn
−m = i�cn

m − cn
−m�/�2, m positive. �8�

matrix representation will be introduced to simplify fur-
her calculations. However, to achieve block-diagonal ma-
rices, one must first order the Zernike polynomials by in-
reasing m; beginning with the most negative m-value,
.e., m=−nmax and, for each value of m, the terms are or-
ered from the lowest to the highest possible n value (see
ppendix A for an explicit list of the following vectors and
atrices for Zernike polynomials up to the third order):

�Z� = �Znmax

−nmax Znmax−1
−�nmax−1� Znmax−2

−�nmax−2� Znmax

−�nmax−2�

. . . Znmax

nmax	. �9�

he row vector �Z� with complex Zernike polynomials can
ow be rewritten as

�Z� = ��M��R	�N	. �10�

ere ��M� is a new row vector containing terms with �
aised to the power of the radial index n multiplied with
he angular function Mm���, resulting in �neim� terms. The
ndices n and m for a term are the same as for the Zernike
olynomial in the corresponding position of �Z� in Eq. (9):

��M� = ��nmaxe−inmax� �nmax−1e−i�nmax−1��

�nmax−2e−i�nmax−2�� �nmaxe−i�nmax−2�� . . . �nmaxeinmax�	.

�11�

he matrix �R	 is a square block-diagonal matrix, and �N	
s a square diagonal matrix. The size of both matrices
quals the length of �Z�, and the diagonal blocks/elements
re arranged in the same order as the elements of �Z�. The
onzero elements of �R	 equal the constants, An,s

m , of the
adial polynomial in Eq. (4), and the diagonal elements of
N	 are the normalization factors given by Eq. (3):
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�R	 = �
Anmax,0

−nmax 0 0 0 ¯ 0

0 Anmax−1,0
−�nmax−1�

0 0 ¯ 0

0 0 A�nmax−2�,0
−�nmax−2� Anmax,1

−�nmax−2�
¯ 0

0 0 0 Anmax,0
−�nmax−2�

¯ 0

    � 

0 0 0 0 ¯
Anmax,0

nmax

� ,

�12�

�N	 = �
Nnmax 0 0 0 ¯ 0

0 Nnmax−1 0 0 ¯ 0

0 0 N�nmax−2� 0 ¯ 0

0 0 0 Nnmax ¯ 0

    � 

0 0 0 0 ¯ Nnmax

� . �13�

he matrix representation introduced in this section is
imilar to the notation used by Campbell.6 However, be-
ause Campbell only scaled the Zernike coefficients con-
entrically, the azimuthal coordinate, �, was unaffected
nd the radial coordinate, �, could be transformed sepa-
ately. This is not the case when arbitrary translation and
otation is performed, and we have therefore combined
he radial and azimuthal coordinates in the complex vec-
or ��M�.

. TRANSFORMING ZERNIKE
OEFFICIENTS
he matrix representation can be used to cut out an arbi-
rary part of the original wavefront to form a new wave-
ront, denoted by �. The matrices �R	 and �N	 contain con-
tants and are unaltered, but the vectors ��M� and �c� will
e transformed. The wavefront itself, i.e., Eq. (10) into Eq.
1), has not changed, and therefore

��M��R	�N	�c� = ��M���R	�N	�c��. �14�

uppose that the change in ��M� is known as a transfor-
ation matrix ��	:

��M� = ��M����	. �15�

ere ��	 will be a square matrix where each column de-
cribes how the corresponding term in ��M� is trans-
ormed into ��M�� terms. We would then be interested in a
onversion matrix �C	, which gives the new set of Zernike
oefficients from the original set:

�c�� = �C	�c�. �16�

nserting Eq. (15) and (16) into (14) gives

��	�R	�N	 = �R	�N	�C	 ⇒ �C	 = �N	−1�R	−1��	�R	�N	.

�17�

ince �N	 and �R	 are known, �C	 and �c�� can be readily
alculated if we know the transformation matrix ��	. The
ollowing sections will show how ��	 can be derived for
caling, translation, and rotation of wavefronts with cir-
ular and elliptical pupils. The size of ��	 will depend on
he number of Zernike polynomials used and thus on the
ength of ��M�. Therefore, ��	 cannot be given explicitly.
nstead, expressions will be derived for how an arbitrary
lement of ��M� is transformed into ��M��, which gives the
olumns of ��	 according to Eq. (15). It is useful to note
hat the elements of ��M� can be rewritten as

�neim� = �n−m��ei��m = ��ei��e−i���n−m�/2��ei��m

= ��ei���n+m�/2��e−i���n−m�/2, �18�

here �n+m� /2 and �n−m� /2 are both integers (because
= ±n , ± �n−2� , ± �n−4�. . .). The transformation of an el-

ment of ��M� can therefore be derived if the transforma-
ion of �ei� is known. However, �ei�=� cos �+ i� sin � can
e considered as a complex coordinate, because its real
nd imaginary parts correspond to the horizontal and ver-
ical axes, respectively, in the polar coordinate system of
he pupil plane. Thus, the transformation of �ei� is a co-
rdinate transformation. In the following sections we will
herefore first derive the transformations in terms of �ei�

nd then in terms of ��M� elements.

. SCALING
hanging the size of a wavefront concentrically5–8 from

adius r0 to rs, as in the upper-left part of Fig. 1, is a
imple scaling of the radial coordinate, �, with the scaling
actor �s=rs /r0, i.e., �=�s��, while the azimuthal coordi-
ate is unchanged, �=��:

�ei� = �s��ei��. �19�

ccordingly, the terms of ��M� will change:

�neim� = �s
n��neim��, �20�

nd ��	 will be a diagonal matrix with each element equal
o �s

n, where n is the exponent of the corresponding � term
n ��M� (see Appendix A).

. TRANSLATION AND SCALING
et the translation be described by the normalized polar
oordinates �t and �t, where �t=rt /r0 according to the
pper-right part of Fig. 1. When scaling is included (de-
cribed by �s=rs /r0, �s=1 means no scaling), the coordi-
ate transformation is

�ei� = �s��ei�� + �te
i�t. �21�

his expression requires some manipulations before it
an be written as a transformation of an arbitrary ��M�
lement in the same manner as Eq. (20). First, insert Eq.
21) and its complex conjugate into Eq. (18). Because �n
m� /2 and �n−m� /2 are always integers, the binomial

heorem

�a + b�j = �
k=0

j � j

k�aj−kbk �22�

an be used twice to give
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�neim� = �
p=0

�n+m�/2

�
q=0

�n−m�/2 �
n + m

2

p
�

	�
n − m

2

q
��s

n−p−q�t
p+qei�p−q��t���n−p−q�ei�m−p+q���.

�23�

t is now possible to form the columns of the ��	 matrix
ne by one; Eq. (23) identifies the coefficients of ��M��
erms with radial orders n�=n−p−q and azimuthal fre-
uencies m�= �m−p+q� (see Appendix A).

. ROTATION
pure rotation of the wavefront will affect only the angu-

ar coordinate �=��+�r:

�ei� = ��ei���+�r�, �24�

here �r is the angle of rotation shown in the lower-left
art of Fig. 1. Therefore

ig. 1. The four possible coordinate transformations: (upper lef
ight) scaling combined with translation by rt and �t; (lower left) r
s rotated by an angle �e, with the major radius, rma, equal to the
ounter clockwise. Dotted lines and circles show the original coo
nd y�), and striped areas are the new wavefronts.
�neim� = eim�r��neim��, �25�

hich means that each element of ��M� will couple to it-
elf with an additional constant of eim�r. The matrix ��	
ill thus be diagonal (see Appendix A).

. ELLIPTICALLY SHAPED PUPILS
ernike polynomials constitute an orthogonal base over
he unit circle, and a wavefront described by Zernike co-
fficients should therefore preferably be sampled evenly
ithin a circle. When the wavefront measurement is per-

ormed off axis, this is not possible since the pupil will ap-
ear elliptic and, thus, the Zernike polynomials and their
ssociated coefficients will describe additional, extrapo-
ated parts of the wavefront. Atchison and Scott therefore
roposed that wavefronts for elliptical pupils should be
tretched to convert the ellipse into a circle before fitting
ernike coefficients.14 In this case the resulting Zernike
oefficients will describe a version of the original wave-
ront stretched over a circular pupil. This stretching has
he advantage that the square root of the sum of the
quared Zernike coefficients will equal the true root-
ean-square wavefront error, which is not the case when
circular pupil that encircles the ellipse is used.

ing from the original pupil size, r0, to the new radius, rs; (upper
by the angle �r; (lower right) transformation to an ellipse, which

l radius and a reduced minor radius, rmi. The angles are positive
axes (x and y) and wavefronts, solid lines are the new axes (x�
t) scal
otation
origina
rdinate
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The Zernike coefficients for a stretched elliptical pupil
an be found from the coefficients of an encircling circular
upil; i.e., the elliptical pupil is part of the circular pupil
nd the major radius of the ellipse equals the radius of
he circle. The minor radius of the ellipse equals a frac-
ion �e of the circle radius:

�e =
minor radius

major radius
=

rmi

rma
,

s shown in the lower-right part of Fig. 1. The one-
imensional stretching of the coordinate system has the
ame effect as a scaling of the wavefront in one direction.
et the angle �e, measured from the horizontal coordinate
xis to the minor axis of the ellipse, denote the direction
f the stretching. This leads to the coordinate transforma-
ion

�ei� = ei�e�� cos�� − �e� + i� sin�� − �e��

= ei�e��e�� cos��� − �e� + i�� sin��� − �e��

=
�e + 1

2
��ei�� +

�e − 1

2
ei2�e��e−i��. �26�

ollowing the same steps as for translation, Eq. (26) and
ts complex conjugate is inserted into Eq. (18) and the bi-
omial theorem (22) is used twice:

�neim� =
1

2n �
p=0

�n+m�/2

�
q=0

�n−m�/2 �
n + m

2

p
��

n − m

2

q
���e + 1�n−p−q

	��e − 1�p+qei2�p−q��e��nei�m−2p+2q���. �27�

his expression can now be used to derive the columns of
he ��	 matrix in the same way as for the previous sec-
ions; the coefficients of ��M�� terms with radial orders
�=n and azimuthal frequencies m�= �m−2p+2q� can be

dentified.
The elliptically stretched Zernike coefficients derived

ith Eq. (27) can be transformed in a manner similar to
ernike coefficients for unstretched wavefronts described

n Sections 4–6. Equation (20) can be used directly to
cale coefficients for stretched wavefronts. However,
ranslation of elliptically stretched coefficients according
o Eq. (23) will have different values of rt depending on
he direction of the translation, �t. Therefore, the transla-
ion should preferably be performed before the elliptical
caling. The rotation of Eq. (25) also applies to Zernike co-
fficients of elliptically stretched wavefronts; both the
avefront and the elliptical shape of the pupil will rotate.
. SUMMARY
n this paper a theory for wavefront manipulations di-
ectly on the Zernike coefficients has been described.
avefronts with circular and elliptical pupils can be rap-

dly scaled, translated, and rotated arbitrary amounts
ithout having to resample the wavefront. Note that the

ransformed wavefront should not be extended outside
he border of the original wavefront data to avoid extrapo-
ation errors.

The algorithm has been implemented in MATLAB, and
he code is given in Appendix B (elliptical scaling is not
ncluded; it can, however, be obtained from the authors).
n the code, the output is the vector, C2, containing the
ew pupil diameter in millimeters as the first term fol-

owed by the transformed standard2 Zernike coefficients
n micrometers. The input parameters are C1, the vector
ith the original pupil diameter in millimeters �dia1� fol-

owed by the standard2 Zernike coefficients of the original
avefront given in micrometers; dia2, the desired diam-
ter in millimeters for concentric scaling ��s=dia2/dia1�;
x and ty, the translation in Cartesian coordinates in mil-
imeters ��t=2�tx2+ ty2�1/2 /dia1,�t=atan�ty / tx��; and

ig. 2. Coupling of Zernike coefficients when the wavefront is
ransformed. The square boxes of the pyramids represent real,
tandard Zernike coefficients with the radial order, n, increasing
ownward and the azimuthal frequency, m, going from negative
o positive values from left to right. The crosses denote the single
riginal Zernike coefficient before the transformation, and the
lled circles denote the coefficients to which the original coeffi-
ient couple. The large, upper pyramid shows as an example how
he coefficient with n=10 and m=−6 is transformed when the
avefront is arbitrarily translated and scaled; the unfilled circles
enote the additional coefficients if rotation also is included. The
ix small pyramids show the transformation of spherical aberra-
ion: Ta, arbitrary translation; Th, horizontal translation; Tv,
ertical translation; S, concentric scaling; R, rotation; E, ellipti-
al scaling.
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hetaR, the angle of rotation measured in degrees counter
lockwise from the horizontal coordinate axis as in Fig. 1
corresponding to �r). The code will first scale and trans-
ate the wavefront, and the rotation is then performed
round the new pupil center. If an alternative order of the
ransformations is desired, the code has to be used mul-
iple times, one for each transformation. Note that the al-
orithm corresponds to a coordinate transformation; i.e.,
he wavefront is fixed, whereas the coordinate axes are
oved and rotated as shown in Fig. 1.
The MATLAB code in Appendix B starts by creating the
atrices �R	 and �N	. Also used is a permutation matrix

P	, which converts the sorting of the Zernike polynomials
rom the standard order2,3 to the order used in this paper
nd by Campbell.6 The matrix ��	 is formed successively
olumn by column with the function transform, which
erforms the calculations of Eqs. (20), (23), and (25). The
mplemented code uses complex Zernike coefficients for
he calculations and includes Eqs. (7) and (8) to convert
etween complex and real coefficients. This means that
he input and output Zernike coefficients of the algorithm
re the conventional Zernike coefficients ordered accord-
ng to the standard.2

With this formalism we can derive some characteristics
f how the individual Zernike coefficients couple to each
ther when the wavefront is manipulated. Specifically, we
an investigate how one single, nonzero coefficient is
ransformed, which is shown schematically in Fig. 2. For
oncentric reduction of the size of the wavefront, the origi-
al Zernike coefficient will decrease and couple to Zernike
oefficients of the same azimuthal frequency, m, but of
ower radial order, n. If the wavefront is rotated, rotation-
lly symmetric aberrations (i.e., with m=0) will remain
nchanged and a coefficient with m�0 will couple be-
ween itself �n ,m� and the mirror coefficient �n ,−m�.
ranslation, without reduction in size, will not change the
alue of the original coefficient. The coefficient will couple
nly to lower radial orders, n, and the coupling will de-
end on the direction of the translation. Elliptical scaling
educes the original coefficient and gives coupling to other
oefficients of the same radial order, n, and to coefficients
ith lower radial orders. In summary, this means that a
ernike polynomial never affects a polynomial of radial
rder higher than the original n.

PPENDIX A: WORKED-OUT EXAMPLE UP
O THIRD ORDER „n=0...3,m= ±n,
„n−2…, . . .…

�Z� = �Z3
−3 Z2

−2 Z1
−1 Z3

−1 Z0
0 Z2

0 Z1
1 Z3

1 Z2
2 Z3

3	

= �2�3e−i3� �3�2e−i2� �2�e−i� 2�3�3 − 2��e−i� 1

�3�2�2 − 1� �2�ei� 2�3�3 − 2��ei� �3�2ei2�

2�3ei3�	, �A1�

��M� = ��3e−i3� �2e−i2� �e−i� �3e−i� 1 �2

�ei� �3ei� �2ei2� �3ei3�	, �A2�
�R	

=�
1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 − 2 0 0 0 0 0 0

0 0 0 3 0 0 0 0 0 0

0 0 0 0 1 − 1 0 0 0 0

0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 1 − 2 0 0

0 0 0 0 0 0 0 3 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

� ,

�A3�

�N	

=�
2 0 0 0 0 0 0 0 0 0

0 �3 0 0 0 0 0 0 0 0

0 0 �2 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 �3 0 0 0 0

0 0 0 0 0 0 �2 0 0 0

0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 �3 0

0 0 0 0 0 0 0 0 0 2

�
�A4�

�c� = �
c3
−3

c2
−2

c1
−1

c3
−1

c0
0

c2
0

c1
1

c3
1

c2
2

c3
3

� = �
�c3

3 + ic3
−3�/�2

�c2
2 + ic2

−2�/�2

�c1
1 + ic1

−1�/�2

�c3
1 + ic3

−1�/�2

c0
0

c2
0

�c1
1 − ic1

−1�/�2

�c3
1 − ic3

−1�/�2

�c2
2 − ic2

−2�/�2

�c3
3 − ic3

−3�/�2

� , �A5�
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��	scale = �
�s

3 0 0 0 0 0 0 0 0 0

0 �s
2 0 0 0 0 0 0 0 0

0 0 �s 0 0 0 0 0 0 0

0 0 0 �s
3 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 �s
2 0 0 0 0

0 0 0 0 0 0 �s 0 0 0

0 0 0 0 0 0 0 �s
3 0 0

0 0 0 0 0 0 0 0 �s
2 0

0 0 0 0 0 0 0 0 0 �s
3

� , �A6�

�	translate

= �
�s

3 0 0 0 0 0 0 0 0 0

3�s
2�te

−i�t �s
2 0 �s

2�te
i�t 0 0 0 0 0 0

3�s�t
2e−i2�t 2�s�te

−i�t �s 2�s�t
2 0 �s�te

i�t 0 �s�t
2ei2�t 0 0

0 0 0 �s
3 0 0 0 0 0 0

�t
3e−3i�t �t

2e−2i�t �te
−i�t �t

3e−i�t 1 �t
2 �te

i�t �t
3ei�t �t

2ei2�t �t
3ei3�t

0 0 0 2�s
2�te

−i�t 0 �s
2 0 2�s

2�te
i�t 0 0

0 0 0 �s�t
2e−i2�t 0 �s�te

−i�t �s 2�s�t
2 2�s�te

i�t 3�s�t
2ei2�t

0 0 0 0 0 0 0 �s
3 0 0

0 0 0 0 0 0 0 �s
2�te

−i�t �s
2 3�s

2�te
i�t

0 0 0 0 0 0 0 0 0 �s
3

� ,

�A7�

�	rotate = �
e−i3�r 0 0 0 0 0 0 0 0 0

0 e−i2�r 0 0 0 0 0 0 0 0

0 0 e−i�r 0 0 0 0 0 0 0

0 0 0 e−i�r 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 ei�r 0 0 0

0 0 0 0 0 0 0 ei�r 0 0

0 0 0 0 0 0 0 0 ei2�r 0

0 0 0 0 0 0 0 0 0 ei3�r

� . �A8�
PPENDIX B: MATLAB CODE
unction C2�TransformC(Cl,dia2,tx,ty,thetaR)
“TransformC” returns transformed Zernike coefficient set, C2, from the original set, C1,
both in standard ANSI order, with the pupil diameter in mm as the first term.
dia2—new pupil diameter [mm]
tx, ty—Cartesian translation coordinates [mm]
thetaR—angle of rotation [degrees]
Scaling and translation is performed first and then rotation.

ial=C1�1�; % Original pupil diameter
1=C1�2:end�;
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taS�dia2/dia1; % Scaling factor
taT=2*sqrt�tx∧2+ty∧2� /dial; % Translation coordinates
hetaT=atan2�ty,tx�;
hetaR=thetaR*pi/180; % Rotation in radians
nm=length�C1�−1; nmax=ceil��−3+sqrt�9+8*jnm�� /2�; jmax=nmax*�nmax+3� /2;
=zeros�jmax+1,1�; S�1:length�C1��=C1; C1=S; clear S
=zeros�jmax+1�; % Matrix P transforms from standard to Campbell order
=zeros�jmax+1�; % Matrix N contains the normalization coefficients
=zeros�jmax+1�; % Matrix R is the coefficients of the radial polynomials
C1=zeros�jmax+1,1�; % CC1 is a complex representation of C1
ounter�1;
or m=−nmax:nmax % Meridional indexes
for n=abs�m� :2 :nmax % Radial indexes
jnm= �m+n*�n+2�� /2;
P�counter, jnm+1�=1;
N�counter,counter�=sqrt�n+1�;
for s=0: �n−abs�m�� /2
R�counter−s,counter�= �−1�∧s*factorial�n−s� / �factorial�s�*factorial��n+m� /2−s�*

factorial��n−m� /2−s��;
end
if m�0, CC1�jnm+1�= �C1��−m+n*�n+2�� /2+1�+ i*C1�jnm+1�� /sqrt�2�;
elseif m= =0, CC1�jnm+1�=C1�jnm+1�;
else, CC1�jnm+1�= �C1�jnm+1�−i*C1��−m+n*�n+2�� /2+1�� /sqrt�2� ;end
counter=counter+1;

nd, end
TA= �	; % Coordinate-transfer matrix

or m=−nmax:nmax
for n=abs�m� :2 :nmax
ETA= �ETA P*�transform�n,m,jmax,etaS,etaT,thetaT,thetaR��	;

nd, end
=inv�P�*inv�N�*inv�R�*ETA*R*N*P;
C2=C*CC1;
2=zeros�jmax+1,1�; % C2 is formed from the complex Zernike coefficients, CC2

or m=−nmax:nmax
for n=abs�m� :2 :nmax
jnm= �m+n*�n+2�� /2;
if m�0, C2�jnm+1�=imag�CC2�jnm+1�−CC2��−m+n*�n+2�� /2+1�� /sqrt�2�;
elseif m= =0, C2�jnm+1�=real�CC2�jnm+1��;
else, C2�jnm+1�=real�CC2�jnm+1�+CC2��−m+n*�n+2�� /2+1�� /sqrt�2�;

nd, end, end
2= �dia2;C2	;

unction Eta=transform�n,m,jmax,etaS,etaT,thetaT,thetaR�
Returns coefficients for transforming a ro∧n*exp�i*m*theta�-term into ’-terms

ta=zeros�jmax+1,1�;
or p=0: ��n+m� /2�
for q=0: ��n−m� /2�
nnew=n−p−q; mnew=m−p+q;
jnm= �mnew+nnew*�nnew+2�� /2;
Eta�floor�jnm+1��=Eta�floor�jnm+1��+nchoosek��n+m� /2 ,p�*nchoosek��n−m� /2 ,q�

etaS∧�n−p−q�*etaT∧�p+q�*exp�i*��p−q�*�thetaT−thetaR�+m*thetaR��;
nd, end
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