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Unwrapping Hartmann-Shack Images from
Highly Aberrated Eyes Using an Iterative
B-spline Based Extrapolation Method
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ABSTRACT: Purpose. When the wavefront aberrations of the eye are measured with a Hartmann-Shack (HS) sensor, the
resulting spot pattern must be unwrapped, that is, for each lenslet the corresponding spot must be identified. This puts a
limitation on the measurable amount of aberrations. To extend the range of an HS sensor, a powerful unwrapping algorithm
has been developed. Methods. The unwrapping algorithm starts by connecting the central HS spots to the central lenslets.
It then fits a B-spline function through a least squares estimate to the deviations of the central HS spots. This function is then
extrapolated to find the expected locations of HS spots for the unconnected lenslets. The extrapolation is performed
gradually in an iterative manner; the closest unconnected lenslets are extrapolated and connected, and then the B-spline
function is least squares fitted to all connected HS spots and extrapolated again. Results. Wavefront aberrations from eyes
with high aberrations can be successfully unwrapped with the developed algorithm. The dynamic range of a typical HS
sensor increases 3.5 to 13 times compared with a simple unwrapping algorithm. Conclusions. The implemented algorithm
is an efficient unwrapping tool and allows the use of lenslets with a low numerical aperture and thus gives a relatively higher
accuracy of measurements of the ocular aberrations. (Optom Vis Sci 2004;81:383-388)
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t has become increasingly popular in vision research to measure the
I ocular aberrations with a Hartmann-Shack (HS) wavefront sen-
sor.! The HS sensor consists of a lenslet array and a charge-coupled
device (CCD) detector. Each lenslet focuses a part of the wavefront
emerging from an eye onto the CCD detector in the focal plane of the
lenslets. If the wavefront is flat and thus free from aberrations, each
lenslet will focus its section of the wavefront to a spot right behind the
lenslet, to the projected lenslet center. If the wavefront has aberrations,
however, its shape will be distorted and the focused light spots will
move away from the projected lenslet centers (Fig. 1). The displace-
ment of a focused spot is proportional to the average tilt of the wave-
front over the area of that lenslet. The shape of the wavefront can then
be reconstructed from these local tiles. This is often done by least
squares fitting of derivatives of Zernike polynomials.' 2
A prerequisite of wavefront reconstruction is that each HS spot
can be assigned to the correct lensler. This puts a limir on the
measurable shape of a wavefront. [t a spot has moved ourside the
region of its lenslet and closer to another lenslet, it will be harder to
assign the spot to the right lenslet: the so-called unwrapping prob-
lem. The unwrapping problem occurs when the aberrations are

large, for example in subjects with 2 high degree of uncorrected

ametropia, keratoconus, penetrating keratoplasty, or central scoto-
mas and eccentric fixation.?

Different approaches to solve the problem with unwrapping in-
volve changes in the optics of the HS system or software-based algo-
rithms. The disadvantage with optical solutions is that they introduce
a higher complexity into the system or lower the accuracy of the
measurements by decreasing the f-number of the lenslets. Thus, an
algorithm that handles the unwrapping is an attractive solution.

This article describes in detail the implementation of an unwrapping
algorithm based on extrapolation of B-spline polynomials* > adapted and
extended for measurements of large aberrations in the human eye. This
algorithm handles the pure unwrapping problem and, thus, sdll requires a
subsequence wavetront reconstruction with Zernike polynomials. The
specific aim in this work was to be able to measure the large off-axis
aberrations in eyes with central visual field loss.”

METHODS

The developed unwrapping algorichm needs two inputs: the HS
spot positions in the HS image, in arbitrary order, and the posi-
tions of the projected lenslet centers. An iterative B-spline extrap-
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olation method then arranges the HS spots according to their
corresponding lenslets.

The method starts by connecting the central HS spots with the
closest projected lensler centers. From these connected pairs the
locations of the HS spots, corresponding to the other lenslets, are
predicted. The prediction is performed by fitting a polynomial
function to the displacements of the connected HS spots. This
function is then extrapolated outward to the closest not-yet-con-
nected lenslets, to give expected locations of their HS spots. A new
HS spot will be connected if it lies close enough to one of these
expected locations. The algorithm continues inan iterative manner
and ends when no more pairs can be connected. The main struc-
ture of the method is described in the flowchart in Fig. 2. The
following subsections give a more detailed description of the four
main parts: creating a grid of parameter points corresponding to
the projected lenslets, connecting the central starting points, cre-
ating the extrapolation function (the B-spline function), and fit-
ting the B-spline function and extrapolating iteratively out to the
closest not-yet-connected lenslets.

The fifth and last subsection gives numerical values for the var-
ious parameters used and discusses the implementation of the
algorithm.

Parameter Grid

The algorithm starts by creating a grid of parameter points,
which is used instead of the projected lenslet centers in the extrap-
olation. The parameter points correspond to the lenslets, with the
same spacing and rotation, but with a displaced location. The
central point of the parameter grid coincides with the cencral HS
spot, that is, the spot closest to the center of mass of the set of HS
spots and thus close to the middle of the pupil. This central pa-
rameter point and its HS spot are defined to correspond to the
closest lenslet, which means that the wavefront is assumed to be
almost flat in the center of the pupil. This is assumed because it is
not, by software-based means, possible to unwrap a large overall ilt
of the wavefront.®
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FIGURE 1.
The function of an HS sensor. The unwrapping problem arises when the
HS spots have moved too far away from the projected lenslets.

Starting Pairs

The extrapolation procedure needs some initial connections be-
tween parameter points and HS spots. Because the wavefront is
assumed to have smaller aberrations in the middle of the pupil, itis
convenient to start here. The central parameter point and the
central HS spot are thus the first connected point pair. The algo-
rithm then connects the parameter points around che first with the
closest HS spots, as shown in the enlarged square in Fig. 3. The
displacements of these HS spots from their corresponding param-
eter points serve as the starting values for the iteration. If the
wavefront is tilted, these displacements will only be correct by a
modulus of a lenslet diameter. This will affect the first-order poly-
nomials, but not the higher-order information.

B-spline Function

When an extrapolation to connect the parameter points and the
HS spots is performed, the quality of the prediction depends on
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FIGURE 2.

The structure of the unwrapping algorithm.
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how well suited the extrapolation function is for the wavefront
aberrations it should describe. Spline functions are especially ap-
propriate for describing aberrations with different characteristics in
different regions of the pupil. A spline function consists of a num-
ber of subfunctions, each describing the displacements of the HS
spots in different areas of the pupil. The current algorithm uses a
special kind of spline functions, B-spline functions, which are well
suited for extrapolation because they are well behaved and do not
diverge at the edges of the pupil.4 B-spline functions are preferable
in comparison with polynomials that cover the whole pupil (e.g.,
Zernike or Taylor polynomials), because the latter need high or-
ders to follow the spot pattern with an increased risk of divergence
during extrapolation.

In a B-spline function, ®(x,p), the pupil is divided into qua-
dratic intervals (Fig. 3), with one basis function, B,(x,y), associated
with each interval, 7. The linear combination of these basis func-
tions forms the total B-spline funcrion:

P(xy) = DBi(xy)

(1)

where m is the number of intervals, ¢; are constants, and # is the
chosen B-spline order. Each basis function is a complete function,
defined over the whole pupil. A basis thus exists everywhere, but is
only nonzero in a part of the pupil, where it is a polynomial of order
7. B-spline functions of the zeroth, first, and second order have
basis functions, which in one dimension are defined as*:
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FIGURE 3.

The division of the pupil into intervals. The rings represent the parameter
points. The stars indicate the HS spots, and the lines show the interval
boarders. The enlarged square shows the nine starting pairs in the middle
of the pupil.
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Two-dimensional basis functions are then constructed by mul-
tiplying the basis in the x-dimension with the same basis in the
y-dimension:

Bi(xy) = Bi(x)B](y) (5)

These basis functions are plotted in one and two dimensions in
Fig. 4. In equations 2 to 4, the width of the intervals is normalized
to unity and the coordinate x is set to zero in the middle of the
associated interval of the basis. The interval borders are thus at x
equal to = 0.5, £ 1.5. . .. As can be seen from the equations and
Fig. 4, a basis function can be nonzero over more than one interval
depending on the order of the basis; the zeroth-order basis, 8%(x),
is only nonzero in one interval (—0.3 < x < 0.5). The first-order
basis, B7(x), covers two intervals (—1.5 <x < —0.5and —0.5 <
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FIGURE 4.

B-spline basis functions of the zeroth, first, and second order plotted in
one and two dimensions according to equations 2 to 5. The chesshoard
pattern shows the 25 quadratic intervals.

Optometry and Vision Science. Vol. 81, No. 5, May 2004



386 Unwrapping Hartmann-Shack Images—Lundstrém & Unsbo

x < 0.5). The second-order basis, B7(x), covers three intervals and
so forth, When the basis functions cover more than one interval,
they will partly overlap. This makes the total B-spline function
smooth and more flexible.

Iteration: Least Squares Fit and Extrapolation

When the central HS spots have been connected to the right
lenslets and thus to the corresponding parameter points, the rest of
the HS spots are unwrapped and connected to the corresponding
lenslets in an iterative manner with B-spline extrapolation.

In each iteration, the coefficients, ¢, multiplying the B-spline
basis functions, are least squares ficced over the region with con-
nected point pairs. This fit is performed with the help of a matrix,
A, which has one row for each parameter point and one column for
each basis function. A matrix element A, thus contains the value of

i
the 7th basis in parameter point p, with coordinates x, and JE

Api = BF(XP‘Y?) (6)

A is a sparse matrix and must be calculated only once. The fit is
performed for two sets of coefficients: One set, c,, is fitted to the
displacements between the connected parameter points and their
corresponding HS spots in the x-direction, Ax, and one set, ¢, is
fitted to the displacements in the y-direction, Ay. These Jeast
squares fits are described in matrix formalism as:

A'Ac, = A"Ax

A'Ac, = ATA, (7)
where A contains the rows of matrix A that correspond to already
connected parameter points. The coefficients are then used in the
extrapolation to find the expected locations of the HS spots for
neighboring unconnected parameter points. The extrapolation
is also performed twice, once with the x-coefficients to give the
expected displacements in the x-direction and once with the
y-coefficients:

Ax=Ac, ®)

Ay = Ac,

For each unconnected parameter point, p, the displacements
Ax,and Ay, define the expected location of a HS spor. If the closest
unconnected HS spot lies within a certain radius of the expected
location, it is connected to the parameter point. Otherwise the
algorithm will leave the parameter point unconnected.

When all neighboring expected locations have been checked, the
algorithm starts on the next iteration, with fitand extrapolation to
new neighboring parameter points (Fig. 5). The iteration stops
when the algorithm cannot find any new HS spots to connect. The
output of the algorithm is the HS spots ordered as the parameter
points and thus the lenslets.

The algorithm was tested on a number of eyes and on computer-
generated spot patterns. The measurements where performed wich
an HS sensor with 325 X 325 pm lenslets of focal length 18 mm.
The study followed the tenets of the Declaration of Helsinki and
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FIGURE 5.

The progression of the iteration. 0 = starting points; 1 = parameter points
connected in the first iteration; 2 = points connected in the second
iteration. The left figure shows the progression when all parameter points
are connected, and the right shows how the algorithm goes around a
parameter point that has no HS spot (filled circle).

was approved by the local Research Ethics Commitcee. All subjects
gave informed consent before participation.

Implementation

Our implementation uses a two-dimensional B-spline function
of the second order, n = 2, as an extrapolation function. This
means that each two-dimensional B-spline basis function is non-
zero over 3 X 3 intervals (Fig. 4) and that each interval contains
nine nonzero basis. On the borders of the 3 X 3 intervals of a basis,
the basis is zero with its first derivative also equal to zero. The pupil
area that a basis covers depends on the chosen size of the intervals.
In this implementation, intervals of the size of 5 X 5 parameter
points (lenslets) are used, and thus, each second-order basis is
nonzero over 15 X 15 parameter points. The intervals are placed
with one interval centered over the nine starting pairs (the starting
parameter points are simply connected to the closest HS spot) (Fig.
3).

The second order B-spline function and che interval size of 5 X
5 parameter points were chosen for three reasons. First of all, the
second order is the lowest order, which has a derivative continuous
over the interval borders. Secondly, higher-order basis would lead
to an underdetermined least squares fit of the nine starting pairs.
The third-order basis, for example, would require ar least 16 start-
ing pairs (16 nonzero basis in each interval) to be well defined.
However, it is desirable to have as few starting pairs as possible
since the correct connection of the starting pairs is a delicate oper-
ation. The third reason is to have a reasonable number of degrees of
freedom. The number of degrees of freedom of a B-spline function
equals the number of basis functions and, thus, depends on the
order of the basis and on the size of the intervals. During the
unwrapping, the number of degrees of freedom is increased adap-
tively as the number of intervals increases when more spots are
connected. A pupil of 6 mm covers about 4 X 4 intervals of 5 X 5
parameter points (with a lenslet diameter of 325 pm). With a
second-order B-spline function, this gives in total 72 (in x- and
y-direction: 6 X 6 X 2) degrees of freedom. This number would
correspond to using Zernike polynomials up to the order of 10. If
the intervals are reduced to 3 X 3 parameter points, this would give
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128 (8 X 8 X 2) degrees of freedom, corresponding ro Zernike
polynomials up to the order of 14.

During the extrapolation two things must be investigated to
ensure that the predicted locations of HS spots are reliable. First,
the extrapolation should use only B-spline basis functions, which
have a reasonable support in the region of the already connected
points. A two-dimensional B-spline basis is defined over a region of
15 X 15 parameter points. If only a few of these 225 points are
connected, the least squares fit of the coefficient will be of low
quality. The quality will be especially low if the basis gets support
only from a corner, where the numerical value of the basis function
is very low. The implemented algorithm only includes a basis #, if
some of its elements in matrix A (column 7) has a value of 0.01 or
larger. This means that the basis has support from connected pa-
rameter points in a reasonable area of its nonzero region. Second,
the extrapolation should not be extended far away from the already
connected points. The accuracy of the predicted location of an HS
spot depends on the number of neighboring connected point pairs.
If, for example, an unconnected parameter point is surrounded by
connected pairs, the least squares fit and extrapolation will give a
very accurate prediction. Conversely, an extrapolation for a param-
eter point, without connected neighbors, will produce a predicted
location with lower accuracy. It is therefore important to make sure
that the parameter points, to be extrapolated, have some connecred
neighbors, The method proposed here labels each parameter point
with the number of connected neighbors, The extrapolation is
then performed only for parameter points, which have ar least three
already connected neighbors. This means that the algorithm will
iterate outward in circles (left image of Fig. 5). If an HS spot is
missing or too far away from the predicted location, the corre-
sponding parameter point will be left unconnected in that itera-
tion, but will be rechecked in each of the following iterations until
it is connected or all HS spots are identified. Thus, chis technique
enables the algorithm to work around difficult parts in the HS spot
pattern and to handle missing HS spots (right image of Fig. 5).

After the extrapolation, the algorithm searches for an HS spot in
a circle around the predicted location and the closest HS spot is
connected. The radius of the circle sets the maximal distance be-
tween the predicted location and the HS spot. In this implemen-
tation, the radius is half a lenslet diameter.

RESULTS

The algorithm has been tested successfully on a number of eyes.
It can, without any modifications, handle measured HS spot pat-
terns from myopic, hyperopic, and astigmatic eyes, both on the
visual axis and in eccentric angles. Fig. 6 shows some examples of
successfully unwrapped spot patterns representing particularly
large wavefront aberrations. In Fig. 6A, the HS spot pattern from
an eye with a large central scoroma has been measured and un-
wrapped in an eccentric fixation angle of 22°. ‘The main aberration
here is coma. Fig. 6B is a measurement on axis in an eye after
penetrating keratoplasty. Although this spot pattern shows a large
amount of refractive errors and higher-order aberrations, the un-
wrapping algorichm is successful. Fig. 6C shows the limir of what
the algorithm can handle. It is an eye with keratoconus, and the
extreme aberrations in the lower left corner have caused missing
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spots. This example shows the strength of the developed algorithm;
it can work around a missing spot and connect the other spots
correctly. The last example, Fig. 6D, corresponds to a computer-
generated wavefront and shows that the algorithm can handle a
large amount of the most common higher-order aberrations, coma
and spherical aberration,

To compare the developed unwrapping algorichm with a simple
algorithm, which just connects the parameter points with che clos-
est HS spots, computer-simulated spot patterns from single
Zernike mode wavefronts were generated. The maximal Zernike
coefficients for defocus, coma, and spherical aberration were found
empirically by increasing each coefficient separately, with all others
set to zero, until the algorithm could no longer unwrap the spot
pattern. For a 6 mm pupil, lenslets of size 325 X 325 pm and a
focal length of 18 mm, the B-spline algorithm could handle 9 cimes
more defocus (3.9 wm vs. 35.8 um), 13 trimes more coma (1.1 m
vs. 14.3 pum), and 3.5 times more spherical aberration (1.0 pm vs.
3.5 pm).

DISCUSSION

The unwrapping problem has been discussed much in the field
of interferometry, and several different software-based methods
have been developed to perform phase unwrapping.® In inter-
ferometry, the unwrapping problem arises because of the modulo
2w ambiguity of the fringes. In the field of wavefront measure-

-
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FIGURE 6.

Example of HS spot patterns unwrapped by the algorithm. The grid shows
how the HS spots have been unwrapped. The HS spots (stars) are con-
nected to their corresponding parameter points (rings! with narrow lines.
A: Eccentric fixation in 22°, right eye —2.75 —2.00 %80, together with
considerable coma. B: Eye after penetrating keratoplasty, right eye —6.00
—5.75 ®x165. C: Eye with keratoconus and thus very large and irregular
aberrations. D: Computer-generated spot pattern with coma and spherical
aberration.
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ments on eyes with HS sensors, it is more common to avoid the
unwrapping problem by changing the optics in the HS system.
One approach is to choose lenslets with a lower f-number, that is,
a shorter focal length and larger diameter. This will enable the
system to measure larger wavefront aberrations without the need of
unwrapping. At the same time, however, it will decrease the accu-
racy of the measurements because of the lower number of sampling
points and the relatively smaller movements of the HS spots for the
same amount of aberrations. Therefore, some HS sensor systems
include extra optical hardware to avoid or solve the unwrapping
problem. Some examples are optics to compensate for defocus and
astigmatism, a moveable aperture transmitting the spot from one
lenslet at a time,” astigmatic lenslets for easier identification of the
spots,” and an additional measurement of the spot positions in a plane
between the lenslets and the detector. All these methods are time-
consuming, entail a larger complexity, or lower the accuracy. There-
fore, there is a lot to gain if the unwrapping can be made by software-
based means instead. One simple solution is to rescale the grid of the
projected lenslets to cope with more defocus. However, this rescaling
cannot handle astigmatism and higher-order aberrarions.

Two more advanced methods for software-based unwrapping
have previously been suggested: a method with B-spline extrapo-
lation® and a sorting method.” The method proposed herein has
implemented and developed the key ideas with B-spline extrapo-
lation by Groening et al.> To our knowledge, it represents the first
advanced algorithm for unwrapping HS images from human eyes.

One of the basic assumptions is that the measured wavefront is
continuous over the sampling scale; the B-spline function is not suited
to handle true discontinuities, and neither are Zernike polynomials.
However, as long as the sampling is dense enough, the method should
be able to handle most naturally occurring functions.

The main limitation of the implemented algorithm is thac if ic
makes one wrong connection, there is a high risk of more false
connections. It is better that the algorithm leaves a spot uncon-
nected instead of connecting it incorrectly. A further development
of the algorithm could be to make it possible to go back and

recheck the assignments already performed.

CONCLUSIONS

This article presents an effective software-based method to un-
wrap HS spot patterns from human eyes without any loss in accu-
racy. The proposed algorithm performs a least squares fit of a
B-spline function to the starting pairs of connected parameter
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points and HS spots in the center of the pupil. It then extrapolates
outward in a stepwise manner for those parameter points that have
at least three connected neighboring parameter points. The algo-
rithm can handle large amounts of regular and irregular wavefront
aberrations and is thus a useful tool for investigating high aberra-
tions in, for example, peripheral vision.
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