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Zernike polynomials and their associated coefficients are commonly used to quantify the wavefront aberrations
of the eye. When the aberrations of different eyes, pupil sizes, or corrections are compared or averaged, it is
important that the Zernike coefficients have been calculated for the correct size, position, orientation, and
shape of the pupil. We present the first complete theory to transform Zernike coefficients analytically with
regard to concentric scaling, translation of pupil center, and rotation. The transformations are described both
for circular and elliptical pupils. The algorithm has been implemented in MATLAB, for which the code is given in

an appendix. © 2007 Optical Society of America

OCIS codes: 330.4460, 000.3870, 220.1010, 010.7350.

1. INTRODUCTION

The optical quality of human eyes is often described in
terms of wavefront aberrations, represented by Zernike
polynomials and their associated coefficients. The values
of the Zernike coefficients will vary not only with the
amount of aberrations but also with the size, position, ori-
entation, and shape of the pupil. This paper presents a
theory to analytically transform the Zernike coefficients
for arbitrary scaling, centering, and rotation of circular
and elliptical pupils.

The interest for measurements of optical wavefront ab-
errations of the human eye is growing both within re-
search and industry. The result of a measurement is a
sampled map of either the wavefront gradient or the
wavefront height itself.! A convenient and popular
method to present the measured wavefront is to recon-
struct or expand the wavefront height with Zernike
polynomials.>* The Zernike polynomials constitute a
complete, orthogonal set of functions defined over the unit
circle. Each polynomial describes a mathematical wave-
front shape, or aberration, and the associated Zernike co-
efficient gives the weight of that aberration in the total
wavefront map.

The numerical values of the Zernike coefficients depend
on the size of the measured pupil, and therefore Zernike
coefficients have to be transformed between different pu-
pils. A recalculation is, for example, necessary when
Zernike coefficients for different pupil sizes are to be com-
pared or averaged and when the optical aberrations for
light-adapted pupils are to be found from wavefront mea-
surements performed with dark-adapted or dilated pu-
pils. Such a transformation to smaller pupil sizes has
been the topic of four recent papers.’® They all treat con-
centric contraction of circular pupils and reach the same
result by slightly different methods. However, the pupil
does not always contract concentrically; the center of the
pupil can shift by as much as 0.4 mm.?>! Consequently,
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the change in centering should be taken into consider-
ation when the Zernike coefficients are scaled for an ac-
curate description of the smaller wavefront. The same
problem is encountered in aberration-correcting contact
lenses; the rotation and translation of the contact lens
relative to the pupil will limit the benefits of the correc-
tion. Guirao et al. theoretically investigated the impact of
translation and rotation on aberration correction by an
approximated  transformation of the  Zernike
coefficients.'? Numerical methods, which translate the
wavefront via a resampling process, have also been
proposed.”!® However, a numerical approach does not ex-
plicitly give the relationship between the coefficients and
the amount of translation.

In this paper we develop the analytical methodology of
Campbell® further to include not only scaling but also
translation and rotation of the wavefront. Additionally,
we have included transformation of wavefronts with ellip-
tical apertures, because the pupil will appear elliptical in
shape, e.g., when measuring off axis. The Zernike coeffi-
cients for the elliptical pupil match the elliptical modifi-
cation used by Atchison and Scott.'* To our knowledge,
the theory presented here is the first complete method for
analytical transformations of Zernike coefficients with re-
spect to scaling, translation, and rotation of circular and
elliptical pupils. The following sections (2—7) explain the
theory of the transformations and are not necessary for
using the algorithm. If desired, the reader can therefore
go directly to Appendix B and Section 8 for the MATLAB
code and a short description of how it should be used, re-
spectively.

2. COMPLEX MATRIX REPRESENTATION

The wavefront is expressed as a sum of Zernike coeffi-
cients, ¢, multiplied with their associated Zernike poly-
nomial, Z". Here the indices n and m are the radial order,
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n=0...n,,,, and the azimuthal frequency, m=+n,+(n
-2),%(n-4)..., respectively. This paper will use a modi-
fied and extended version of the matrix representation de-
veloped by Campbell.6 The wavefront, W(p, 6), can be ex-
pressed as an inner product between (Z|, a row vector
with the Zernike polynomials, and |¢), a column vector
with the corresponding Zernike coefficients:

W(p,0) = >, > rZ(p, 0) = (Z|c),

physical radial coordinate r
= =, 1
p maximum value of radial coordinate r D

where p and 6 are the radial and azimuthal coordinates,
respectively, of the normalized entrance pupil of the eye®®
(0 is measured from the positive horizontal axis and is
positive counter clockwise). The Zernike polynomials con-
sist of a normalization factor, N,, a radial polynomial,
R7(p), and an angular function, M™(6):

Zy(p,0) =N,R;}(p)M™(0), (2)
Nn=\r’n+1, (3)
n—|m|

2
RIMp)= >, Arp',
s=0

. (= 1)(n -s)!
Ans = s1[0.5(n + |m|) - s]![0.5(n - |m]) —s]!’ @

M"(6) =e™’, (5)

1 r2m
f f ZT(P, H)ZJ]‘Q*(P, A pdodp
0 Yo

1 a=b

= 768,40, 5,11,:{0 wtb (6)

Equations (3) and (5) differ from the standard form;>?
here M™(6) is introduced as a complex function*(instead
of cos m6 for m=0 and sin m 6 for m <0), to simplify fur-
ther calculations, and N, is therefore also changed to ful-
fill the standard condition of orthogonality in Eq. (6)
(*=complex conjugate). This means that the Zernike poly-
nomials in this paper, Z)'(p, §), are complex and that each
complex polynomial Z:’::Z;’"* corresponds to a linear
combination of two real, standard Zernike polynomials of
order (n,+m) and (n,-m). Also the coefficients, ¢, of Eq.
(1) are complex and differ from the standard. Because the
wavefront is real, the complex coefficients must satisfy
cnmzc;m*, and each ' is related to two real, standard

Zernike coefficients, ¢, of order (n,+m) and (n,-m):
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= (M —ic™2,
0_ 0
ey =Cp)
e, =y +ic,™)/ \E, m positive. (7

The conversion from complex Zernike coefficients back to
the standard coefficients is given by

"= ((tnm + I},_lm)/\,’E,

;M =i(d" = ;™/\2, m positive. (8)

A matrix representation will be introduced to simplify fur-
ther calculations. However, to achieve block-diagonal ma-
trices, one must first order the Zernike polynomials by in-
creasing m; beginning with the most negative m-value,
i.e., m=-ng,, and, for each value of m, the terms are or-
dered from the lowest to the highest possible n value (see
Appendix A for an explicit list of the following vectors and
matrices for Zernike polynomials up to the third order):

<Z = Z_nmax Z_(nmax_l) Z_(nmax_z) Z_(nmax_z)
n n n n

max~1 max—2 max

z ®

The row vector (Z| with complex Zernike polynomials can
now be rewritten as

(Z| = (pM|[R][N]. (10)

Here (pM| is a new row vector containing terms with p
raised to the power of the radial index n multiplied with
the angular function M™(6), resulting in p"e?™’ terms. The
indices n and m for a term are the same as for the Zernike
polynomial in the corresponding position of (Z| in Eq. (9):

<pM| = [pnmaxe _inmaxe pnmax_ le_i(nmax_l) 0

pnmax_ze - (nmax_2> 0 pnmaxe _i(nmax_z) 0 . pnmaxeinmax ﬁ] .

(11)

The matrix [R] is a square block-diagonal matrix, and [V]
is a square diagonal matrix. The size of both matrices
equals the length of (Z|, and the diagonal blocks/elements
are arranged in the same order as the elements of (Z|. The
nonzero elements of [R] equal the constants, Aﬁs, of the
radial polynomial in Eq. (4), and the diagonal elements of
[N] are the normalization factors given by Eq. (3):
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_n'mux
A, 0 0 0 e 0
- -1
0 A 0 0 . 0
~(Mpnax—2) ~(Mnax—2)
0 0 20 gl o 0
[R]= ( :
~(ynax=2)
0 0 0 A4, "% e 0
0 0 0 0 e A
(12)
”max O 0 0 O
O Nnmax—l 0 O 0
0 0 N2 0 o 0
[N]= . (13)
0 0 0 N”max o 0
0 0 0 0 e N,

The matrix representation introduced in this section is
similar to the notation used by Campbell.6 However, be-
cause Campbell only scaled the Zernike coefficients con-
centrically, the azimuthal coordinate, 6, was unaffected
and the radial coordinate, p, could be transformed sepa-
rately. This is not the case when arbitrary translation and
rotation is performed, and we have therefore combined
the radial and azimuthal coordinates in the complex vec-
tor (pM]|.

3. TRANSFORMING ZERNIKE
COEFFICIENTS

The matrix representation can be used to cut out an arbi-
trary part of the original wavefront to form a new wave-
front, denoted by '. The matrices [R] and [[N] contain con-
stants and are unaltered, but the vectors (pM| and |¢) will
be transformed. The wavefront itself, i.e., Eq. (10) into Eq.
(1), has not changed, and therefore

(pPM|[RI[NT[c) = (pM'[[RIINT[e"). (14)

Suppose that the change in (pM| is known as a transfor-
mation matrix [ 7]:

(pM| = {(pM'|[ 7). (15)

Here [ 7] will be a square matrix where each column de-
scribes how the corresponding term in (pM| is trans-
formed into (pM’| terms. We would then be interested in a
conversion matrix [C], which gives the new set of Zernike
coefficients from the original set:

o) =[Clle). (16)
Inserting Eq. (15) and (16) into (14) gives
[7I[R][N]=[RIIN][C]= [C]=[NT'[R]"'[#I[R][N].
(17)

Since [N] and [R] are known, [C] and |c’) can be readily
calculated if we know the transformation matrix [ #]. The
following sections will show how [#7] can be derived for
scaling, translation, and rotation of wavefronts with cir-
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cular and elliptical pupils. The size of [ 7] will depend on
the number of Zernike polynomials used and thus on the
length of (pM|. Therefore, [7] cannot be given explicitly.
Instead, expressions will be derived for how an arbitrary
element of (pM]| is transformed into (pM’|, which gives the
columns of [ 7] according to Eq. (15). It is useful to note
that the elements of (pM| can be rewritten as

pneima — pn—m(peiﬁ)m - (peif)pe—if?)(n—m)/Z(peiH)m
— (pei(})(n+m)/2(pe—i9)(n—m)/2, (18)

where (n+m)/2 and (n—m)/2 are both integers (because
m=zxn,+(n-2),%x(n—-4)...). The transformation of an el-
ement of (pM| can therefore be derived if the transforma-
tion of pe’? is known. However, pe’=p cos f+ipsin 6 can
be considered as a complex coordinate, because its real
and imaginary parts correspond to the horizontal and ver-
tical axes, respectively, in the polar coordinate system of
the pupil plane. Thus, the transformation of pe’’ is a co-
ordinate transformation. In the following sections we will
therefore first derive the transformations in terms of pe’?
and then in terms of (pM| elements.

4. SCALING

Changing the size of a wavefront concentrically‘r’*8 from
radius rg to rg, as in the upper-left part of Fig. 1, is a
simple scaling of the radial coordinate, p, with the scaling
factor n,=ry/rq, i.e., p=7,p’, while the azimuthal coordi-
nate is unchanged, 6=6'":

pew: nspreie’. (19)
Accordingly, the terms of (pM| will change:

pneima= n;tprneima” (20)
and [ #] will be a diagonal matrix with each element equal
to 7;, where n is the exponent of the corresponding p term
in (pM]| (see Appendix A).

5. TRANSLATION AND SCALING

Let the translation be described by the normalized polar
coordinates 7, and 6;, where 7,=r,/r; according to the
upper-right part of Fig. 1. When scaling is included (de-
scribed by 7,=ri/ry, 7,=1 means no scaling), the coordi-
nate transformation is

pel’=np'e” + me't. (21)

This expression requires some manipulations before it
can be written as a transformation of an arbitrary (pM|
element in the same manner as Eq. (20). First, insert Eq.
(21) and its complex conjugate into Eq. (18). Because (n
+m)/2 and (n-m)/2 are always integers, the binomial
theorem

J‘ .
(@+by=>, <2>aj‘kbk (22)
k=0

can be used twice to give
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Fig. 1. The four possible coordinate transformations: (upper left) scaling from the original pupil size, r, to the new radius, ry; (upper

right) scaling combined with translation by r, and 6,; (lower left) rotation by the angle 6,; (lower right) transformation to an ellipse, which
is rotated by an angle 6,, with the major radius, r,,,, equal to the original radius and a reduced minor radius, r,,;. The angles are positive
counter clockwise. Dotted lines and circles show the original coordinate axes (x and y) and wavefronts, solid lines are the new axes (x’

and y’), and striped areas are the new wavefronts.

(nam)/2 (n-myi2 | 2 E M

pneim 0_ E E 2
p=0 q=0

p

n—-m

X 2
q

P nfwei(p—q)@zp'(n—p—q)ei(m—pﬂz)ﬁ' .

(23)

It is now possible to form the columns of the [ 7] matrix
one by one; Eq. (23) identifies the coefficients of (pM’|
terms with radial orders n'=n-p-q and azimuthal fre-
quencies m’'=(m—-p+q) (see Appendix A).

6. ROTATION

A pure rotation of the wavefront will affect only the angu-
lar coordinate =6’ + 6,

pei(ﬂ:prei((ﬂ’+€,)’ (24)

where 6, is the angle of rotation shown in the lower-left
part of Fig. 1. Therefore

: : P
pnelm():elmﬁrprnetmn‘) , (25)

which means that each element of <pM | will couple to it-
self with an additional constant of %, The matrix [7]
will thus be diagonal (see Appendix A).

7. ELLIPTICALLY SHAPED PUPILS

Zernike polynomials constitute an orthogonal base over
the unit circle, and a wavefront described by Zernike co-
efficients should therefore preferably be sampled evenly
within a circle. When the wavefront measurement is per-
formed off axis, this is not possible since the pupil will ap-
pear elliptic and, thus, the Zernike polynomials and their
associated coefficients will describe additional, extrapo-
lated parts of the wavefront. Atchison and Scott therefore
proposed that wavefronts for elliptical pupils should be
stretched to convert the ellipse into a circle before fitting
Zernike coefficients.'* In this case the resulting Zernike
coefficients will describe a version of the original wave-
front stretched over a circular pupil. This stretching has
the advantage that the square root of the sum of the
squared Zernike coefficients will equal the true root-
mean-square wavefront error, which is not the case when
a circular pupil that encircles the ellipse is used.
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The Zernike coefficients for a stretched elliptical pupil
can be found from the coefficients of an encircling circular
pupil; i.e., the elliptical pupil is part of the circular pupil
and the major radius of the ellipse equals the radius of
the circle. The minor radius of the ellipse equals a frac-
tion 7, of the circle radius:

minor radius 1,

e = .= >
magjor radius 1,

as shown in the lower-right part of Fig. 1. The one-
dimensional stretching of the coordinate system has the
same effect as a scaling of the wavefront in one direction.
Let the angle 6,, measured from the horizontal coordinate
axis to the minor axis of the ellipse, denote the direction
of the stretching. This leads to the coordinate transforma-
tion

pei?=ei%(p cos(6- 6,) +ipsin(6- 6,))
= em@( 7]eP/ Cos(ﬁ/ - 65) + lp/ Sin(e/ - 0‘3))

77e+1 T4 Me —
= e +
9 " 2

1 .
bLZGepre—u‘) . (26)

Following the same steps as for translation, Eq. (26) and
its complex conjugate is inserted into Eq. (18) and the bi-
nomial theorem (22) is used twice:

(n+m)/2 (n-my2 [ B XM\ [ —m

pneimﬁz E 20 ZO 2 2 (% + 1)n—p—q
p= q= D q
X(ﬂe _ 1)p+qei2(p—q)09p/nei(m—2p+2q)6’ . (27)

This expression can now be used to derive the columns of
the [#] matrix in the same way as for the previous sec-
tions; the coefficients of (pM'| terms with radial orders
n’=n and azimuthal frequencies m’'=(m-2p+2q) can be
identified.

The elliptically stretched Zernike coefficients derived
with Eq. (27) can be transformed in a manner similar to
Zernike coefficients for unstretched wavefronts described
in Sections 4-6. Equation (20) can be used directly to
scale coefficients for stretched wavefronts. However,
translation of elliptically stretched coefficients according
to Eq. (23) will have different values of r, depending on
the direction of the translation, 6,. Therefore, the transla-
tion should preferably be performed before the elliptical
scaling. The rotation of Eq. (25) also applies to Zernike co-
efficients of elliptically stretched wavefronts; both the
wavefront and the elliptical shape of the pupil will rotate.
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8. SUMMARY

In this paper a theory for wavefront manipulations di-
rectly on the Zernike coefficients has been described.
Wavefronts with circular and elliptical pupils can be rap-
idly scaled, translated, and rotated arbitrary amounts
without having to resample the wavefront. Note that the
transformed wavefront should not be extended outside
the border of the original wavefront data to avoid extrapo-
lation errors.

The algorithm has been implemented in MATLAB, and
the code is given in Appendix B (elliptical scaling is not
included; it can, however, be obtained from the authors).
In the code, the output is the vector, C2, containing the
new pupil diameter in millimeters as the first term fol-
lowed by the transformed standard? Zernike coefficients
in micrometers. The input parameters are C1, the vector
with the original pupil diameter in millimeters (dia1) fol-
lowed by the standard? Zernike coefficients of the original
wavefront given in micrometers; dia2, the desired diam-
eter in millimeters for concentric scaling (7,=dia2/dial);
tx and ty, the translation in Cartesian coordinates in mil-
limeters  (7,=2(tx2+ty?)Y2/dial, 6,=atan(ty/tx)); and

L
Sy

Fig. 2. Coupling of Zernike coefficients when the wavefront is
transformed. The square boxes of the pyramids represent real,
standard Zernike coefficients with the radial order, n, increasing
downward and the azimuthal frequency, m, going from negative
to positive values from left to right. The crosses denote the single
original Zernike coefficient before the transformation, and the
filled circles denote the coefficients to which the original coeffi-
cient couple. The large, upper pyramid shows as an example how
the coefficient with n=10 and m=-6 is transformed when the
wavefront is arbitrarily translated and scaled; the unfilled circles
denote the additional coefficients if rotation also is included. The
six small pyramids show the transformation of spherical aberra-
tion: Ta, arbitrary translation; Th, horizontal translation; Tv,
vertical translation; S, concentric scaling; R, rotation; E, ellipti-
cal scaling.
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thetaR, the angle of rotation measured in degrees counter
clockwise from the horizontal coordinate axis as in Fig. 1
(corresponding to 6,). The code will first scale and trans-
late the wavefront, and the rotation is then performed
around the new pupil center. If an alternative order of the
transformations is desired, the code has to be used mul-
tiple times, one for each transformation. Note that the al-
gorithm corresponds to a coordinate transformation; i.e.,
the wavefront is fixed, whereas the coordinate axes are
moved and rotated as shown in Fig. 1.

The MATLAB code in Appendix B starts by creating the
matrices [R] and [N]. Also used is a permutation matrix
[P], which converts the sorting of the Zernike polynomials
from the standard order®? to the order used in this paper
and by Campbell.® The matrix [ 7] is formed successively
column by column with the function transform, which
performs the calculations of Eqgs. (20), (23), and (25). The
implemented code uses complex Zernike coefficients for
the calculations and includes Egs. (7) and (8) to convert
between complex and real coefficients. This means that
the input and output Zernike coefficients of the algorithm
are the conventional Zernike coefficients ordered accord-
ing to the standard.?

With this formalism we can derive some characteristics
of how the individual Zernike coefficients couple to each
other when the wavefront is manipulated. Specifically, we
can investigate how one single, nonzero coefficient is
transformed, which is shown schematically in Fig. 2. For
concentric reduction of the size of the wavefront, the origi-
nal Zernike coefficient will decrease and couple to Zernike
coefficients of the same azimuthal frequency, m, but of
lower radial order, n. If the wavefront is rotated, rotation-
ally symmetric aberrations (i.e., with m=0) will remain
unchanged and a coefficient with m #0 will couple be-
tween itself (n,m) and the mirror coefficient (n,-m).
Translation, without reduction in size, will not change the
value of the original coefficient. The coefficient will couple
only to lower radial orders, n, and the coupling will de-
pend on the direction of the translation. Elliptical scaling
reduces the original coefficient and gives coupling to other
coefficients of the same radial order, n, and to coefficients
with lower radial orders. In summary, this means that a
Zernike polynomial never affects a polynomial of radial
order higher than the original n.

APPENDIX A: WORKED-OUT EXAMPLE UP
TO THIRD ORDER (n=0...3,m==+n,

+(n-2),...)

2|=1z3’ z3% Zi' Z3' Zy Zy Zy Zy Zi Zj)
=[2p39-i39 \’,/§p2e—i20 \,,Epe-io 2(3p3_2p)e—i9 1

v’§(2p2—1) \s’Epew 2(3p3 - 2p)et? \’@p%iza

2p%"7, (A1)
<pM| — [pSe—iSB p2e—i2(9 pe—iﬂ p3e—i9 1 p2
pei{f pSeiﬁ p26i29 pSeiSF)]’ (Az)

(]

[V]

o O O O O O o o o =

S O O O O O o o o ™

o O O O O o o o +H o

=]

1

<_
w

S O O o o o o o

SO O O O OO ©o o +H o o

L. Lundstrom and P. Unsbo

)
)
2 0
3 0
0o 1
0 0
0 0
0 0
0 0
0 0
0 0 0
0 0 0
V2 0 0
0 2 0
0 0 1
0 0 o0
0 0 0
0 0 0
0 0 0
0 0 0

—

(c3+ic3?)/\2
(c2 +ic32)/\2

(cl+icih/\2
(ch+ic3h)/\2

5

3
(el —icTH/\2
(ch—iczh)/\2

(ca—ic3®)/\2

(c3—ic3®)/\2

S o o o

o O O O N

=
%) o O o o o

o o o o

SO O O H O O ©o o o ©

o O O o o o

SO O N O O O O o o o

O H O O O O o o o o

oSO O O o o o o o

=
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(A3)
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(A5)
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I 7 0 0 0 0 0 0 0 0 ]
o ## 0 0 0 0 o0 0 0 0
0o 0 » O O O 0 0 0 0
o o o »# 0 0 0 0 0 0
o 0 o0 o0 1 0 0 0 0 0
[leae=| o o 0 0 o #Z 0 0 0 o0} (46)
o 0 o0 o0 O 0 =7 0 0 O
o 0 O o0 O o0 0 # 0 0
0 0 0 0 0 o0 0o 7 0
i 0 0 0 0 0 0 0 7;3_
[U]tmnslat: -
7 0 0 0 0 0 0 0 0 0
37 e 7 0 el 0 0 0 0 0 0
3nme 2% 2pmeit 75 29,7, 0 nme 0 nymre'2 0 0
0 0 0 7 0 0 0 0 0 0
n?e'Sigt nfe'zmt nte’i“’t n?e‘iet 1 77tz %eiet nfewt 77t2ei2”t niieiS 0,
- 0 0 0 22 me % 0 7 0 2n2pe 0 0 ’
0 0 0 nemre 0 ppe 29 2meme’ 3myyie®h
0 0 0 0 0 0 0 7 0 0
0 0 0 0 0 0 0 iy 7. 37, e’
0 0 0 0 0 0 0 0 0 7
i (A7)
-e"i30r 0 0 0 0 0 0 0 0 0 ]
0 e 120 0 0 0 0 0 0 0
0 0 e 0 0 0 0 0 0 0 0
0 0 0 e 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
[7)rotate = 0 0 0 0 0 1 0 0 0 0 (A8)
0 0 0 0 0 0 €% 0 0 0
0 0 0 0 0 0 0 e’ 0 0
0 0 0 0 0 0 0 e 0
0 0 0 0 0 0 0 et30

APPENDIX B: MATLAB CODE

function C2=TransformC(Cl,dia2,tx,ty,thetaR)

% “TransformC” returns transformed Zernike coefficient set, C2, from the original set, C1,
% both in standard ANSI order, with the pupil diameter in mm as the first term.

% dia2—new pupil diameter [mm]

% tx, ty—Cartesian translation coordinates [mm)]

% thetaR—angle of rotation [degrees]

% Scaling and translation is performed first and then rotation.

dial=C1(1); % Original pupil diameter

C1=C1(2:end);
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etaS=dia2/dial; % Scaling factor
etaT=2"sqrt(tx"2+ty*2)/dial; % Translation coordinates
thetaT=atan2(ty, tx);
thetaR=thetaR"pi/180; % Rotation in radians
jnm=length(C1)-1; nmax=ceil((-3+sqrt(9+8jnm))/2); jmax=nmax’(nmax+3)/2;
S=zeros(jmax+1,1); S(1:length(C1))=C1; C1=S; clear S
P=zeros(jmax+1); % Matrix P transforms from standard to Campbell order
N=zeros(jmax+1); % Matrix N contains the normalization coefficients
R=zeros(jmax+1); % Matrix R is the coefficients of the radial polynomials
CCl=zeros(jmax+1,1); % CC1 is a complex representation of C1
counter=1;
for m=—-nmax:nmax % Meridional indexes
for n=abs(m):2:nmax % Radial indexes
jnm=(m+n"(n+2))/2;
P(counter,jnm+1)=1;
N(counter,counter)=sqrt(n+1);
for s=0:(n—abs(m))/2
R(counter-s, counter)=(-1)"s"factorial(n-s)/(factorial(s)“factorial(n+m)/2—s)"
factorial((n-m)/2-s));
end
if m<0, CC1(jnm+1)=(C1((-m+n"(n+2))/2+1)+i"C1ljnm+1))/sqrt(2);
elseif m==0, CC1(jnm+1)=C1(jnm+1);
else, CC1(jnm+1)=(C1(jnm+1)-i"C1l((-m+n"(n+2))/2+1))/sqrt(2);end
counter=counter+1;
end, end
ETA=[]; % Coordinate-transfer matrix
for m=-nmax:nmax
for n=abs(m):2:nmax
ETA=[ETA P*(transform(n, m,jmax,etaS, etaT,thetaT,thetaR))];
end, end
C=inv(P)"inv(N)“inv(R)"ETA'R*N"P;
CC2=C"CC1;
C2=zeros(jmax+1,1); % C2 is formed from the complex Zernike coefficients, CC2
for m=-nmax:nmax
for n=abs(m):2:nmax
jnm=(m+n"(n+2))/2;
if m<0, C2(jnm+1)=imag(CC2(jnm+1)-CC2((-m+n"(n+2))/2+1))/sqrt(2);
elseif m==0, C2(jnm+1)=real(CC2(jnm+1));
else, C2(jnm+1)=real(CC2(jnm+1)+CC2((-m+n"(n+2))/2+1))/sqrt(2);
end, end, end
C2=[dia2;C2];
%
function Eta=transform(n,m,jmax,etaS,etaT,thetaT,thetaR)
% Returns coefficients for transforming a ro*n"exp(i“m”theta)-term into *-terms
Eta=zeros(jmax+1,1);
for p=0:((n+m)/2)
for q=0:((n-m)/2)
nnew=n-p-q; mnew=m-p+q;
jnm=(mnew +nnew (nnew+2))/2;
Eta(floor(jnm + 1)) =Eta(floor(jnm + 1)) + nchoosek((n+m)/2, p) ‘nchoosek((n—m)/2, q)
“ etaS n-p-q)‘etaT(p+q) exp(i*((p—q)”(thetaT—thetaR) + m ‘thetaR));
end, end
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