Problem from the book

Siegmann p.203, Problems for 4.4, task 1

Designed problem

In a two level system, find the symmetrical offset, ω_0 , for two sinusoidal signals, i.e. $E=\operatorname{Re}\left\{E_1\mathrm{e}^{j\omega_1t}+E_2\mathrm{e}^{j\omega_2t}\right\}$ where $\omega_1=\omega_a-\omega_0$ and $\omega_2=\omega_a+\omega_0$, that assures that their combined change in stored energy equals the change in stored energy at resonance. Derive a general expression and apply it to the specific situation when $|E_1|^2=\frac{1}{4}|E_a|^2$ and $|E_2|^2=\frac{3}{4}|E_a|^2$ where E_a is the amplitude at resonance.

Hints: Assume low power, $P = \varepsilon \chi E$ and average over a few optical cycles.