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We deduce the signal-to-noise ratio for fluorescence lifetime imaging when using frequency-domain methods.
We assume mono-exponential decay and quantum-noise-limited performance. The results are compared with
Monte Carlo simulations with good agreement. We also compare our results with previous investigations of
time-domain methods for fluorescence lifetime imaging. For a given number of detected photons, we find that
frequency-domain and time-domain methods are equally good. The correct choice of detection technique and
its parameters is important for obtaining good results. © 2003 Optical Society of America
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1. INTRODUCTION
In the fluorescence process, a molecule absorbs a photon
and, after a certain delay, emits a photon of (generally)
longer wavelength. Typically, both the absorbed and
emitted photons are in the visible spectrum, but ultravio-
let and infrared wavelengths are also possible. Mol-
ecules displaying this behavior (fluorophores) are usually
rather complex organic chemicals. When the fluores-
cence process is repeated, the time delay between the ab-
sorption and the emission of a photon varies statistically
for a fluorophore molecule. The average time delay is
called the fluorescence lifetime, denoted by t. If a large
number of fluorophore molecules are illuminated by a
short pulse of light (Dirac pulse) at time t 5 0, the inten-
sity of the emitted fluorescence will vary according to

I~t ! 5 I0 exp~2t/t!, t > 0. (1)

Biomedical preparations are often labeled with fluores-
cent substances before microscopical study. In this way,
specific labeling of interesting parts can be made. The
intensity of the fluorescent light is usually studied, and
images are often recorded by photography or CCD image
sensors. Also, laser-scanning methods are used for re-
cording images of the fluorescence distribution in both
two and three dimensions. In addition to fluorescence in-
tensity imaging, it has recently become popular to record
fluorescence lifetime images. In a fluorescence lifetime
image, the pixel values do not represent light intensity
but rather represent fluorescence lifetime t.1–9 Such im-
ages can be useful tools in the biomedical field.10–18 This
trend has been stimulated by the development of probes
with lifetimes that are sensitive to, e.g., Ca21 concentra-
tion or pH.19,20

Compared with light intensity measurements, fluores-
cence lifetime has the advantage of a reduced sensitivity
to errors caused by light absorption, scattering, and
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photobleaching. A number of different techniques can be
used for measuring fluorescence lifetime, many of which
have been in use for a long time. These methods can be
divided into two main groups: time-domain methods and
frequency-domain methods. In time-domain methods,
the fluorescence light intensity decay is measured after
excitation with a short pulse of light.15 In frequency-
domain methods, the fluorescent sample is illuminated
with light whose intensity varies periodically in time.
The fluorescent light will also display periodic intensity
variations at the same frequency, and the phase angle or
the degree of modulation of the fluorescent light is
measured.21 From these measurements, the lifetime can
be calculated.

In many cases where fluorescence lifetime imaging is
used, the number of recorded photons per pixel is rela-
tively small. This is the case especially in confocal mi-
croscopy. In such cases, there can be a considerable un-
certainty in the recorded values due to photon quantum
noise. Also, other sources of noise will influence the re-
sults, but these are often of minor importance. The ob-
vious remedy is to collect more photons, but this often
leads to photobleaching, excessive recording times, and
blurred images due to specimen movement. It is there-
fore important to record the available photons as effi-
ciently as possible, and to process the resulting signals in
the best possible way, so that losses in signal-to-noise ra-
tio (SNR) can be kept to a minimum.

The number of photons recorded during a fixed measur-
ing period is Poisson distributed. Denote the parameter
of the distribution by N. This means that the number of
photons has mean N and standard deviation AN. The
SNR of the process is N/AN 5 AN. This is the ultimate
SNR that we can get with this number of detected pho-
tons. When fluorescence lifetime imaging is performed,
multiple intensity measurements must be combined, a
2003 Optical Society of America
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process that often reduces the SNR. To quantify the per-
formance of a lifetime imaging technique, we will use the
F-value introduced by Draaijer et al.13 The F-value is
defined as F 5 ANst /t, where st is the standard devia-
tion in repeated measurements of the lifetime value t.
Technically, the F-value can be described as ‘‘normalized
relative rms noise,’’ where the normalization is relative to
an ideal intensity measurement with the same number of
detected photons (i.e., SNR 5 AN, yielding an F-value of
unity). In all lifetime measurements, we have F > 1;
and the closer the value to unity, the better the perfor-
mance.

The SNR for time-domain fluorescence lifetime mea-
surements has been investigated previously. Time-
correlated single-photon counting (TCSPC)22 has been in-
vestigated by Köllner and Wolfrum.23 In this technique,
the measured fluorescence intensity decay function is fit-
ted to (in the simplest case) a mono-exponential function.
With the use of TCSPC, F-values arbitrarily close to unity
can be obtained provided that a sufficient time resolution
(number of recording channels) and total measurement
time are used. This means that TCSPC has the potential
to utilize the available photons as efficiently as is physi-
cally possible. In reality, both the total measurement
time and the number of channels must be limited. How-
ever, it takes only eight channels to reach an F-value of
approximately 1.1.

Time gating can be considered a simplified version of
TCSPC, where, in the simplest case, only two measure-
ment channels (time windows) are used. After pulse ex-
citation, the integrated fluorescence light intensities in
two consecutive time windows are measured. From the
ratio of these intensities, the lifetime can easily be calcu-
lated. The performance of this technique has been inves-
tigated both theoretically and by Monte Carlo methods by
Ballew and Demas.24 In the case of two time windows of
equal width, the best F-value, 1.5, is obtained for a win-
dow width of 2.5t. As expected, better performance can
be obtained with more than two windows.9

Both TCSPC and time gating require short pulses of
light (in the picosecond or femtosecond regime). Al-
though longer pulses can in principle be used, this re-
quires compensation that will compromise the perfor-
mance. By using frequency-domain, rather than time-
domain, methods, one can drop the requirement for short
pulses. In this case, the fluorophore is illuminated by
light whose intensity varies periodically in time. The
traditional frequency-domain method uses sinusoidally
intensity-modulated excitation with a frequency that is
usually in the range from ten up to a few hundred mega-
hertz. The sine modulation is transferred to the fluores-
cent light, though weakened and phase shifted. By mea-
suring the phase shift or the degree of modulation, one
can calculate the lifetime of the fluorescence process.21

Although frequency-domain methods have been used for a
long time,25 rather little has been published concerning
their SNR performance and how they can be optimized.
Draaijer et al.13 have made computer simulations, assum-
ing detection by an image intensifier and excitation either
by a sinusoid or a train of Dirac pulses. It was found that
the best (i.e., lowest) F-values attainable for these two
cases are 6 and 1.5, respectively. The optimum param-
eter settings were not reported. In another study by
Carlsson and Liljeborg,26 it was theoretically shown that,
when lock-in detection is used, an F-value of 3.7 could be
obtained for sine-modulated excitation. The optimum
modulation frequency was found to be 0.1/t in this case.
We felt that a more thorough and systematic investiga-
tion of the performance and the optimization of
frequency-domain methods was needed. Therefore we
have undertaken a theoretical study to assess what
F-values are obtainable and how the experimental pa-
rameters should be chosen to achieve these values. In
addition to the theoretical investigations, we have also
performed Monte Carlo simulations to get an independent
verification of the theoretical results. We recently pre-
sented some preliminary results, mainly Monte Carlo
simulations, from this study in a summarized form.27 In
this paper, we will develop the full mathematical theory
for different frequency-domain imaging methods and
present the optimum working parameters.

We consider three measuring techniques:

1. Phase measurements using lock-in detection. In
this method, a detector transforms the emitted fluores-
cence light into an electric output signal that is fed to two
lock-in amplifiers. In each of these amplifiers, the signal
is multiplied by a sinusoid and low-pass filtered. The si-
nusoids have the same frequency as that of the illumina-
tion, and their phase angles can be adjusted by the
operator.28 The values of the two output signals from the
lock-in amplifiers are recorded and used to estimate the
lifetime t of the fluorescent light.

2. Phase measurements using an image intensifier.
In this case, the fluorescent light is amplified, and the
amplification factor is sine modulated at the same fre-
quency as that of the illumination. The average light in-
tensity, after amplification, is recorded for different phase
angles of the sine-modulated amplification factor, and
these values are used for estimating the lifetime.

3. Demodulation measurements, which are made
with either an image intensifier or lock-in amplifiers. In
this case, the lifetime is obtained from the degree of
modulation of the fluorescence signal compared with that
of the excitation.

The results presented are not restricted to the imaging
case but are valid for fluorescence lifetime measurements
in general. While an image intensifier is likely to be used
only for imaging purposes, lock-in detection of a detector
signal can be used in nonimaging applications. Our re-
sults are applicable also to such measurements. In non-
imaging situations, the lifetime value is usually based on
many more detected photons, so that the SNR is higher
and parameter optimization is less important.

2. THEORY
A. Accuracy Estimation
Our estimates of t will be of the form t̄ 5 u/v, where u
and v are estimates of random variables U and V. We
must assume that V cannot take the value zero or even
small values. To estimate the accuracy of t, we write
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t 5
U

V
5

m1 1 s1Y1

m2 1 s2Y2
, (2)

where m1 and m2 are the means, and s1 and s2 are the
standard deviations, of U and V, respectively. The Yi are
random variables with mean 5 0 and variance 5 1. We
introduce the notation k1 5 s1 /m1 and k2 5 s2 /m2 , as-
sume that uk2u is (much) smaller than unity, and use se-
ries expansion:

U

V
5

m1

m2

1 1 k1Y1

1 1 k2Y2

5
m1

m2
~1 1 k1Y1 2 k2Y2 2 k1k2Y1Y2

1 k2
2Y2

2 1 ¯ !. (3)

We get the expectation of t :

E$t% 5
m1

m2
~1 2 rk1k2 1 k2

2 1 ¯ !, (4)

where r 5 E$Y1Y2%.
Squaring Eq. (3), taking expectations, and omitting mo-

ments of order . 2, we get

E$t 2% 5 S m1

m2
D 2

~1 1 k1
2 1 3k2

2 2 4rk1k2!. (5)

Subtracting the square of E$t%, we get

st
2 5 D2$t% 5 S m1

m2
D 2

~k1
2 1 k2

2 2 2rk1k2

2 r2k1
2k2

2 2 k2
4 1 2rk1k2

3!. (6)

Our estimates will be constructed such that m1 /m2 5 t.
The F-value for the various methods will be based on the
ratio st /t (see Section 1).

B. Model
The fluorescence caused by illumination with a Dirac
light pulse at time t* 5 0 is assumed to be f(t* )
5 f0 exp(2t* /t* ), t* > 0. It is the average fluorescence
lifetime t* that shall be estimated. Here we have used
the asterisk to denote time measured in seconds. In the
following, we shall study a scaled problem and use a di-
mensionless time variable t and a dimensionless param-
eter t. The period T of the illuminating light is used for
the scaling. Define

t 5
2p

T
t* , t 5

2p

T
t* .

The dimensionless time period will be 2p. It is good
mathematical practice to work with dimensionless vari-
ables. The formulas become simpler. The time and fre-
quency dependence of a calculated t can be recovered by
unscaling with the formula t* 5 (T/2p)t 5 t/v, where v
is the angular frequency of the light modulation.

The fluorescence caused by a Dirac pulse at time
t 5 0 will be
f~t ! 5
1

t
exp~2t/t!, t > 0, (7)

which is normalized so that its integral value over the
positive axis equals unity.

The illumination is assumed to be a periodic function
e(t), now with period 2p. With such an illumination, the
intensity of the fluorescent light is the convolution e * f of
e and f, which also is a function with period 2p (Fig. 1).

The fluorescent light is so weak that it cannot be
thought of as a continuous flow but shall be seen as a se-
quence of photons. The total number of photons in a
measurement can be as low as 100 or fewer. The photon
generation is assumed to be a random Poisson process
with a parameter proportional to e * f. The probability
that a photon shall be emitted in the short time interval
(t, t 1 Dt) is g (e * f )(t)Dt, where g is proportional to
the average number of photons per period.

C. Lock-In Detection
If a photon is detected at time t, the first lock-in amplifier
outputs the signal sin(t 1 f1), where f1 is a parameter
chosen by the operator. The sum s1 of these signals over
a measuring period is the data delivered from the mea-
surement. The same applies to the second lock-in ampli-
fier, but with the phase angle f2 . Being generated from
the same random process, s1 and s2 are observations of
dependent random variables.

1. Calculation of Mathematical Expectations for
Illumination with a Train of Dirac Light Pulses
Let us consider the idealized case in which e(t) is an in-
finite sequence of Dirac pulses of size unity in the points
t 5 2pk, k integer. We get the periodic convolution

p~t ! 5 ~e * f !~t ! 5
exp~2t/t!

t@1 2 exp~22p/t!#
,

0 < t , 2p. (8)

Fig. 1. Fluorescence light intensity as a function of time with
excitation by a train of Dirac pulses.



J. Philip and K. Carlsson Vol. 20, No. 2 /February 2003 /J. Opt. Soc. Am. A 371
The mathematical expectation with respect to the current
probability density p(t)dt is denoted by E$ %. For any
function g(t), this means that

E$ g~t !% 5 E
0

2p

g~t !p~t !dt. (9)

We shall use Fourier series for handling the periodic func-
tions and define the complex Fourier coefficients by

pk 5 E
0

2p

exp~2ikt !p~t !dt

5
1

1 1 ikt
, 2` , k , `. (10)

Let the output per period from lock-in amplifier i be Xi ,
i 5 1, 2. We get

E$Xi% 5 E
0

2p

sin~t 1 f i!p~t !dt

5 ImH E
0

2p

exp@i~t 1 f i!#p~t !dtJ
5 Im@exp~if i!p21#

5 ImS cos f i 1 i sin f i

1 2 it D
5

t cos f i 1 sin f i

1 1 t 2 . (11)

We get

E$X1%

E$X2%
5

t cos f1 1 sin f1

t cos f2 1 sin f2
. (12)

If the Dirac pulses have size g instead of unity, the aver-
age number of photons in a measurement lasting n peri-
ods will be ng. We shall denote this quantity by N. Us-
ing the observation si as an estimate of NE$Xi%, we get
the following estimator of the sought t:

t̄ 5
s1 sin f2 2 s2 sin f1

2s1 cos f2 1 s2 cos f1
. (13)

Let u and v be the numerator and the denominator of Eq.
(13), so that t̄ 5 u/v. Denoting the corresponding ran-
dom variables by U and V, we get

E$U% 5 NE$X1 sin f2 2 X2 sin f1%

5 NE$sin f2 sin~t 1 f1! 2 sin f1 sin~t 1 f2!%

5 N sin~f2 2 f1!E$sin t%. (14)

Defining Df 5 f2 2 f1 , we get

E$U% 5 N sin Df E$sin t%

5 N sin Df Im~ p21! 5 N sin Df
t

1 1 t 2 .

(15)

In the same way,
E$V% 5 N sin Df E$cos t%

5 N sin Df Re~ p21!

5 N sin Df
1

1 1 t 2 . (16)

It follows that E$U%/E$V% 5 t, but this is not the same as
E$t̄% 5 E$U/V%.

To carry out the error analysis of Subsection 2.A, we
will need the second moments of U and V. To this end,
we need a closer discussion of the photon process. Divide
each period of the time axis into, say, M intervals of
length Dt 5 2p/M, where M is large. For interval num-
ber k containing the point tk , the probability that a pho-
ton is generated is p(tk)Dt, and if that happens, the
lock-in amplifier i will output sin(tk 1 fi). The expected
contributions from this interval to U and U2 are

DU 5 @sin~tk 1 f1!sin f2 2 sin~tk 1 f2!

3 sin f1#p~tk!Dt

5 sin Df sin~tk!p~tk!Dt,

DU2 5 @sin~tk 1 f1!sin f2 2 sin~tk

1 f2!sin f1#2p~tk!Dt

5 sin2 Df sin2~tk!p~tk!Dt.

When summing the DU and letting Dt → 0, we get the
same integral as that in Eq. (15).

The contribution to the variance of U is DU2 2 (DU)2

from each interval. The second term is of the order of
(Dt)2 and can be neglected. The contributions from dis-
joint intervals are independent. When summing them,
we get

s1
2 5 E$U2% 5 N sin2 Df E$sin2 t%

5
N

2
sin2 Df E$1 2 cos 2t%

5
N

2
sin2~Df !@1 2 Re~ p22!#

5
N

2
sin2~Df !S 1 2

1

1 1 4t 2D , (17)

s2
2 5 E$V2% 5 N sin2 Df E$cos2 t%

5
N

2
sin2~Df !S 1 1

1

1 1 4t 2D , (18)

rs1s2 5 E$UV% 5 N sin2 Df E$sin t cos t%

5
N

2
sin2 Df Im~ p22!

5 N sin2~Df !
t

1 1 4t 2 . (19)

Inserting Eqs. (15)–(19) in Eq. (4), we get

E$t̄% 5 tF1 1
2

N

t 2~1 1 t 2!2

1 1 4t 2 1 ¯G . (20)
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Here N equals the expected number of photons in the
measurement. From Eq. (6), we have

st
2 5 D2$t̄% 5

t 2~1 1 t 2!2~1 1 2t 2!

N~1 1 4t 2!
. (21)

The F-value will be

F 5
ANst

t
5 ~1 1 t 2!S 1 1 2t 2

1 1 4t 2D 1/2

. (22)

It is counterintuitive that F is independent of Df, and one
could believe that very small Df would give higher F.
However, the Monte Carlo tests confirm that even
Df 5 0.1° with N 5 240 photons per measurement gives
approximately the same F as does a bigger Df. Gener-
ally, Df 5 90° is a natural choice. The frequency depen-
dence of F can be recovered by replacing t with vt* in Eq.
(22), where t* is the fluorescence lifetime measured in
seconds (Fig. 2). F is an increasing function of t, so its
minimum is attained for t 5 0. For instance, t* 5 3 ns
and f , 27 MHz give F , 1.1.

2. Square-Wave and ‘‘Gauss-Like’’ Pulse Excitation
Excitation by Dirac pulses is, of course, impossible to ac-
complish in practice. Also ‘‘near-Dirac’’ pulses often re-
quire expensive equipment. Therefore we shall consider
excitation by broader pulses and start with square waves
with duty cycle a. The fluorescence light intensity will be
the convolution of the train of Dirac pulses e of Subsection
2.C.1, the decay function f, and the function ha :

ha~t ! 5 H 1

2pa
, utu , ap

0, else

. (23)

The Fourier coefficients of the convolution are the prod-
ucts of the pk and the Fourier coefficients of ha . The
products are

a0 5 1, ak 5
sin kpa

kpa

1

1 1 ikt
, k Þ 0. (24)

To get an estimate of t and its accuracy, we replace the
pk of Subsection 2.C.1 by the ak . Since ha(t) is an even
function, a real factor is introduced, but, otherwise, the
formulas are the same. We get

E$U% 5 N sin Df Im~a21! 5 N sin~Df !
sin pa

pa

t

1 1 t 2 ,

(25)

so formula (13) for t̄ is still valid. For the variance, we
have

E$U2% 5
N

2
sin2~Df !F1 2 ReS sin 2pa

2pa

1

1 2 i2t
D G

5
N

2
sin2~Df !S 1 2

sin 2pa

2pa

1

1 1 4t 2D . (26)

The other expectations are obtained analogously. By in-
serting t 5 vt* , we recover the frequency dependence.
Figure 3 shows the F-value as a function of modulation
frequency for square waves with different duty cycles a.
The best results (i.e., lowest F-values) are obtained when
a is small (a 5 0 corresponds to a train of Dirac pulses).
The best F-values obtainable for a 5 0.5 and a 5 0.1 are
2.9 and 1.2, respectively. The optimum modulation fre-
quency also depends on a but is usually in the region
0.05/t* –0.1/t* .

When intensity-modulated light is generated by using,
for example, an electro-optic modulator, it is often not pos-
sible to shut off the light completely. We may therefore
have a background intensity (5b), implying that ha(t) in
fact has the form

Fig. 2. Normalized relative rms noise F as a function of modu-
lation frequency with lock-in detection. Low F-values represent
good performance. Theoretically, F > 1. Curves shown are for
excitation by a train of Dirac pulses and sinusoidal excitation.

Fig. 3. F-value as a function of modulation frequency for
square-wave excitation with different duty cycles a (a 5 0.0 rep-
resents Dirac pulses).
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hab~t ! 5
1

2p@1 2 ~1 2 a !~1 2 b !#
H 1, utu , ap

b, else
.

(27)

Then the ak are replaced by

bk 5
a~1 2 b !

1 2 ~1 2 a !~1 2 b !

sin kpa

kpa

1

1 1 ikt
, k Þ 0,

(28)

and formula (13) for t̄ is still valid. The factor a(1
2 b)/@1 2 (1 2 a)(1 2 b)# of b22 will enter the expres-
sion for the variance of U [compare with Eq. (26)]. For
duty cycles a 5 0.5 and 0.1 and b 5 0.05, the F-values
will increase by 11% and 95%, respectively, compared
with those for the case of no background (Fig. 4). The
loss of performance caused by background is thus most
pronounced at low duty cycles. At a background level of
5%, we can actually see that a duty cycle of 0.2 will give
better performance than a duty cycle of 0.1 (Fig. 4).
Compare with Fig. 3, showing the background-free case,
where the order of the curves is reversed.

Because of bandwidth limitations, practical light modu-
lators will not be able to generate perfect square-wave
pulses, with or without background. Let us consider
smoothed versions of the above-mentioned excitations.
We will use the following ‘‘Gauss-like’’ smoothing kernel:

sc~t ! 5 H 2c

p
cos2 ct, utu ,

p

2c

0, else

. (29)

Usually, we use c 5 2 so that the support of sc is a quar-
ter of a period, and its FWHM is half of that (Fig. 5). The
Fourier coefficients of sc are

c0 5 1, c62c 5
1
2 ,

Fig. 4. Same as Fig. 3, but with a background light intensity of
the excitation that is 5% of that of the peak value. Note that the
order of the curves with a 5 0.1 and a 5 0.2 is reversed com-
pared with those in Fig. 3.
ck 5
4c2

4c2 2 k2

sin~kp/2c !

kp/2c
, k Þ 0, 6 2c. (30)

With the excitation hab smoothed by sc , the factor c22
will also enter the expression (26) for the variance of U:

E$U2% 5
N

2
sin2~Df !

3 F1 2
4c2

4c2 2 4

sin~p/c !

p/c

a~1 2 b !

1 2 ~1 2 a !~1 2 b !

3
sin 2pa

2pa

1

1 1 4t 2G . (31)

With a 5 0.2, b 5 0.0, and c 5 2, we get an Fmin-value
that is 12% larger than that for the corresponding non-
smoothed square waves (compare Figs. 3 and 6). Adding
a background level b of 0.05 to the smooth excitation will
have an effect similar to that observed for square-wave
excitation. Thus the largest increase in F-value will be
at low duty cycles. The results will resemble those
shown in Fig. 4, but with 5%–10% higher F-values.
Practically, this means that the loss in performance will
be relatively small if a train of femtosecond illumination
pulses is replaced by nanosecond pulses.

3. Sinusoidal Excitation
Excitation by sinusoidally intensity-modulated light is
common and easy to produce. Then the illumination
function will be

e~t ! 5
1

2p
~1 1 m sin t !, (32)

where m is the degree of modulation (0 , m < 1). The
fluorescent light is the convolution q of e and f. We get

Fig. 5. Smooth ‘‘Gauss-like’’ kernel. The excitation intensity
function was obtained by convolving a square wave with this
smoothing kernel.
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2pq~t ! 5 1 1
m

t
E

0

`

sin~t 2 x !exp~2x/t!dx

5 1 1
m

t
ImH E

0

`

exp@i~t 2 x ! 2 x/t#dxJ
5 1 1

m

t
ImFexp~it !

1

i 1 1/tG
5 1 1

m

1 1 t 2 ~sin t 2 t cos t !. (33)

Define a 5 arctan t, and let a replace t as the sought pa-
rameter. Then we can write

q~t ! 5
1

2p
@1 1 m cos a sin~t 2 a!#. (34)

The only Fourier coefficients of this function that are dif-
ferent from zero are

q0 5 1, q1 5 2
i

2
m cos a exp~2ia!,

q21 5
i

2
m cos a exp~ia!. (35)

We get

E$Xi% 5 Im$exp~if i!q21% 5
m cos a

2
cos~f i 1 a!

(36)

and use the estimate

s1

s2
5

E$X1%

E$X2%
5

cos~f1 1 a!

cos~f2 1 a!
. (37)

Rearranging, we obtain

Fig. 6. F-value as a function of modulation frequency for exci-
tation with Gauss-like pulses and lock-in detection. a repre-
sents the duty cycle for the square wave that was convolved with
the smoothing kernel. Compare with Fig. 3.
t̄ 5 tan ā 5
s1 cos f2 2 s2 cos f1

s1 sin f2 2 s2 sin f1
. (38)

As above, we put t̄ 5 u/v, let N denote the total number
of photons in a measurement, and get

E$U% 5 N$cos f2 Im@exp~if1!q21#

2 cos f1 Im@exp~if2!q21#%

5
N

2
m cos a sin Df sin a. (39)

In the same way,

E$V% 5
N

2
m cos a sin Df cos a. (40)

We will also need

E$U2% 5 N~cos2 f2E$X1
2% 1 cos2 f1E$X2

2%

2 2 cos f1 cos f2E$X1X2%!. (41)

Here

E$Xi
2% 5

1
2 Re@1 2 exp~i2f i!q22# 5

1
2 , (42)

E$X1X2% 5
1
2 Re$exp@i~f1 2 f2!#

2 exp@i~f1 1 f2!#q22%

5
1
2 cos~f1 2 f2!. (43)

Insertion in Eq. (41) gives the variance [compare with Eq.
(17)]:

E$U2% 5 E$V2% 5
N

2
sin2 Df. (44)

After some trigonometric manipulations, we find that
E$UV% 5 0. This gives k1 5 A2/N/(m cos a sin a), k2
5 A2/N/(m cos a cos a), and r 5 0. From Eqs. (4) and
(6), we get

E$t̄% 5 tS 1 1
2

Nm2

1

cos4 a
D , (45)

st 5 tA2

N

1

m cos2 a sin a
, (46)

giving

F 5
ANst

t
5

A2

m cos2 a sin a
5

A2~1 1 t 2!3/2

mt
.

(47)

Note also that this F is independent of Df, as in the pulse
excitation case. The frequency dependence of F is recov-
ered by inserting t 5 vt* in Eq. (47). Figure 2 shows
the F-value as a function of the modulation frequency for
m 5 1. The best F-value, 3.7, is obtained for t 5 A0.5,
corresponding to a frequency of 0.11/t* . In analogy with
the case of square waves, we may have a background in-
tensity level, so that the intensity never drops to zero.
This means that m , 1, and the F-value will be higher by
a factor of 1/m.
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D. Image Intensifier
In an image intensifier, the light amplification factor is
varied with a local (phase-shifted) sinusoid. In this way,
the incoming periodically varying light intensity is multi-
plied by the local sinusoid. The output signal s is the in-
tegral of the product. We assume that the amplification
factor is 1 1 sin(t 1 f ), so that it is nonnegative. [Com-
pare with the factor sin(t 1 f ) of the lock-in technique.]
Two successive measurements are made with different
phase angles f1 and f2 , so that s1 and s2 are obtained.
Assuming as above that the total number of photons per
measurement equals N, the two measurements will have
the averages E$si% 5 NE$Xi%. A third measurement is
made with no modulation in order to estimate the average
intensity of the sample. The third observation s3 will be
Poisson distributed with E$s3% 5 N and D2$s3% 5 N.
The situation differs from the lock-in case in which one
incoming light intensity is transformed to an electric sig-
nal. This signal is fed into several mixers that use dif-
ferent phase angles. This makes the lock-in data depen-
dent, while the image intensifier data are independent.
With three output data, the image intensifier technique
will need three times as many photons for a measurement
as that for the lock-in technique. This has been taken
into account when calculating the F-values.

1. Dirac Pulse Excitation
The excitation is the same as that in the lock-in case.
With an image intensifier, we get [compare with Eq. (11)]

E$X% 5 1 1 Im@exp~if !p21# 5 1 1
t cos f 1 sin f

1 1 t 2 .

(48)

The following estimate is used [compare with Eq. (12)]:

s1 2 s3

s2 2 s3
5

t cos f1 1 sin f1

t cos f2 1 sin f2
. (49)

Rearranging, we obtain the estimator [compare with Eq.
(13)]

t̄ 5
s1 sin f2 2 s2 sin f1 2 s3~sin f2 2 sin f1!

2s1 cos f2 1 s2 cos f1 1 s3~cos f2 2 cos f1!
.

(50)

As above, we put t̄ 5 u/v. The expressions for E$U% and
E$V% are the same as those in Eqs. (15) and (16). We get

D2$U% 5 N@sin2 f2 D2$X1% 1 sin2 f1 D2$X2%

1 ~sin f2 2 sin f1!2#. (51)

We have

D2$Xi% 5 E$Xi
2%

5 1 1 2 Im@exp~if i!p21#

1
1

2
Re@1 2 exp~2if i!p22#

5
3

2
1 2

t cos f i 1 sin f i

1 1 t 2

2
1

2

cos 2f i 2 2t sin 2f i

1 1 4t 2 . (52)
Insertion of Eq. (52) in Eq. (51) will produce D2$U%. Re-
placing the sines with cosines, we get D2$V%. We also
have

E$UV% 5 2N@sin f2 cos f2 D2$X1%

1 sin f1 cos f1D2$X2% 1 ~cos f2 2 cos f1!

3 ~sin f2 2 sin f1!#. (53)

Contrary to the development in former sections, these av-
erages and variances cannot be written as functions of
Df 5 f2 2 f1 . We have investigated how st /t varies
with f1 and f2 and found a ratio of approximately 5 be-
tween the largest and smallest values. The reason for
this angular dependence is illustrated in Fig. 7, which
shows the distribution of Monte Carlo-simulated mea-
surements in the u/v plane. The phase angles producing
the lowest F-value depend on t and are given in Fig. 8.
The frequency dependence of F is recovered by replacing t
with vt* (Fig. 9). We get Fmin 5 2.1, attained for
t 5 0.

2. Sinusoidal Excitation
The excitation is the same as that in the lock-in case. We
get [compare with Eq. (36)]

E$X% 5 1 1 Im@exp~if !q21# 5 1 1
m cos a

2
cos~f 1 a!.

(54)

The following estimate is used [compare with Eq. (37)]:

s1 2 s3

s2 2 s3
5

cos~f1 1 a!

cos~f2 1 a!
. (55)

Rearranging, we obtain the estimate

Fig. 7. Plot of u versus v from 100 Monte Carlo tests with Dirac
excitation and image intensifier detection for t 5 0.25
(frequency 5 0.04/t* ). The cluster uv1 to the right is for
f1 5 230° and f2 5 280°, and the vertical band uv2 is for
f1 5 60° and f2 5 260°. Since t̄ 5 u/v, the spread in the
angles to the points gives the spread in t̄. uv1 is obtained with
the angles given in Fig. 8 below. uv2 is an unfortunate choice of
f1 and f2 .
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t̄ 5 tan ā 5
s1 cos f2 2 s2 cos f1 2 s3~cos f2 2 cos f1!

s1 sin f2 2 s2 sin f1 2 s3~sin f2 2 sin f1!
.

(56)

The expressions for E$U% and E$V% are the same as those
in Eqs. (39) and (40). We get

D2$U% 5 N@cos2 f2 D2$X1% 1 cos2 f1 D2$X2%

1 ~cos f2 2 cos f1!2#. (57)

We have

Fig. 9. F-value as a function of frequency when an image inten-
sifier and sinusoidal or Dirac pulse train excitation are used.
The optimal angles according to Fig. 8 were used in the calcula-
tions.

Fig. 8. Optimal phase angles for image intensifier detection as a
function of modulation frequency. Both sinusoidal and Dirac
pulse excitations are shown.
D2$Xi% 5 E$Xi
2%

5 1 1 2 Im@exp~if i!q21#

1
1
2 Re@1 2 exp~2if i!q22#

5
3
2 1 m cos a cos~f i 1 a!. (58)

Inserting Eq. (58) into Eq. (57), we will get D2$U%. Re-
placing the cosines with sines, we get D2$V%. We also
have

E$UV% 5 N@sin f2 cos f2 D2$X1% 1 sin f1 cos f1D2$X2%

1 ~cos f2 2 cos f1!~sin f2 2 sin f1!#. (59)

As with Dirac pulse excitation, the relative accuracy st /t
cannot be written as a function of Df 5 f2 2 f1 . When
f1 and f2 are varied, the ratio between the largest and
smallest values of st /t is approximately 4. We get Fmin
5 7.4, attained for a 5 35°, corresponding to t 5 vt*
5 0.69. This means that the optimum modulation fre-
quency is 0.11/t* (Fig. 9). For any a, the minimal
F-value is attained for f1 1 a ' 120° and f2 1 a
' 2120° (compare with Fig. 8).

E. Demodulation
The fluorescent light varies sinusoidally with an un-
known phase angle f0 [compare with Eq. (34)]:

q~t ! 5
1

2p
@1 1 m cos a sin~t 2 f0 2 a!#. (60)

Here the modulation degree m of the excitation light is
supposed to be known, and the parameter a 5 arctan t is
to be determined. The idea is to determine a from the
degree of modulation m cos a and not from the phase shift
in sin(t 2 f0 2 a). This is achieved by multiplying the
signal by 1 1 sin(t 1 fi) for three different phases f1 ,
f2 , and f3 , thus producing the measurements s1 , s2 ,
and s3 . This can be done either with an image intensi-
fier or with dc-biased lock-in amplifiers.

First, we use s1 , s2 , and s3 to determine the unknown
phase f0 . Then the obtained f0 is inserted in the equa-
tions with the aim of extracting the factor m cos a of Eq.
(60). This leads to calculating the following two complex
determinants:

U 5 detF s1 exp~if1! 1

s2 exp~if2! 1

s3 exp~if3! 1
G ,

V 5 detF s1 exp~2if1! exp~if1!

s2 exp~2if2! exp~if2!

s3 exp~2if3! exp~if3!
G . (61)

U and V are linear expressions in the observed si , and we
want to calculate their expectations. As above, E$si%
5 NE$Xi%, and we have [compare with Eq. (54)]

E$Xi% 5 1 1 Im$exp@i~f i 1 f0!#q21%

5 1 1
m cos a

2
cos~f i 1 f0 1 a!. (62)
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Inserting Eq. (62) in Eq. (61) and doing column operations
on the determinants, we obtain

E$U% 5
iNm cos a

2
exp@2i~a 1 f0!#@sin~f3 2 f2!

1 sin~f1 2 f3! 1 sin~f2 2 f1!#, (63)

E$V% 5 2iN@sin~f3 2 f2! 1 sin~f1 2 f3!

1 sin~f2 2 f1!#. (64)

We find that

uE$U%u

uE$V%u
5

m cos a

4
. (65)

As usual, the observed u and v are assumed to be esti-
mates of E$U% and E$V%, respectively. If the number
4uuu/(muvu) obtained in a particular measurement is less
than unity, it will be used as an estimate of cos a.

As is seen in Eqs. (64) and (65), the three phase angles
f1 , f2 , and f3 contribute to E$U% and E$V% with the
same real factor

d ~f1 , f2 , f3! 5 sin~f3 2 f2! 1 sin~f1 2 f3!

1 sin~f2 2 f1!. (66)

Since d (f1 , f2 , f3) is cancelled in Eq. (65), this expres-
sion is independent of the three phases as long as
d (f1 , f2 , f3) Þ 0. If d is small, uuu/uvu is the ratio be-
tween small numbers and may suffer from discretization
errors. A simple advice is to let the f i be 120° apart,
which maximizes ud u.

The variances D2$U% and D2$V% can be calculated with
formulas analogous to Eq. (57) by using Eq. (58), which is
valid here. If the measurements are made with lock-in
amplifiers, the three si will be observations of dependent
random variables. Then a laborious trigonometric reduc-
tion of the expressions will result in

D2$V% 5 ~E$V%!2/N, D2$U% 5
1
8 D2$V%. (67)

Fig. 10. F-value as a function of frequency with the use of de-
modulation for determining lifetime. Sinusoidal excitation was
assumed in both cases.
We have found empirically that r ' (cos a)/A2. Insert-
ing these quantities in Eq. (6) and skipping powers of N21

higher than unity, we get

S scos a

cos a
D 2

5
1

Nm2 cos2 a
@1 1 sin2 a 1 ~1 2 m !2 cos2 a#.

(68)

To get t from the calculated cos a, we shall apply the for-
mula

t 5 tan a 5 ~cos22 a 2 1 !1/2. (69)

For small errors (large N), we have approximately

st

t
5 U dt

d cos a
U cos a

t

scos a

cos a
5

1

sin2 a

scos a

cos a
. (70)

We get

F 5 AN
st

t

5
1

m cos a sin2 a
@1 1 sin2 a 1 ~1 2 m !2 cos2 a#1/2.

(71)

For the modulation m 5 1, we get Fmin 5 3.33, attained
for cos a 5 (A5 2 1)/2, corresponding to t 5 1.27. The
minimizing t will increase toward A2 when the modula-
tion tends to zero. With t 5 vt* 5 1.27, the minimizing
modulation frequency will be 0.20/t* (Fig. 10).

If an image intensifier is used for the detection, the si
will be measured sequentially, so that they become inde-
pendent. The first moments of uUu and uVu are still inde-
pendent of the phase angles, but the second moments will
depend on all the phase angles, even f0 . Here it is im-
perative to choose the f1 , f2 , and f3 120° apart. Oth-
erwise, the correlation between uUu and uVu can become
negative, and this will ruin the accuracy. We have failed
to deduce theoretical expressions for the second moments
in this case with independent si . With the f i 120° apart,
we have run a sequence of Monte Carlo tests with differ-
ent a and N and obtained the following estimates [com-
pare with Eq. (67)]:

D2$U% ' ~E$V%!2/~4N !, D2~V ! ' ~E$V%!2/~2N !,
(72)

and r ' (cos a)/2. With the modulation m 5 1, the
Monte Carlo tests give Fmin 5 8.64 for t 5 vt* ' 1.4
(modulation frequency 0.22/t* ) (Fig. 10).

3. MONTE CARLO SIMULATION
We have compared all our theoretical results with Monte
Carlo simulations of the photon generation and measur-
ing methods. The agreement is good. An example of
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this is given in Fig. 11. The simulations also give a few
quantities of the demodulation technique that we could
not deduce analytically.

Each period of the time axis is divided into intervals of
length Dt 5 2p/M, M large. For each interval, a pseu-
dorandom number is used to determine whether a photon
shall be generated or not, according to, e.g., the probabil-
ity density p(t)Dt of Eq. (8) (compare with Fig. 1). M is
chosen sufficiently large that p(t)Dt is less than 0.01 for
all t in order to keep the probability of several photons per
interval low. The resulting M ranges from 30,000 to sev-
eral millions depending on t, N, and the method.

When we simulate lock-in detection and a photon is
generated in the interval (t, t 1 Dt), the number sin(t
1 f1) is added to s1 , and analogously for the other am-
plifiers and detection methods. The estimate t̄ is calcu-
lated according to an appropriate formula such as Eq.
(13). This simulation of a measurement is repeated sev-
eral (often 1000) times, and statistics of the obtained
quantities are collected. In this way, we get estimates of
E$t̄%, D2$t̄%, E$U%, E$U2%, F, and so on.

All simulations were carried out for measurements
with N 5 240 and N 5 2400 photons per measurement,
which are typical values in real applications. Various
values of t, modulation m, and phase angles f i were
tested, all giving results in good agreement with the
theory. A more detailed account of the simulations is
given in Ref. 27.

4. CONCLUSIONS
We have shown that frequency-domain fluorescence life-
time imaging methods have the potential of using the
available photons efficiently, provided that the recording
parameters are selected correctly. In all cases, the pa-
rameter choice is governed by the lifetime of the fluoro-
phore to be recorded. In reality, the lifetime will vary, of-
ten in an unpredictable way, across the specimen area
(this is the information that we want to record!). There-
fore it is not, in general, possible to use the optimum pa-

Fig. 11. Results from Monte Carlo simulation and the corre-
sponding theoretical curve. The case shown is Dirac pulse exci-
tation and lock-in detection.
rameter choice for all parts of the recorded lifetime image.
Based on an average expected lifetime, it should, how-
ever, be possible to make a good compromise.

An interesting result of the study is that the optimum
modulation frequency of the illuminating light is rather
low. In general, optimum performance is obtained at a
frequency of approximately 0.1/t* . This means that for a
typical fluorophore lifetime of, say, 3 ns, a frequency of ap-
proximately 30 MHz is optimal. The use of such a low
frequency means that the bandwidth requirements for
light source and electronics are moderate. As a conse-
quence, the equipment will be less expensive.

We have also shown that the excitation waveform can
be quite important and that sinusoids are not optimal.
The best results are obtained with trains of Dirac pulses,
but square waves with a duty cycle <0.2 also perform
well. Even a square wave with a duty cycle of 0.5 is bet-
ter than a sinusoid. The steep flanks of a square wave
require a high modulation bandwidth. Therefore it is im-
portant to note that a strongly smoothed square wave can
be used without losing much of the performance. For ex-
ample, for t* 5 3 ns the use of smooth ‘‘Gauss-like’’ exci-
tation pulses having a FWHM of 7 ns at a pulse-repetition
frequency of 28 MHz will give an F-value of 1.55. Then
the bandwidth requirement for the light source is only ap-
proximately 50 MHz. With sinusoidal excitation, the cor-
responding F-value is 3.77.

Some lock-in amplifiers can mix the input with either a
sinusoid or a square wave. Our Monte Carlo tests show
that it is better to combine a sinusoidal excitation with
a sinusoidal lock-in than with a square-wave lock-in.
A square wave for both excitation and lock-in is not a
good combination because it gives no stable way for esti-
mating t.

Address correspondence to Johan Philip at the location
on the title page or by e-mail, johanph@math.kth.se.
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