Problem from the book
Siegmann p.203, Problems for 4.4, task 1
Designed problem
In a two level system, find the symmetrical offset, ω_{0}, for two sinusoidal signals, i.e. $E=\operatorname{Re}\left\{E_{1} \mathrm{e}^{j \omega_{1} t}+E_{2} \mathrm{e}^{j \omega_{2} t}\right\}$ where $\omega_{1}=\omega_{a}-\omega_{0}$ and $\omega_{2}=\omega_{a}+\omega_{0}$, that assures that their combined change in stored energy equals the change in stored energy at resonance. Derive a general expression and apply it to the specific situation when $\left|E_{1}\right|^{2}=\frac{1}{4}\left|E_{a}\right|^{2}$ and $\left|E_{2}\right|^{2}=\frac{3}{4}\left|E_{a}\right|^{2}$ where E_{a} is the amplitude at resonance.
Hints: Assume low power, $P=\varepsilon \chi E$ and average over a few optical cycles.

