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ABSTRACT 
 
We describe the design of the NanoMAX beamline to be built among the first phase beamlines of the MAX IV facility in 
Lund, Sweden. NanoMAX will be a hard X-ray imaging beamline providing down to 10 nm in direct spatial resolution, 
enabling investigations of very small heterogeneous samples exploring methods of diffraction, scattering, absorption, 
phase contrast and fluorescence. The beamline will have two experimental stations using Fresnel zone plates and 
Kirkpatrick-Baez mirror optics for beam focusing, respectively. This paper focuses on the optical design of the beamline 
excluding the experimental stations but also describes general ideas about the endstations and the nano-focusing optics to 
be used. The NanoMAX beamline is planned to be operational late 2016. 
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1. INTRODUCTION 

 
The new Swedish synchrotron radiation facility MAX IV is currently under construction in Lund in the south of Sweden. 
It will consist of a linear accelerator for full energy, top-up injections and two storage rings, one with 1.5 GeV and one 
with 3.0 GeV electron energy. The linear accelerator will also serve as the electron source for a short pulse facility and, 
in a possible future upgrade, a free electron laser. Eight initial beamlines have been funded and are planned to be 
operational in 2016.  
 
The NanoMAX beamline will be built at the 3 GeV storage ring, an ultra-low emittance ring ideally suited for this type 
of beamline. It is a hard X-ray imaging beamline for micro- and nano-beams and will enable imaging applications 
exploring absorption, diffraction, scattering, and fluorescence methods. This type of beamline opens up for new 
opportunities within a very broad range of research fields1, with the possibility to study nanoscale objects with atomic 
scale precision in realistic environments and in complex heterogeneous structures. As a result, one or more hard X-ray 
micro/nano imaging beamlines2-5 either have been constructed or are under construction at virtually all synchrotrons with 
sufficiently high brightness. In the design phase of the present beamline several of these other designs have been 
carefully studied.  
 
The NanoMAX beamline will feature two experimental stations. The first station will use zone plates to reach smallest 
focus sizes with the long term goal to achieve a direct 10 nm spatial resolution. The second station will use Kirkpatrick-
Baez mirror optics with spot sizes down to 300 nm or better. The major components and characteristics of the beamline 
are depicted in figure 1 and table 1. Experimental features of the beamline will be implemented in a sequential fashion, 
to allow a high quality in available methods. The beamline commissioning will start early 2016 and first user 
experiments are expected to be possible late 2016. 
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corresponding to a photon energy range of 5 – 30 keV. The first harmonic is attenuated with diamond CVD filters in 
front of the mirrors to reduce power load and power density on the mirrors and the monochromator crystals. It is possible 
to select filters with different thicknesses or run without filter. 
 
A common design for the front end is used for all beamlines at the 3 GeV ring. In addition to fixed masks and movable 
slits for power load reduction the front end includes safety shutters, beam diagnostics, bremsstrahlung collimation and an 
electron beam deflector.    

 
2.3. Beamline mirrors 
 
The basic principle for the beamline optical design is the following. The undulator source is imaged into an intermediate 
point at 51 meter distance and simultaneously monochromated. This secondary source is in turn imaged by the nano-
focusing optics; the KB-mirrors or the Fresnel zone plate.  
 
Two white beam mirrors are used to focus the source into a stigmatic image at 51 meter distance from the undulator, 
where the secondary source aperture (SSA) is located. The first mirror (VFM) deflects the photon beam horizontally and 
focuses the beam in vertical direction by sagittal focusing. The second mirror (HFM) also deflects the beam horizontally 
and focuses the beam in horizontal direction by meridional focusing. The VFM has a fixed curvature while the HFM is 
bendable with cylindrical shape. The HFM has three coating stripes, Si, Rh and Pt. With the Si coating high harmonic 
contribution is reduced at photon energies below 10 keV. Rh is used in the range 10 – 22 keV and Pt above 22 keV. The 
VFM has a Pt coating. Both mirrors are water cooled with clamping to the mirror sides or by interfacing with eutectic 
metal. The most important mirror parameters are listed in table 2.  
 
The geometry of deflecting the beam horizontally by both mirrors has some important advantages; the beam path is 
horizontal for the whole beamline; gravity does not act in the mirror meridional direction; slope errors influence the 
beam less in sagittal direction than in meridional direction. The latter is important because the undulator source size in 
vertical direction is only a few μm (FWHM). In horizontal direction the source size is about 100 μm, hence slope errors 
and vibrations in meridional direction are less apparent.  
       
     Table 2. Specifications for the vertically and horizontally focusing mirrors.  

Mirror VFM HFM
Mirror substrate Silicon Silicon 
Mirror shape Circular cylinder (sagittal) Circular cylinder (meridional) 
Grazing angle of incidence  2.7 mrad 2.7 mrad 
Optically active length 400 mm 400 mm 
Coating stripe Pt Si,  Rh,  and Pt 
Meridional slope error  < 0.5 μrad rms  < 0.5 μrad rms 
Sagittal slope error  < 5 μrad rms  < 5 μrad rms 
Micro roughness  <0.2 nm rms <0.2 nm rms 
Radius  68.84 mm (sagittal), fixed shape 9443 meter (meridional), bendable shape 
Distance from source 25.2 m 25.8 m 
Distance to image plane 25.8 m  25.2 m 

 
2.4. Monochromator 
 
A Si(111), cryo-cooled, fixed-beam, double-crystal monochromator (DCM) in horizontal diffraction geometry is 
following directly after the mirrors. We have chosen the horizontally deflecting design because we believe it improves 
beam stability. With this design small horizontal crystal vibrations do not significantly broaden the image of the source. 
Also the mechanical design can be made rigid and gravitational forces do not act in the diffraction direction. Drawbacks 
of the horizontal design are lower transmission in the 5 – 7 keV range and slightly worse energy resolution compared to 
a design with vertical diffraction geometry. However, with the relatively small size of the undulator source these 
drawbacks are less apparent. The most important parameters for the monochromator are listed in table 3.  
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     Table 3. Most important parameters for the double crystal monochromator. 
Crystals Silicon (111) 
Direction of diffraction Horizontal, left on first crystal, right on second crystal, seen from above 
Operation Fixed beam offset, approximately 10 mm 
Energy range 5-30 keV 
Bragg angle range 23.3 – 3.7 ° 
Source distance 28 meter 
Max. absorbed power 35 W 
Max. absorbed power density 12 W / mm2 (at 5 keV) 

  
The monochromator and the two mirrors are situated in the first optical hutch. Space is also reserved in this hutch for a 
possible future upgrade with a double multilayer monochromator (DMM). With a DMM the photon flux can be 
increased one to two orders of magnitude which can be advantageous for, e.g., X-ray fluorescence measurements on low-
concentration samples.   
 
2.5. Secondary source aperture 
 
The secondary source aperture (SSA) acts as a flexible source for the succeeding nano-focusing optics. The SSA consists 
of two pairs of slits, positioned 51 meters from the undulator source, where the vertical and horizontal opening can be set 
independently. By having this flexibility in defining the shape and size of the source the transverse coherence length can 
be tailored to match the Fresnel zone plates, KB-optics or other possible future optics, in order to reach spot sizes set by 
the diffraction limit. By opening the slits one can optimize for high flux conditions using enlarged spot sizes. The SSA is 
situated in a small temperature controlled optics hutch on the main ring floor. Together with the SSA a beam viewer and 
an X-ray beam position monitor (XBPM) is installed. The XBPM can be used to stabilize the beam position by 
regulating the pitch angle of the second crystal in the monochromator in a closed loop control.    
 
2.6. Experimental stations 
 
NanoMAX has two experimental stations and scanning X-ray microscopy is the fundamental imaging mode. Both 
stations are located in a 20 meter long experimental hutch in the satellite building. The hutch may possibly be divided by 
a radiation wall to allow for measuring with the first station while preparation work is done in the second half. 
Alternatively, by not dividing the hutch a third experimental setup may be possible to build if future ideas arise. The 
design of the two experimental stations is in an early phase. We have arranged two workshops to collect requests from 
potential future users and from international experts on nano-probe beamlines. At this time we have the following 
conceptual ideas.     
 
The first experimental station, at approximately 33 meter distance from the SSA, uses Fresnel zone plates to achieve 
smallest possible focal spots. The realistic initial goal is to achieve a 30-50 nm spot within the energy range 5 – 12 keV. 
Zone plates will be developed and provided by a group from the Royal Institute of Technology in Stockholm. The long 
term goal is to achieve 10 nm spot size. Samples are scanned in X, Y for 2D mapping and also rotated for 3D mapping. 
Sample environments on this station have to be small because the available distance between optics and sample is in the 
mm to cm range and varies with photon energy. Thus for example in-situ sample environments have to be constructed in 
rather small dimensions. Such technologies have been successfully developed for a number of very different situations 
ranging from liquid cells8 for biology to heated gas cells for catalysis9.  
 
The second experimental station, at approximately 43 meter distance from the SSA, uses two plane-elliptical mirrors in 
Kirkpatrick-Baez configuration to achieve a spot size in the 100 – 1000 nm range. Compared to the first station, the 
distance between optics and sample is more generous allowing for more complex and large sample setups. We expect 
this station to be configured with users’ equipment rather frequently while for the FZP-station the setup will be more 
static and with a tighter integration between sample stage/environment and optics.   
 
Main experimental methods are nano-diffraction, X-ray absorption, X-ray phase-contrast, X-ray fluorescence. We also 
plan to explore coherent diffraction imaging (CDI) methods, e.g., ptychography in various forms.  
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