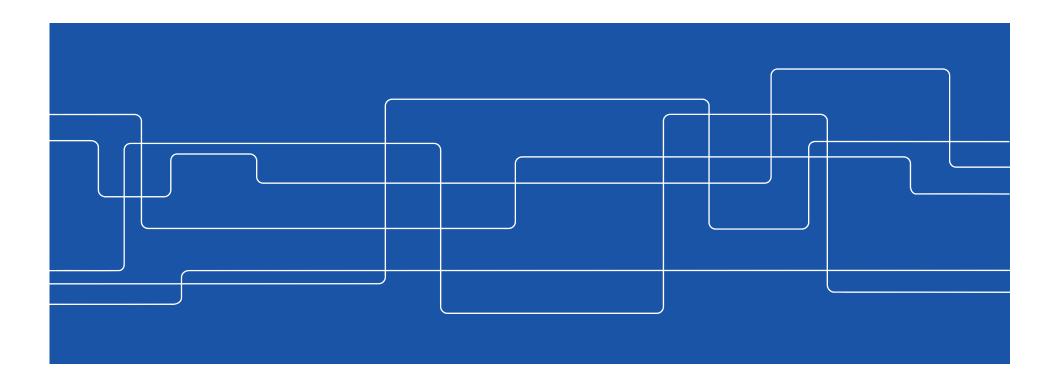


Chapter 10: Nonlinear optical pulse propagation Charlotte Liljestrand

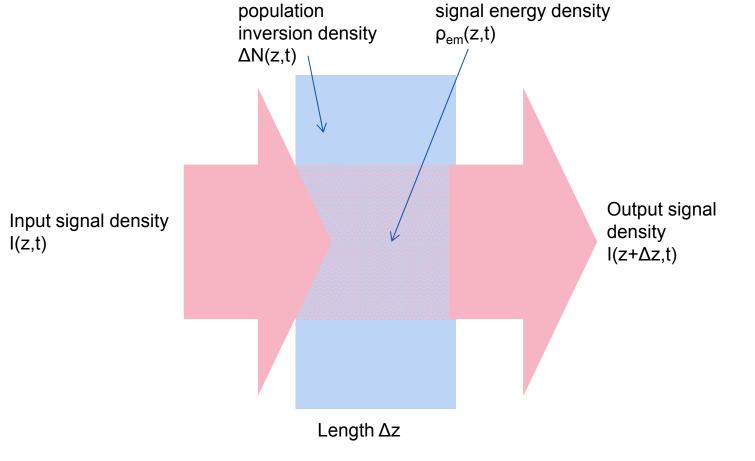


Outline

- Pulse amplification in homogenous media
- Nonlinear dispersive systems
- Nonlinear Schrödinger Equation
- Solitons in optical fibers

Approximations

- 1. Rate equation approximations are still valid, even though pulse amplification often involves short pulses with fast time variation and high intensities
- 2. The amplified pulse durations are short enough to neglect any pumping effects and any upper-level relaxation effects during the transit time of the pulse



The rate of change of the stored signal in the length Δz of the medium is given by

$$\frac{\partial}{\partial \hat{t}}\hat{\rho}_{em}(\hat{z},\hat{t})\Delta\hat{z} = \hat{I}(\hat{z},\hat{t}) - \hat{I}(\hat{z}+\Delta\hat{z},\hat{t}) + \sigma\Delta\hat{N}(\hat{z},\hat{t})\hat{I}(\hat{z},\hat{t})\Delta\hat{z}$$

Using $\hat{I}(\hat{z}, \hat{t}) = c\hat{\rho}_{em}(\hat{z}, \hat{t})$ and combining with the rate equation for the inverted population

$$\frac{\partial \hat{I}(\hat{z},\hat{t})}{\partial \hat{t}} + c \frac{\partial \hat{I}(\hat{z},\hat{t})}{\partial \hat{z}} = c\sigma \Delta \hat{N}(\hat{z},\hat{t}) \hat{I}(\hat{z},\hat{t})$$
$$\frac{\partial \Delta \hat{N}(\hat{z},\hat{t})}{\partial \hat{t}} = -\left(\frac{2^*\sigma}{\hbar\omega}\right) \Delta \hat{N}(\hat{z},\hat{t}) \hat{I}(\hat{z},\hat{t})$$

Transformation from laboratory coordinates to a coordinate system traveling along the pulse

$$z \equiv \hat{z} \qquad t \equiv \hat{t} - \hat{z}/c$$
$$I(z,t) \equiv \hat{I}(\hat{z},\hat{t}) \quad N(z,t) \equiv \Delta \hat{N}(\hat{z},\hat{t})$$

Previous equations then transform to

$$\frac{\partial I(z,t)}{\partial z} = \sigma N(z,t)I(z,t) \qquad (1)$$
$$\frac{\partial N}{\partial t} = -\left(\frac{2^*\sigma}{\hbar\omega}\right)N(z,t)I(z,t) \qquad (2)$$

Integration of (1) over the entire amplifier and pulse

$$\int_{I=I_{in}(t)}^{I=I_{out}(t)} \frac{dI}{I} = \sigma \int_{z=0}^{z=L} N(z,t) dz$$

Defining the "total number of atoms"

$$N_{tot}(t) = \int_{z=0}^{z=L} N(z,t) dz$$

Giving the solution

$$I_{out}(t) = I_{in}(t)e^{\sigma N_{tot}(t)} = G(t)I_{in}(t)$$
 (3)

Where $G(t) \equiv e^{\sigma N_{tot}(t)}$ is the time varying gain at any instant within the pulse

Integration of (2) over the entire amplifier length

$$\frac{\partial}{\partial t} \int_{z=0}^{z=L} N(z,t) dz \equiv \frac{\partial N_{tot}(t)}{\partial t} = -\left(\frac{2^*}{\hbar\omega}\right) \int_{z=0}^{z=L} \frac{\partial I(z,t)}{\partial t}$$

Which simplifies to

$$\frac{\partial N_{tot}(t)}{\partial t} = -\frac{2^*}{\hbar\omega} [I_{out}(t) - I_{in}(t)]$$

And substituting (3) into this solution gives

$$\frac{\partial N_{tot}(t)}{\partial t} = -\frac{2^*}{\hbar\omega} \left[\left(e^{\sigma N_{tot}(t)} - 1 \right) \cdot I_{in}(t) \right] = (4)$$
$$= -\frac{2^*}{\hbar\omega} \left[\left(1 - e^{-\sigma N_{tot}(t)} \right) \cdot I_{in}(t) \right]$$

Suppose the total inversion before the pulse enters the media is

$$N_0 \equiv \int_{z=0}^{z=L} N(z,t) dz$$

The single pass power gain of the amplifier is then

$$G_0 = e^{\sigma N_0}$$

Also, the pulse energies per area are defined as

$$U_{in}(t) \equiv \int_{t_0}^t I_{in}(t) dt \quad U_{out}(t) \equiv \int_{t_0}^t I_{out}(t) dt$$

The saturation energy for the atomic medium is

$$U_{sat} \equiv \frac{\hbar\omega}{2^*\sigma}$$

Integration of (4) provides the useful relations

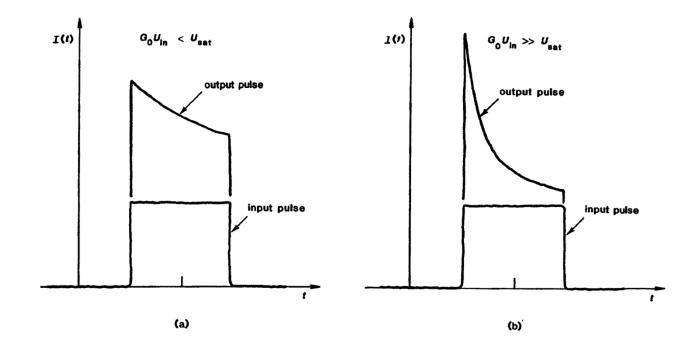
$$U_{in}(t) = U_{sat} \cdot \ln\left(\frac{1 - e^{-\sigma N_0}}{1 - e^{-\sigma N_{tot}(t)}}\right) = U_{sat} \cdot \ln\left(\frac{1 - 1/G_0}{1 - 1/G(t)}\right)$$
$$U_{out}(t) = U_{sat} \cdot \ln\left(\frac{e^{\sigma N_0} - 1}{e^{\sigma N_{tot}(t)} - 1}\right) = U_{sat} \cdot \ln\left(\frac{G_0 - 1}{G(t) - 1}\right)$$

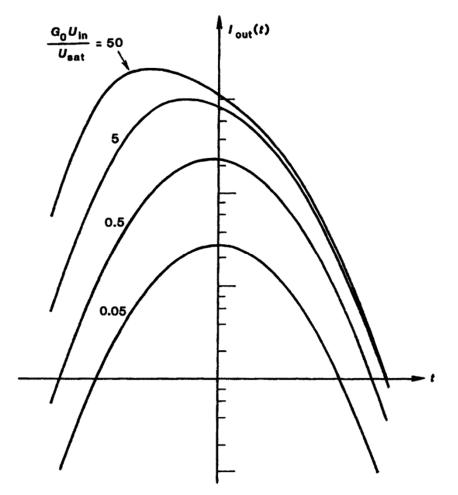
Using these relations one obtain

$$G(t) = \frac{G_0}{G_0 - (G_0 - 1)e^{-U_{in}(t)/U_{sat}}}$$

$$G(t) = 1 + (G_0 - 1)e^{-U_{out}(t)/U_{sat}}$$
(5)

The relations (5) can be used to detemine the pulseshape after passing though the amplifier





The energy extracted from the amplifier is

$$U_{extr} = U_{out} - U_{in} = U_{sat} \cdot \ln(G_0/G_f)$$
$$G_f = \lim_{t \to \infty} G(t)$$

The available energy in the amplifier is defines as

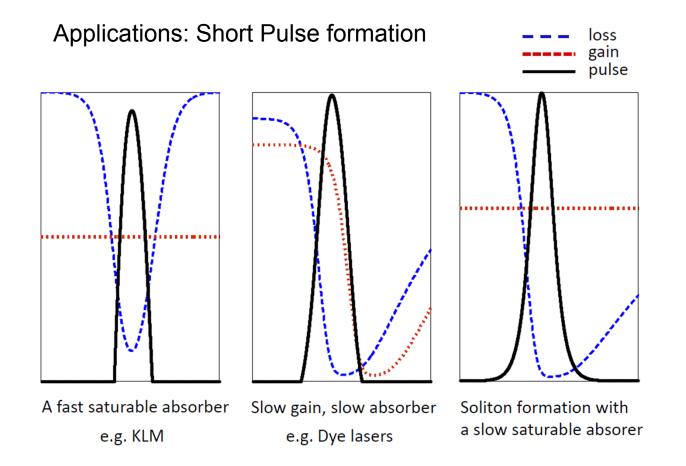
$$U_{avail} = U_{sat} \cdot \ln(G_0) = \frac{N_0 \hbar \omega}{2^*}$$

1

The pulse energy gain can be defined as

$$G_{pe} = \frac{U_{out}}{U_{in}} = \frac{\ln\left((G_0 - 1)/(G_f - 1)\right)}{\ln\left((G_0 - 1)/(G_f - 1)\right) - \ln(G_0/G_f)}$$
The pulse extraction efficiency

$$\eta = \frac{U_{out} - U_{in}}{U_{avail}} = \frac{\ln(G_0) - \ln(G_f)}{\ln(G_0)}$$



When an electric field is applied to a transparent dielectric medium it gives rise to a macroscopic polarization in the material

$$P(\bar{r},t) = \varepsilon_0 \left(\chi_{(1)}E + \chi_{(2)}E^2 + \chi_{(3)}E^3 + \dots \right)$$

 $\chi_{(1)}$ - linear response. Refractive index & Absorption

 $\chi_{(2)}$ - SHG, OPO, OPA etc... Only in noncentrosymmetric materials e.g. KTP, LiNbO_3

 $\chi_{(3)}$ - THG, FWM, Kerr Effect etc..

 $\chi_{(3)}$ is present in all optical materials. For a strong electric field the total displacement d is

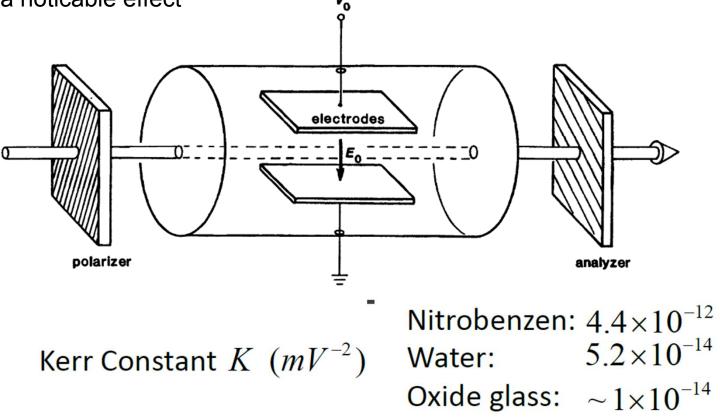
 $d = \varepsilon_0 (1 + \chi_{(1)}) E + \chi_{(3)} E^3$

Resulting in a nonlinear respons of the refractive index

 $n = n_0 + n_{2E}E^2$

Can be induced by applying an electric field and induce birefringence, e.g in Kerr Light Modulators and Pockels cells

For a Kerr Light modulator voltages in the rage of 25000 V are required for a noticable effect v_0



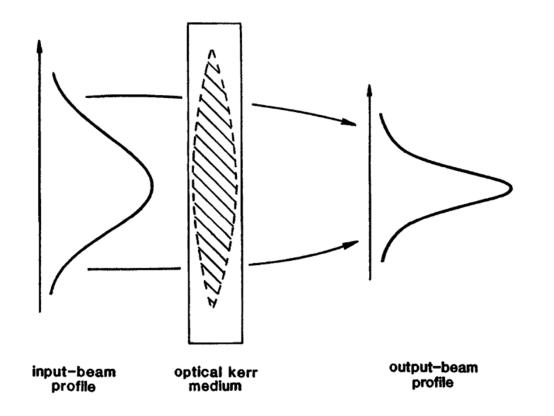
Optical Kerr effect: The optical signal is strong enough to induce the $\chi_{(3)}E^3$ term

 $\chi_{(3)}E^3 \stackrel{?}{\checkmark} {3\omega}$ generation (generally weak) refractive index change $n = n_0 + n_{2I}I$

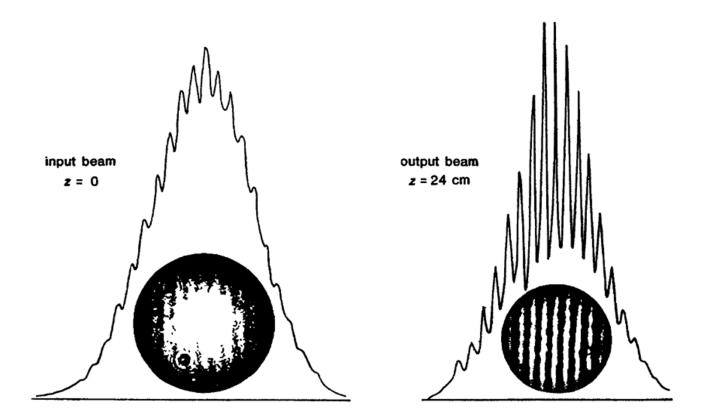
Present in all optical materials

- Self focusing
- Self phase modulation

Self focusing



Self focusing



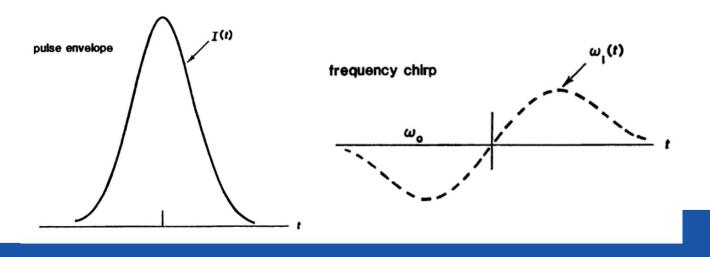
Self phase modulation: the temporal analoge to self focusing

$$\Delta n = n(t) - n_0 = n_{2I}I(t)$$

An optical pulse traveling through a nonlinear material will then experience a phase shift of

$$e^{j\Delta\phi(t)} = e^{-j2\Delta n(t)L/\lambda} = e^{-j2n_{2I}I(t)L/\lambda}$$

Normally $n_{2I} > 0$ so $\frac{\partial}{\partial t} \Delta \phi(t) = \Delta \omega_i < 0$



Assume Gaussian unchirped input pulse

$$E(t) = E_0 e^{-at^2}$$
 $I(t) = I_0 e^{-2at^2}$

Passing through a nonlinear medium of length L it acquires a phase shift

$$\phi(t) = -\frac{2\pi(n_0 + n_{2I}I)L}{\lambda}$$

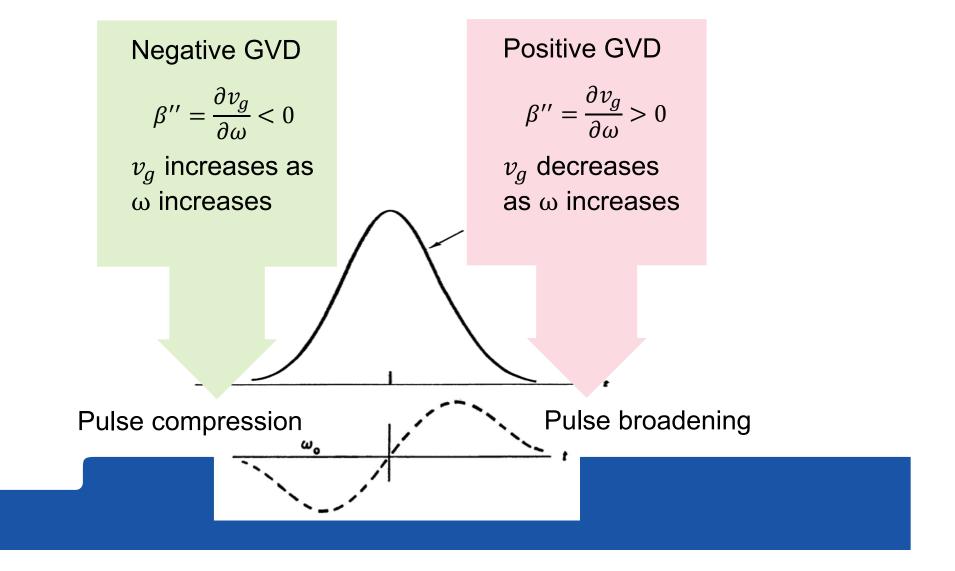
With the phase shift derivative being

$$\frac{\partial \phi}{\partial t} = -\frac{2\pi n_{2I}L}{\lambda} \frac{\partial I}{\partial t} \approx -\frac{4\pi a n_{2I}I_0L}{\lambda} t e^{-2at^2}$$

That is, the pulse will acquire significant amount of self phase modulation if L = 10 m

$$I_{0} = \frac{\lambda}{2\pi n_{2I}L} = \begin{cases} L = 10 \ m \\ n_{2I} = 3 \cdot 10^{-16} \ cm^{2}/W \\ \lambda = 0.5 \ \mu m \end{cases} \approx 30 \ MW/cm^{2}$$

Linear disperion + Nonlinear effect



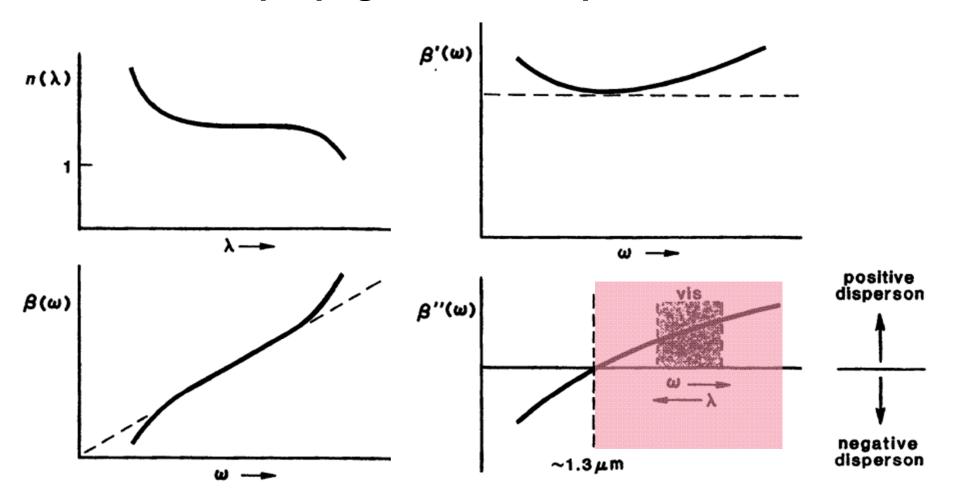
Nonlinear Schrödinger Equation

A pulse propagating in a nonlinear media or along a fiber can be described with the nonlinear Schrödinger equation

$$\left[\frac{\partial}{\partial z} + \beta' \frac{\partial}{\partial t} - j \frac{\beta''}{2} \frac{\partial^2}{\partial t^2} + \frac{j\beta_2 \left|\tilde{E}\right|^2}{2}\right] \tilde{E}(z,t) = 0$$

Can be expanded to account for various nonlinear effects such as Raman scattering, SHG etc. Here only the Kerr effect is considered.

Pulse propagation in an optical fiber



Pulse propagation in an optical fiber

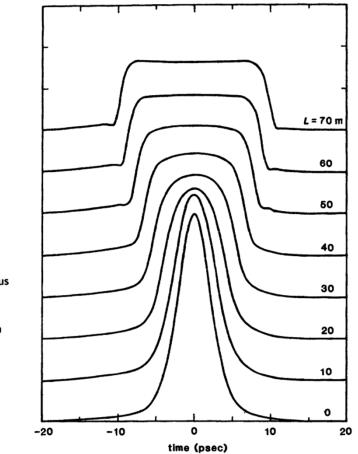


FIGURE 10.14

Pulse broadening produced by self-phase modulation plus positive dispersion for a 5.5 ps, 10 W input pulse at λ_0 = 590 nm traveling through increasing lengths of singlemode fiber.

Pulse propagation in an optical fiber

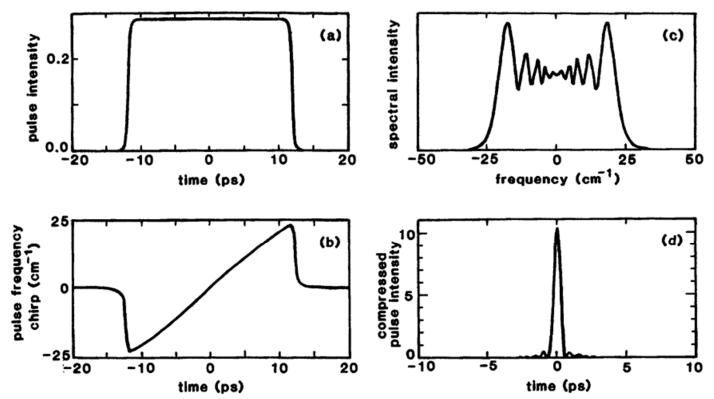
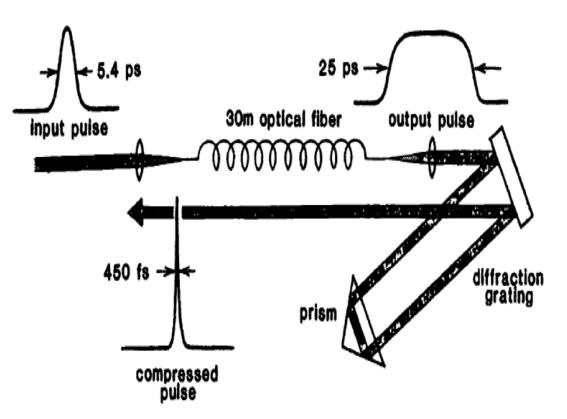
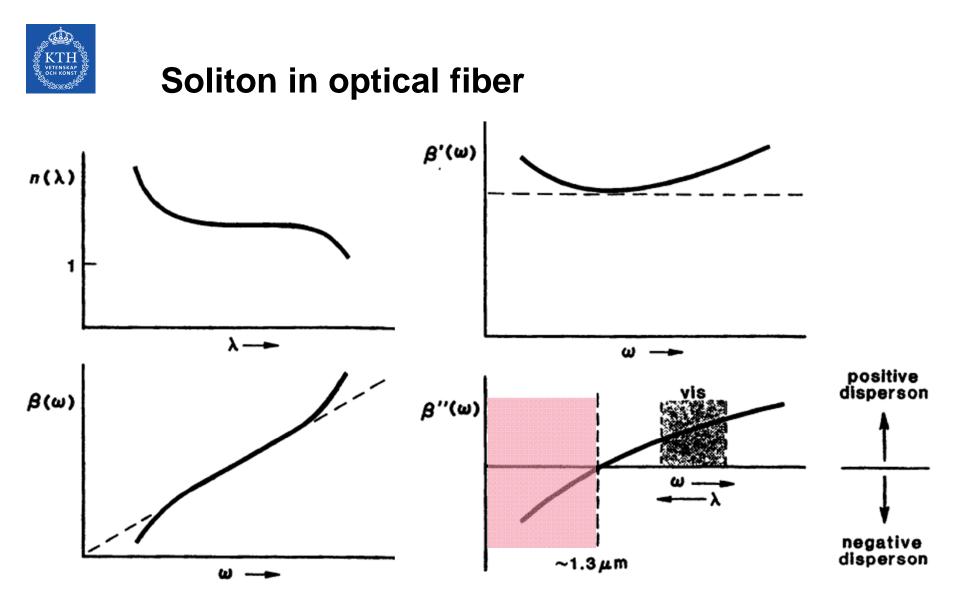


FIGURE 10.15

Self-broadening of an initial 6-ps 100-W pulse after propagation through 30 m of singlemode fiber. (a) Output pulse intensity versus time. (b) Output frequency chirp. (c) Output pulse spectrum. (d) Result of linear dispersive compression of this chirped pulse.

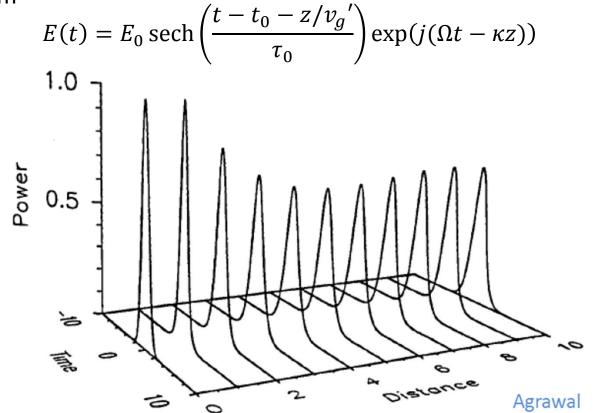
Application: Pulse compression





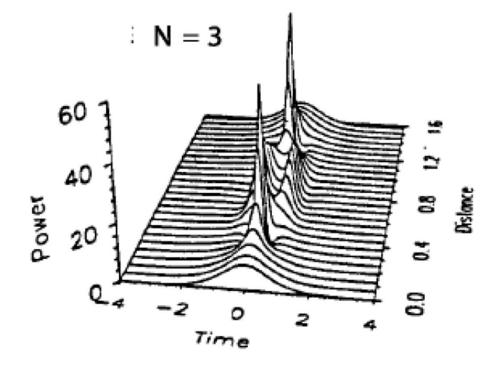
Soliton in optical fiber

Solitons are a solution to the NLSE, and at lower order, N=1, has the form



Soliton in optical fiber

Higher order solitons, N>1, reproduce themselves at periodic distances along the fiber



Agrawal