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4-level laser 

Rate equations: 
 
𝑑𝑁4

𝑑𝑡
= 𝑊𝑝 𝑁1 − 𝑁4 − 𝑁4/𝜏41 

 
𝑑𝑁3

𝑑𝑡
=

𝑁4

𝜏43
−

𝑁3

𝜏3
 

 
𝑑𝑁2

𝑑𝑡
=

𝑁4

𝜏42
+

𝑁3

𝜏32
−

𝑁2

𝜏21
 

 
Atom conservation: 
𝑁1 + 𝑁2 + 𝑁3 + 𝑁4 = 𝑁  
 
 
“Optical approximation”, 
ℏ𝜔/𝑘𝐵𝑇 ≪ 1 
 

Pumping   -   Decay 
 
 
 
 Decay In/Out 
 
 
  Same 
 
 
 
 
 
 
 
 No thermal occupancy 
 
 
 



4-level laser 

At steady state: 
 

𝑁3 =
𝜏3

𝜏43
𝑁4 

 

𝑁2 =
𝜏21

𝜏32
+

𝜏43𝜏21

𝜏42𝜏3
𝑁3 ≡ 𝛽𝑁3 

 
For a good laser: 
 𝛾42≈ 0 (𝑖. 𝑒.  𝜏42 → ∞),  
 

→ 𝛽 ≈
𝜏21

𝜏32
 

 
Fluorescent quantum efficiency, 

𝜂 ≡
𝜏4

𝜏43
⋅

𝜏3

𝜏𝑟𝑎𝑑
 

 
 
 

 
 
 
 
 
          Define beta 
 
 
 
  No direct decay into lev2 
 
 
                     → 
 
 
 
 
 
Useful photons: from 4 -> upper laser 
 * 
From upper laser that lase 



4-level laser 

Population inversion, 
 
𝑁3 − 𝑁2

𝑁
=

1 − 𝛽 𝜂𝑊𝑝𝜏𝑟𝑎𝑑

1 + 1 + 𝛽 +
2𝜏43
𝜏𝑟𝑎𝑑

𝜂𝑊𝑝𝜏𝑟𝑎𝑑

 

 
 
For a good laser: 
𝜏43 ≪ 𝜏𝑟𝑎𝑑  
𝛽 ≈ 𝜏21/𝜏32 → 0  
𝜂 → 1 
 

⇒
𝑁3 − 𝑁2

𝑁
≈

𝑊𝑝𝜏𝑟𝑎𝑑

1 + 𝑊𝑝𝜏𝑟𝑎𝑑
 

 

- Short lev 4 lifetime 
- Short lower lev lifetime 
- High fluorescent quantum efficiency 

 
 
 

- Red curves 

Calculate the pop. Inv. 



3-level laser 

𝑑𝑁3

𝑑𝑡
= 𝑊𝑝 𝑁1 − 𝑁3 −

𝑁3

𝜏3
 

𝑁1 + 𝑁2 + 𝑁3 = 𝑁  

𝜂 =
𝜏3

𝜏32

𝜏21

𝜏𝑟𝑎𝑑
  

 𝛽 =
𝑁3

𝑁2
=

𝜏32

𝜏21
 

𝑑𝑁2

𝑑𝑡
=

𝑁3

𝜏32
−

𝑁2

𝜏21
 

Rate equations: 

Atom conservation: 

As before, for 3-level 
 
BUT lower level is GROUND level Pumping – decay 

 
 
 
   decays 
 
 
 
 
      as before 
 
 
 
 
As before 
 
 
Different! 
 
 



3-level laser 

At steady state, 
 

𝑁2 − 𝑁1

𝑁
=

1 − 𝛽 𝜂𝑊𝑝𝜏𝑟𝑎𝑑 − 1

1 + 2𝛽 𝜂𝑊𝑝𝜏𝑟𝑎𝑑 + 1
 

 
Requirements for pop. inversion: 
 𝛽 < 1 

  𝑊𝑝𝜏𝑟𝑎𝑑 ≥
1

𝜂 1−𝛽
 

 
 
For a good laser, 
𝛽 → 0 
𝜂 → 1 
 

𝑁2 − 𝑁1

𝑁
≈

𝑊𝑝𝜏𝑟𝑎𝑑 − 1

𝑊𝑝𝜏𝑟𝑎𝑑 + 1
 

 

 
 

No pumping 
NEGATIVE pop. Inv. 
   -> 

 
 
 
 
 

 As before 
 
        New 

 
 
 
 
 
 
 
 

Red curves 
 
 
 
 
 
 
 
 
 
 
 



Population inversion 

All else equal: 3-level requires more pumping 



Upper-level laser 

Lasing between two levels high above ground-level 
 
𝑑𝑁3

𝑑𝑡 𝑝𝑢𝑚𝑝
= 𝑊𝑝 𝑁0 − 𝑁3  

 
 
Assuming, 𝑁0 ≈ 𝑁 ≫ 𝑁3 and pump efficiency, 𝜂𝑝, 
𝑑𝑁3

𝑑𝑡 𝑝𝑢𝑚𝑝
≈ 𝜂𝑝𝑊𝑝𝑁 ≡ 𝑅𝑝 

 
 
Rate equations: 
 
𝑑𝑁2

𝑑𝑡
= 𝑅𝑝 − 𝑊𝑠𝑖𝑔 𝑁2 − 𝑁1 − 𝛾2𝑁2 

 
𝑑𝑁1

𝑑𝑡
= 𝑊𝑠𝑖𝑔 𝑁2 − 𝑁1 + 𝛾21𝑁2 − 𝛾1𝑁1 

 

 
 
 
 
 
        Pump into upper lev. 
 
 
    
 
      most atoms in ground- 
     state 
 
 
 
 
   Signal included 
 
 
 
 
 
 
 



Upper-level laser 

At steady state: 
 

𝑁1 =
𝑊𝑠𝑖𝑔 + 𝛾21

𝑊𝑠𝑖𝑔 𝛾1 + 𝛾20 + 𝛾1𝛾2
𝑅𝑝   

 

𝑁2 =
𝑊𝑠𝑖𝑔 + 𝛾1

𝑊𝑠𝑖𝑔 𝛾1 + 𝛾20 + 𝛾1𝛾2
𝑅𝑝 

 
 
No atom conservation! 
 

For example, changing pump changes N 



Upper-level laser 

Population inversion: 

Δ𝑁21 = 𝑁2 − 𝑁1 =
𝛾1 − 𝛾21

𝛾1𝛾2
⋅

𝑅𝑝

1 +
𝛾1 + 𝛾20

𝛾1𝛾2
𝑊𝑠𝑖𝑔

 

 
 

Define the small-signal population inversion, Δ𝑁0 =
𝛾1−𝛾21

𝛾1𝛾2
𝑅𝑝 and the effective 

recovery time, 𝜏𝑒𝑓𝑓= 𝜏2 1 +
𝜏1

𝜏20
 the expression becomes: 

 

ΔN21 = Δ𝑁0

1

1 + 𝑊𝑠𝑖𝑔𝜏𝑒𝑓𝑓
 

 
For a good laser: 
 𝛾2 ≈ 𝛾21   
𝛾20 ≈ 0 

→ ΔN21 ≈ 𝑅𝑝 𝜏2 − 𝜏1 ⋅
1

1 + 𝑊𝑠𝑖𝑔𝜏2
 

 

The pop. Inv. Saturates as the signal 
increases 

Prop. To pump-rate and lifetimes, 
saturation behavior 



Upper-level laser 

• Condition for obtaining inversion, 
𝜏1/𝜏21 < 1 

 
 i.e. fast relaxation from lower level and slow relaxation from upper level 
 
 
 
• Small-signal gain, 

Δ𝑁0 ∼ 𝑅𝑝 ⋅
𝜏2

1 − 𝜏1/𝜏21
 

 i.e.  small-signal gain is proportional to the pump-rate times a reduced upper-level 
 lifetime 
 
 
 
• Saturation behavior, 

Δ𝑁21 = Δ𝑁0 ⋅
1

1 + 𝑊𝑠𝑖𝑔𝜏𝑒𝑓𝑓
 

 i.e. the saturation intensity depends only on the signal intensity and the effective 
 lifetime, not on the pumping rate. 



Upper-level laser: Transient rate equation 

Assume: No signal (𝑊𝑠𝑖𝑔 = 0), fast lower-level relaxation (𝑁1 ≈ 0), 

𝑑𝑁2 𝑡

𝑑𝑡
= 𝑅𝑝 𝑡 − 𝛾2𝑁2 𝑡  

 
The upper level population becomes, 

𝑁2 𝑡 =  𝑅𝑝 𝑡′ 𝑒−𝛾2(𝑡−𝑡′)𝑑𝑡′
𝑡

−∞

 

 
Applying a square pulse, 

𝑁2 𝑇𝑝 =  𝑅𝑝0𝜏2(1 − 𝑒−𝑇𝑝/𝜏2) 

 
 
Define the pump efficiency, 

𝜂𝑝 =
𝑁2 𝑡 = 𝑇𝑝

𝑅𝑝0𝑇𝑝
=

1 − 𝑒−𝑇𝑝/𝜏2

𝑇𝑝/𝜏2
 

 

As for instance before a Q-switched pulse 

^Pop. In upper lev per 
 pump-photon 



3-level laser: pulses 

Assume: No signal (𝑊𝑠𝑖𝑔 = 0),  

Fast upper-level relaxation (𝜏3 ≈ 0),  
 
𝑑𝑁1

𝑑𝑡
= −

𝑑𝑁2

𝑑𝑡
≈ −𝑊𝑝 𝑡 𝑁1 𝑡 +

𝑁2 𝑡

𝜏
 

 
 
𝑑

𝑑𝑡
Δ𝑁 𝑡 =  − 𝑊𝑝 𝑡 +

1

𝜏
Δ𝑁 𝑡 + 𝑊𝑝 𝑡 −

1

𝜏
𝑁 

 
 
Square pulse: 

Δ𝑁 𝑡

𝑁
=

(𝑊𝑝𝜏 − 1) − 2𝑊𝑝 𝜏 ⋅ exp [− 𝑊𝑝𝜏 + 1 𝑡/𝜏]

𝑊𝑝𝜏 + 1
 

 
 
If pump pulse duration is short (𝑇𝑝 ≪ 𝜏),  

and the pumping rate is high (𝑊𝑝𝜏 ≫ 1 

 

Δ𝑁 𝑇𝑝
𝑁

≈ 1 − 2𝑒−𝑊𝑝𝑇𝑝 

 

3-level laser from prev,  
no signal 

Integrate to get pop. Inv: 

Simple model-agrees with experiment! 



Summary 

 Steady state laser pumping and population inversion 
  4-level laser 

𝑁3 − 𝑁2

𝑁
≈

𝑊𝑝𝜏𝑟𝑎𝑑

1 + 𝑊𝑝𝜏𝑟𝑎𝑑
 

  3-level laser 

    
𝑁2−𝑁1

𝑁
≈

𝑊𝑝𝜏𝑟𝑎𝑑 − 1

1 + 𝑊𝑝𝜏𝑟𝑎𝑑
 

  
 Laser gain saturation 
  Upper-level laser, saturation behavior 

    Δ𝑁21 = Δ𝑁0 ⋅
1

1+𝑊𝑠𝑖𝑔𝜏𝑒𝑓𝑓
 

  
 Transient rate equations 
  Upper-level laser 

𝜂𝑝 =
𝑁2 𝑡 = 𝑇𝑝

𝑅𝑝0𝑇𝑝
=

1 − 𝑒−𝑇𝑝/𝜏2

𝑇𝑝/𝜏2
 

  Three-level laser 
 

    
Δ𝑁 𝑇𝑝

𝑁
≈ 1 − 2𝑒−𝑊𝑝𝑇𝑝 

Difference between three 
and four-level systems, and 
why four-level systems are 
superior 

Saturation intensity is 
independent of the 
pumping-rate ”i.e. The signal intensity 

needed to reduce the pop. Inv. To half its initial 
value doesn’t depend on the pumping rate” 

Short pulses are needed to 
obtain high pumping 
efficiency 

These simple models give 
good agreement with 
reality 



Part II: Laser amplification 
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Solve wave-eqs 
 
 
 
 
 
See effects on the gain 



Wave propagation in an atomic medium 

Maxwell’s equations: 
𝛻𝑥𝑬 =  −𝑗𝜔𝑩 
𝛻𝑥𝑯 = 𝑱 + 𝑗𝜔𝑫 
 
Constitutive relations: 
𝑩 = 𝜇𝑯 
𝑱 = 𝜎𝑬 
𝑫 = 𝜖𝑬 + 𝑷𝑎𝑡 = 𝜖 1 + 𝝌𝑎𝑡 𝑬 
 
Vector field of the form: 

𝝐 𝒓, 𝑡 =
1

2
𝑬 𝒓 𝑒𝑗𝜔𝑡 + 𝑐. 𝑐  

 
Assume a spatially uniform material (𝛻 ⋅ 𝐸 = 0),  
and apply 𝛻 × to get the wave equation: 
 

𝛻2 + 𝜔2𝜇𝜖 1 + 𝜒 𝑎𝑡 −
𝑗𝜎

𝜔𝜖
𝐸 𝑥, 𝑦, 𝑧 = 0 

 
 
 

Material parameters: 
𝜇 – magnetic permeability 
𝜎 – ohmic losses 
𝜖 – dielectric permittivity (not counting  
atomic transitions) 
𝜒𝑎𝑡(𝜔) – resonant susceptibility due  
to laser transitions 



Plane-wave approximation 

Consider a plane wave, 
 

𝜕2𝐸 

𝜕𝑥2 ,
𝜕2𝐸 

𝜕𝑦2 ≪
𝜕2𝐸 

𝜕𝑧2  

 

i.e. 𝛻2 →
𝑑2

𝑑𝑧2 

 
The equation reduces to: 

𝑑𝑧
2 + 𝜔2𝜇𝜖 1 + 𝜒 𝑎𝑡 −

𝑗𝜎

𝜔𝜖
𝐸 𝑧 = 0 

<- Ok approx. If  
     wavefront is flat 



Plane-wave approximation 

Without losses: 
 
𝑑𝑧

2 + 𝜔2𝜇𝜖 𝐸 𝑧 = 0,  
 
Assume solutions on the form: 
𝐸 𝑧 = 𝑐𝑜𝑛𝑠𝑡 ⋅ 𝑒−Γ𝑧 
 

⇒ Γ2 + 𝜔2𝜇𝜖 𝐸 = 0 
 
The allowed values for Γ are, 
Γ = ±𝑗𝜔 𝜇𝜖 ≡ ±𝑗𝛽 
 
  
With the solution, 

𝝐 𝑧, 𝑡 =
1

2
𝐸+𝑒𝑗 𝜔𝑡−𝛽𝑧 + 𝐸+

∗𝑒−𝑗 𝜔𝑡−𝛽𝑧 +
1

2
𝐸−𝑒𝑗 𝜔𝑡+𝛽𝑧 + 𝐸−

∗𝑒−𝑗 𝜔𝑡+𝛽𝑧  

 
The free space propagation constant, 𝛽, may be written: 

𝛽 = 𝜔 𝜇𝜖 =
𝜔

𝑐
=

2𝜋

𝜆
 

Different beta 
from last 
chapter 

First, no losses 



Plane-wave approximation 

With laser action and losses: 
 

𝑑𝑧
2 + 𝛽2 1 + 𝜒 𝑎𝑡 −

𝑗𝜎

𝜔𝜖
𝐸 𝑧 = 0 

 
 
Assuming 𝐸 𝑧 = 𝑐𝑜𝑛𝑠𝑡 ⋅ 𝑒−Γ𝑧, as before: 

Γ = 𝑗𝛽 1 + 𝜒 𝑎𝑡
′ 𝜔 + 𝑗𝜒 𝑎𝑡

′′ 𝜔 − 𝑗𝜎/𝜔𝜖 
 

Normally, 𝜒 𝑎𝑡 𝜔 ,
𝜎

𝜔𝜖
≪ 1: 

 Γ ≈ 𝑗𝛽 1 +
1

2
𝜒𝑎𝑡

′ 𝜔 +
𝑗

2
 𝜒𝑎𝑡

′′ 𝜔 −
𝑗𝜎

2𝜔𝜖
= 

 
≡ 𝑗𝛽 + 𝑗Δ𝛽𝑚 𝜔 − 𝛼𝑚 𝜔 + 𝛼0 

 
 
The final solution becomes: 
 

𝝐 𝑧, 𝑡 = 𝑅𝑒𝐸 0 exp 𝑗𝜔𝑡 − 𝑗 𝛽 + 𝛥𝛽𝑚 𝜔 𝑧 + 𝛼𝑚 𝜔 − 𝛼0 𝑧  

1 + 𝛿 ≈ 1 +
𝛿

2
 

Put losses back 
 
 
 
 
 
 
 
 
 
Expand the sqrt 
 
 
 
 
 
Define four terms 
 
 
 
 
 
 



Propagation Factors 

 𝝐 𝑧, 𝑡 = 𝑅𝑒𝐸 0 exp 𝑗𝜔𝑡 − 𝑗 𝛽 + 𝛥𝛽𝑚 𝜔 𝑧 + 𝛼𝑚 𝜔 − 𝛼0 𝑧  
 
Linear phase-shift (Red) 
𝛽 – Plane-wave propagation constant,  
 fundamental phase variation,  
 
Nonlinear phase-shift (Blue) 
Δ𝛽𝑚 𝜔  – Additional  atomic phase- 
shift due to  population inversion 
 
→ Total phase-shift (Green) 
 
 
Gain (Orange) 
𝛼𝑚 𝜔  – Atomic gain  
 or loss coefficient (due to transitions) 
 
Background 
𝛼0 – Ohmic background loss 
 

Phase-shift             loss/gain 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Exceptions 

Larger atomic gain or absorption effects 

The results so far are based on the assumption that 𝜒 𝑎𝑡 −
𝑗𝜎

𝜔𝜖
≪ 1, however, there are a 

few situations of interest where this doesn’t hold: 
 
- Absorption in metals and semiconductors, at frequencies higher than the bandgap 

energy, the effective conductivity, 𝜎 can become very large 
 

- Absorption on strong resonance lines in metal vapor, the transitions are very strongly 
allowed giving a high absorption per unit length 
 

 
 
                                                                                          For expanding the sqrt 
 
 
 
 
 
Big sigma 
 
 
Big chi 
 
 
 
 
 
 
 
 
 
 
 



The paraxial wave equation 

The full wave-equation, 

𝛻2 + 𝛽2 1 + 𝜒 𝑎𝑡 −
𝑗𝜎

𝜔𝜖
𝑬 𝒓 = 0 

 
New ansatz, 

    𝐸 𝒓 ≡ 𝑢 𝒓 𝑒−𝑗𝛽𝑧 
 
Insert into the wave equation, 

   
𝜕2𝑢 

𝜕𝑥2 + 
𝜕2𝑢 

𝜕𝑦2 +
𝜕2𝑢 

𝜕𝑧2 − 2𝑗𝛽
𝜕𝑢 

𝜕𝑧
− 𝛽2𝑢 𝑒−𝑗𝛽𝑧 = 0  

 
Assume that 𝑢 𝒓  changes slowly along the z-direction, 
 

𝜕2𝑢 

𝜕𝑧2
≪ 2𝛽

𝜕𝑢 

𝜕𝑧
 

and 
𝜕2𝑢 

𝜕𝑧2
≪

𝜕2𝑢 

𝜕𝑥2
,
𝜕2𝑢 

𝜕𝑦2
 

 

⇒ 𝛻𝑡
2𝑢 − 2𝑗𝛽

𝜕𝑢 

𝜕𝑧
+ 𝛽2 𝜒 𝑎𝑡 −

𝑗𝜎

𝜔𝜖
𝑢 = 0 

Want to handle transverse variations 
 
 
 
 
 
                                   change const -> u(r) 
 
 
 
 
 
 
 
    
 
 
 
   ”Paraxial wave equation” 
 
 
 
 



Diffraction- and propagation effects 

Rewrite: 
𝜕𝑢 𝒓

𝜕𝑧
= −

𝑗

2𝛽
 𝛻𝑡

2𝑢 𝒓 − [𝛼0−𝛼𝑚 + 𝑗Δ𝛽𝑚]𝑢 𝒓  

 
 
𝛼0, 𝛼𝑚 𝜔 , and 𝑗Δ𝛽𝑚 𝜔  are defined as before 
 
 
Two terms: 
  

Diffraction,   −
𝑗

2𝛽
 𝛻𝑡

2 

 
Ohmic and atomic gain/loss,   −[𝛼0−𝛼𝑚 + 𝑗Δ𝛽𝑚] 
 
 

Separate terms –> Independent to first order, gain and phase-shift results are 
the same as for plane waves 

 

Re-write the equation 
 
 
 
 
 
 
 
Four terms, same as before 
 
 
 
 
 
 
 
 
 
 
Reproduce the plane-wave result 
 
 



Laser amplification 

The laser gain after length L: 

 𝑔 𝜔 ≡
𝐸 𝐿

𝐸 0
 

 
In terms of intensity, 

𝐺 𝜔 =
𝐼 𝐿

𝐼 0
=

𝐸 𝐿
2

𝐸 0
2 = exp 2𝛼𝑚 𝜔 𝐿 − 2𝛼0𝐿 = exp [𝛽𝜒′′ 𝜔 𝐿 −

𝜎

𝜖𝑐
𝐿] 

 

For most lasers,  𝛼0 ≪ 𝛼𝑚 ⇒  𝐺 𝜔 ≈ exp (𝛽𝜒′′ 𝜔 𝐿)  
 

Calculate the gain 
 
 
 
 
                                               from def. alpha              
 
 
 
                                                              exponential  
            dependence on chi  
 
 



Gain narrowing 

The gain, 𝐺 𝜔 ∼ exp 𝜒′′ 𝜔 → Narrower frequency 
dependence, i.e. ”Gain Narrowing” 

Laser gain & 
Atomic 
lineshape 
 
 
 
 
 
 
 
 
 
 
     FWHM bandwidth is lowered by 30-40% 



Absorbing media have opposite sign of 𝜒(𝜔) 
→ ”Absorption broadening” 
 

Absorption broadening 

Uninverted population 
 -> absorption broadening 



For a black-body: 
Δ𝑃𝑎𝑏𝑠 = 𝜎 ⋅ 𝐼 

Thin slab, atomic densities N1 and N2, 
cross-sections 𝜎12 and  𝜎21 

Net absorbed power: 
 Δ𝑃𝑎𝑏𝑠 = 𝑁1𝜎12 − 𝑁2𝜎21 ⋅ 𝑃Δ𝑧 
 
The cross-sections are related, 
 𝑔1𝜎12 = 𝑔2𝜎21 
 
Convert power → intensity: 

 
1

𝐼

𝑑𝐼

𝑑𝑧
= −Δ𝑁12𝜎21 

 
Previously: 

 
1

𝐼

𝑑𝐼

𝑑𝑧
= −2𝛼𝑚(𝜔) 

      
 

Stimulated transition cross-sections 

Loss or gain can be calculated from 
cross-sections and atomic density 

⇒ 2𝛼𝑚 𝜔 = Δ𝑁12𝜎21(𝜔) 



Cross-section formula 

From previous page: 2𝛼𝑚 𝜔 = Δ𝑁12𝜎21(𝜔) 
 

From definition of  𝛼: 𝛼𝑚 𝜔 =
𝜋𝜒′′ 𝜔

𝜆
 

⇒ 2𝛼𝑚 𝜔 = Δ𝑁𝜎 𝜔 =
2𝜋

𝜆
 𝜒′′(𝜔) 

 
Using the full expression for 𝜒: 

𝜎 𝜔𝑎 =
3∗

2𝜋

𝛾𝑟𝑎𝑑

Δ𝜔𝑎
𝜆2 ⋅

1

1 + 2(𝜔 − 𝜔𝑎)/Δ𝜔𝑎
2 

 
 
Cross-section estimation: 
Assume, Δ𝜔𝑎 ≡ 𝛾𝑟𝑎𝑑. (purely radiative transmission), 3 = 3∗, (all atoms aligned) 
 

 ⇒ 𝜎𝑚𝑎𝑥 =
3𝜆2

2𝜋
≈

𝜆2

2
≈ 10−9𝑐𝑚2 

 
The cross section is far greater than the area of an atom, due to its internal resonance. 

The cross-section is a function of 
wavelength, transition rate and 
lineshape 

Estimate the max cross-section 



Real cross-sections 

Allowed transitions in gas and non-allowed in 
solids -> 𝝉𝒈𝒂𝒔 ≪ 𝝉𝒔𝒐𝒍𝒊𝒅 

𝜆2

2
> Real cross-sections ≫ Atom area 



Population difference saturation 

Gain saturation, 
In a medium, 

𝑑𝐼

𝑑𝑧
= ±2𝛼𝑚𝐼 = ±Δ𝑁𝜎𝐼 

 
As shown previously, Δ𝑁 saturates according to: 

Δ𝑁 = Δ𝑁0 ⋅
1

1 + 𝑊𝜏𝑒𝑓𝑓
= Δ𝑁0 ⋅

1

1 + 𝐼/𝐼𝑠𝑎𝑡
 

 
𝑁0 - unsaturated or small signal gain 
𝐼𝑠𝑎𝑡 - saturation intensity 

Stimulated-transition probability, 
 
From before, Δ𝑃𝑎𝑏𝑠 = 𝑁1𝜎12 − 𝑁2𝜎21 ⋅ 𝑃Δ𝑧 
 
From rate equation analysis,Δ𝑃𝑎𝑏𝑠 = 𝑊12𝑁1 − 𝑊21𝑁2 𝐴Δ𝑧ℏ𝜔𝑎 
 

⇒ W =
σI

ℏω
 

 
i.e. the cross-section, the intensity and the stimulated transition probability are 
interdependent 

As Δ𝑁 saturates, the gain saturates 



Population difference saturation 

At the line center: 
 
From previous slide,  

2𝛼𝑚(𝜔, 𝐼) =
Δ𝑁0

1 + 𝐼/𝐼𝑠𝑎𝑡
=

Δ𝑁0𝜎

1 + 𝜎𝜏𝑒𝑓𝑓/ℏ𝜔 𝐼
 

 

→ 𝐼𝑠𝑎𝑡 ≡
ℏ𝜔

𝜎𝜏𝑒𝑓𝑓
 

 
i.e. 𝐼 = 𝐼𝑠𝑎𝑡: one incident photon within the cross-section per recovery time 
 
Off center: 
 The expression is modified by the lineshape, 

2𝛼𝑚(𝜔, 𝐼) =
Δ𝑁0𝜎

1 +
𝐼

𝐼𝑠𝑎𝑡
⋅

1
1 + 𝑦2

 

 
Where y is the normalized frequency detuning,  

𝑦 = 2 𝜔 − 𝜔0 /Δ𝜔 
 
Frequency dependence due to, transition lineshape and saturation behavior 

Re-arrange prev 
expressions 



Practical values 

From previous slide, 

𝐼𝑠𝑎𝑡 ≡
ℏ𝜔

𝜎𝜏𝑒𝑓𝑓
 

 
𝐼𝑠𝑎𝑡 is an important parameter since little only little gain will be obtained once the 
intensity approaches this level. 
 
 
 
 
 
 
 
 
 
𝐼𝑠𝑎𝑡 is independent of the pumping intensity, since neither 𝜎 nor 𝜏𝑒𝑓𝑓 are intensity 

dependent. 
 
However, harder pumping does increase the small-signal gain 

Laser type: ℏ𝜔  𝜎  𝜏𝑒𝑓𝑓  𝐼𝑠𝑎𝑡 

Gas 

 

 10−19 𝐽 10−𝟏𝟑 𝑐𝑚2  10−𝟔 𝑠  1 𝑾/𝑐𝑚2 

Solid-state  

 

 10−19 𝐽 10−𝟏𝟗 𝑐𝑚2  10−𝟑 𝑠  1 𝒌𝑾/𝑐𝑚2 

I-sat varies a lot between materials 



Saturation in laser amplifiers 

As a signal passes through an amplifier, it 
grows exponentially with distance until the 
intensity approaches 𝐼𝑠𝑎𝑡 
 
For a single pass amplifier: 

1

𝐼(𝑧)

𝑑𝐼

𝑑𝑧
= 2𝛼𝑚 𝐼 =

2𝛼𝑚0

1 + 𝐼(𝑧)/𝐼𝑠𝑎𝑡
 

 
Integrating, 

 
1

𝐼
+

1

𝐼𝑠𝑎𝑡
𝑑𝐼 =

𝐼=𝐼𝑜𝑢𝑡

𝐼=𝐼𝑖𝑛

2𝛼𝑚0  𝑑𝑧

𝑧=𝐿

𝑧=0

 

 
gives: 

ln
𝐼𝑜𝑢𝑡

𝐼𝑖𝑛
+

𝐼𝑜𝑢𝑡 − 𝐼𝑖𝑛
𝐼𝑠𝑎𝑡

= 2𝛼𝑚0𝐿 = ln 𝐺0  

 
where, 𝐺0 is the small-signal gain 
 

Calculate the saturation 



Saturation in laser amplifiers 

The total gain, 
 

𝐺 ≡
𝐼𝑜𝑢𝑡

𝐼𝑖𝑛
= 𝐺0 ⋅ exp(−

𝐼𝑜𝑢𝑡 − 𝐼𝑖𝑛
𝐼𝑠𝑎𝑡

) 

 
Is the unsaturated gain, reduced by a factor 
exponentially dependent on 𝐼𝑜𝑢𝑡 − 𝐼𝑖𝑛 



Saturation in laser amplifiers 

Plotting the normalized output intensity vs the normalized input intensity, it is 
clear that the transmission tends to unity as the input intensity is increased -The 
amplifier becomes transparent. 

Extracted 
Intensities 

Output  
Intensities 

Gain starts at G0 and declines towards 
0 dB 



Power-extraction 

Define the extracted intensity, 

𝐼𝑒𝑥𝑡𝑟 ≡ 𝐼𝑜𝑢𝑡 − 𝐼𝑖𝑛 = ln
𝐺0

𝐺
⋅ 𝐼𝑠𝑎𝑡 

 
As the amplifier saturates, 𝐺 → 1,  
 

𝐼𝑎𝑣𝑎𝑖𝑙 = lim
𝐺→1

ln
𝐺0

𝐺
⋅ 𝐼𝑠𝑎𝑡 = ln 𝐺0 ⋅ 𝐼𝑠𝑎𝑡 

 
Using ln 𝐺0 = 2𝛼𝑚0𝐿: 

𝐼𝑎𝑣𝑎𝑖𝑙 = 2𝛼𝑚0𝐿 ⋅ 𝐼𝑠𝑎𝑡 = Δ𝑁0𝜎𝐿 ⋅
ℏ𝜔

𝜎𝜏𝑒𝑓𝑓
 

And re-writing: 
𝐼𝑎𝑣𝑎𝑖𝑙

𝐿
≡

𝑃𝑎𝑣𝑎𝑖𝑙

𝑉
=

Δ𝑁0ℏ𝜔

𝜏𝑒𝑓𝑓
 

 
i.e. the maximum available power is the total inversion energy, Δ𝑁0ℏ𝜔, once every recovery 
time, 𝜏𝑒𝑓𝑓 

Calculate the extracted power 



Power-extraction efficiency 

Full power extraction requires complete saturation of the amplifier which 
gives low small-signal gain. 
 
Define the extraction efficiency, 

𝜂𝑒𝑥𝑡𝑟 ≡
𝐼𝑒𝑥𝑡𝑟

𝐼𝑎𝑣𝑎𝑖𝑙
=

ln G0 − ln 𝐺

ln 𝐺0
= 1 −

𝐺𝑑𝐵

𝐺0,𝑑𝐵
 

 
i.e. there’s a tradeoff between effiency and small-signal gain for single-
pass amplifiers. 



Summary 

 
 Wave propagation in atomic media 
  Plane-wave approximation, 

  𝑑𝑧
2 + 𝛽2 1 + 𝜒 𝑎𝑡 −

𝑗𝜎

𝜔𝜖
𝐸 𝑧 = 0 

 
   The paraxial wave equation, 

  
𝜕𝑢 𝒓

𝜕𝑧
= −

𝑗

2𝛽
 𝛻𝑡

2𝑢 𝒓 − [𝛼0−𝛼𝑚 + 𝑗Δ𝛽𝑚]𝑢 𝒓  

  
 Single-pass laser amplification 
  Gain narrowing, 

𝐺 𝜔 ∼ exp 𝜒′′ 𝜔  
 
  Transition cross-sections, 

2𝛼𝑚 𝜔 = Δ𝑁12𝜎21(𝜔) 
 
  Gain saturation, 

𝐺 = 𝐺0 ⋅ exp(−
𝐼𝑜𝑢𝑡 − 𝐼𝑖𝑛

𝐼𝑠𝑎𝑡
) 

 
  Power extraction, 

𝜂𝑒𝑥𝑡𝑟 = 1 −
𝐺𝑑𝐵

𝐺0,𝑑𝐵
 

𝛽 – Plane-wave propagation constant,  
 fundamental phase variation,  
 
Δ𝛽𝑚 𝜔  – Additional  atomic phase- 
shift due to  population inversion 
 
𝛼𝑚 𝜔  – Atomic gain  
 or loss coefficient (due to transitions) 
 
𝛼0 – Ohmic background loss 
 
Diffraction and gain are separate  
to first order 

30-40% lower FWHM bandwidth 

Low signal gain is saturated by a  
factor exponentialy dependent  
on the intensity difference 

Loss/gain can be calculated from  
atomic density and cross-sections 

There’s a tradeoff between  
efficiency and small-signal gain 




