High-resolution compact X-ray microscopy

P. A. C. Takman, H. Stollberg, G. A. Johansson†, A. Holmberg, M. Lindblom & H. M. Hertz

Biomedical and X-Ray Physics, Royal Institute of Technology/Albanova, SE-106 91 Stockholm, Sweden

Key words. Compact, laser plasma, liquid-jet, soft x-ray microscopy, water window, zone plate optics.

Summary

We demonstrate compact full-field soft X-ray transmission microscopy with sub 60-nm resolution operating at \(\lambda = 2.48 \, \text{nm} \). The microscope is based on a 100-Hz regenerative liquid-nitrogen-jet laser-plasma source in combination with a condenser zone plate and a micro-zone plate objective for high-resolution imaging onto a 2048 \(\times \) 2048 pixel CCD detector. The sample holder is mounted in a helium atmosphere and allows imaging of both dry and wet specimens. The microscope design enables fast sample switching and the sample can be pre-aligned using a visible-light microscope. High-quality images can be acquired with exposure times of less than 5 min. We demonstrate the performance of the microscope using both dry and wet samples.

Introduction

Soft X-ray microscopy in the water window (\(\lambda = 2.34–4.37 \, \text{nm} \)) provides a unique set of high-resolution imaging capabilities that complement visible light and electron microscopy (Schmahl et al., 1980; Kirz et al., 1995). Organic materials show strong absorption in this region, whereas water is relatively non-absorbing. This intrinsic contrast mechanism enables imaging of unstained carbon-containing materials, such as biological specimens or polymers, with thicknesses up to \(\sim 10 \, \mu \text{m} \) in an aqueous environment. Most present soft X-ray microscopes are based on high-brightness synchrotron-radiation sources (Meyer-Ilse et al., 1998; Guttmann et al., 2003). Typically they operate at \(\lambda = 2.4 \, \text{nm} \), close to the oxygen K-absorption edge, thereby minimizing oxygen absorption. This enables imaging of both hydrated and dry samples with short exposure times. Nevertheless, the limited accessibility to synchrotron-based instruments reduces the impact of X-ray microscopy as an important tool for user-motivated research. We recently demonstrated a compact X-ray microscope operating in the water window at \(\lambda = 3.37 \, \text{nm} \) (Berglund et al., 2000; Johansson et al., 2002). However, imaging of thicker (\(\sim 10 \, \mu \text{m} \)) objects, for example, mammalian cells, requires operation in the lower wavelength range of the water window where the transmission is higher. In this paper we present a high-resolution compact soft X-ray full-field transmission microscope operating at \(\lambda = 2.48 \, \text{nm} \) using a liquid-nitrogen laser-plasma source.

High-resolution transmission X-ray microscopy was first developed by Schmahl et al. at the university of Göttingen in Germany (Niemann et al., 1976; Schmahl et al., 1993). A typical arrangement includes an X-ray source that illuminates the sample by means of a condenser. A micro-zone plate acts as a high-resolution objective. The magnified image is read out from a thinned back-illuminated CCD detector. The theoretical resolution in an X-ray microscope is limited by the outermost zone width of the zone plate (Attwood, 1999). Zone plates with zone widths down to 15 nm were recently demonstrated by Chao et al. (2005). X-ray microscopy can also be operated in scanning mode, something which was first demonstrated by Kirz et al. at Stony Brook (Rarback et al., 1980; Jacobsen et al., 1991).

Previous work on compact transmission X-ray microscopy in the water window has been based on laboratory-scale laser-plasma or pinch-plasma sources. A carbon-tape-target laser plasma was combined with an elliptical condenser mirror and a zone plate to perform \(\lambda = 3.37 \, \text{nm} \) imaging of dry test objects (Nakayama et al., 1994; Aritome et al., 2000). The magnification was 500\(\times \) and periods down to 180 nm were resolved. The debris emission from and the non-regenerative character of the carbon-tape target resulted in a system with limited operability. Rudolph et al. (1994) combined a low-repetition-rate pinch-plasma source with an elliptical condenser mirror and zone plate optics for \(\lambda = 2.48 \, \text{nm} \), demonstrating dry and wet imaging. The low repetition rate and the instability of the source made operation of the system difficult; still 100–150 nm features were detectable for dry objects with low signal-to-noise ratio.
This microscope did not isolate the $\lambda = 2.48$ nm line from the $\lambda = 2.49$ nm line resulting in a large effective line width which caused chromatic aberrations in the zone-plate image, thereby limiting the extendability towards high-resolution X-ray microscopy. Berglund et al. (2000) demonstrated a $\lambda = 3.37$ nm microscope employing a normal-incidence spherical multilayer condenser mirror and zone plate optics with a resolution of ~ 100 nm. This microscope used a minimum-debris regenerative liquid-jet laser-plasma source (Rymell & Hertz, 1995). A different approach was recently demonstrated by Hoshino & Aoki (2006), where a broadband solid-tantalum-target laser-plasma source in combination with Wolter-type grazing-incidence mirrors used both as condenser and objective resulted in an estimated resolution ~ 100 nm. Kyong et al. (2006) combined an elliptical condenser mirror and zone plate optics for $\lambda = 2.88$ nm microscopy, claiming 50 nm resolution. Scanning microscopy with a laser-plasma source operating at 3.37 nm using a Mylar® target (DuPont Teijin Films, Hopewell, VA, USA) was demonstrated by Michette et al. (2003), and was capable of resolving structures with a period ~ 400 nm.

In the present paper we demonstrate a compact full-field soft X-ray transmission microscope with sub-60-nm resolution operating at a wavelength of $\lambda = 2.48$ nm. The shorter wavelength enables studies of hydrated samples up to $\sim 10 \mu$m thick. With the sample holder mounted in a helium atmosphere the microscope allows imaging of dry and wet specimens. The design permits fast sample switching, and a visible-light microscope is used for pre-alignment of the sample. High-quality images can be acquired with exposure times of less than 5 min. We demonstrate the performance of the microscope using both dry and wet samples.

Experimental arrangement

The experimental arrangement for the compact X-ray microscope is shown in Fig. 1. The arrangement includes a regenerative liquid-nitrogen-jet laser-plasma source, a condenser zone plate, a helium-filled sample environment, a micro-zone plate objective for high-resolution imaging, and a back-illuminated soft X-ray-sensitive CCD detector.

Liquid-jet laser-produced plasmas (Rymell & Hertz, 1993; Malmqvist et al., 1996) are attractive, compact, high-brightness sources for soft X-ray radiation. These sources are spatially well defined, regenerative and allow high-repetition-rate operation with minimum debris emission (Rymell & Hertz, 1995). Hydrogen-like nitrogen ions emit strongly at $\lambda = 2.48$ nm making nitrogen an attractive laser-plasma target for compact soft X-ray microscopy in the lower range of the water-window wavelength region (Jansson et al., 2005).

![Diagram](image_url)
Furthermore, the nitrogen source benefits from being relatively inert, thereby minimizing deposition on and damage to the sensitive X-ray optics due to debris. The liquid-nitrogen target delivery system employs a cryogenically cooled fused silica capillary nozzle with a 15–20 μm diameter orifice. The plasma is generated by a pulse (100 Hz, ~3 ns), frequency-doubled Nd : YAG laser (Coherent Infinity 40–100) (Coherent Inc., Santa Clara, CA, USA). The beam is focused onto the continuous part of the jet using a ~150-mm focal length lens. Pulse energies up to ~200 mJ, corresponding to focal intensities of ~4 × 10^{13} W/cm², can be achieved at the liquid-nitrogen jet target. The average X-ray flux is ~1.0 × 10^{12} photons/(pulse × sr × line) and the source size is ~20 μm full width at half maximum (Jansson et al., 2005).

The condenser is a nickel zone plate in combination with a central stop (Rehbein et al., 2004). Even though normal-incidence multilayer condenser mirrors are available at λ = 3.37 nm (Stollberg et al., 2006) no mirrors have shown the required reflectivity and the necessary uniformity on sufficiently large substrates for λ = 2.48 nm. The condenser zone plate has a diameter of 4.53 mm and an outermost zone width of 49 nm. The focal length in the first diffraction order is 90 mm at λ = 2.48 nm. The measured absolute condenser zone plate efficiency is 7.6% at λ = 2.48 nm. The specimen is illuminated using critical illumination via 1:1 imaging of the source onto the object plane with a plasma-to-condenser distance of 180 mm. The numerical aperture of the illumination is 0.013. The condenser zone plate in combination with the central stop and a pinhole in front of the sample plane acts as a soft X-ray monochromator, selecting the λ = 2.48 nm emission line from the plasma. Furthermore, a 300-nm-thick free-standing chromium filter blocks scattered and direct visible light from the condenser.

The specimen is placed on a 100-nm-thick silicon nitride membrane in a sample holder that is held in place by a magnetic kinematic mount. There is also a wet specimen chamber option where the specimen is clamped in between two silicon nitride membranes. The sample holder is mounted in a helium atmosphere separated from the source-system vacuum by a silicon nitride membrane and from the CCD-system vacuum by the objective zone plate membrane. The design enables fast sample switching. Furthermore, a visible-light microscope with 20× magnification is used for accurate pre-alignment of the sample in situ.

High-resolution imaging is performed with nickel phase zone plates fabricated utilizing a tri-level nanostructuring process (Holmberg et al., 2004). The patterns are generated by e-beam lithography and transferred by reactive ion etching and nickel electroplating. Table 1 gives the important parameters for the three objective zone plates that have been used to characterize the microscope. The measured first-order efficiency for the 25 nm zone plate is 8.9% at λ = 2.48 nm (Bertilson et al., 2006). The mismatch in numerical aperture between the condenser and the objectives means that the microscope is operating with partially coherent illumination.

The image is detected by a cooled, thinned, back-illuminated 2048 × 2048 pixel CCD array (Princeton Instruments, Inc., Trenton, NJ, USA) with 13 × 13 μm² pixels and a quantum efficiency of ~0.65. By adjusting the distance between the detector and the objective zone plate, the magnification can be varied.

Results

The performance of the microscope was determined by imaging various test structures made of nickel. The test structures were fabricated using the same process as for the zone plates (Holmberg et al., 2004). Figure 2 shows an image of a Siemens star recorded with a pixel element size of 24 × 24 nm² using 2 min exposure time. Siemens stars are useful for testing the imaging performance over the full field of view (FOV). As seen in the image the illumination is uniform over the full ~10 μm FOV. The insert in Fig. 2 shows the central part of the Siemens star.

Table 1. Optical parameters for the objective zone plates used in the microscope.

<table>
<thead>
<tr>
<th>Focal length [μm] @ λ = 2.48 nm</th>
<th>Outermost zone width [nm]</th>
<th>Number of zones</th>
<th>Diameter [μm]</th>
<th>Numerical aperture</th>
</tr>
</thead>
<tbody>
<tr>
<td>546</td>
<td>25</td>
<td>550</td>
<td>54.5</td>
<td>0.050</td>
</tr>
<tr>
<td>682</td>
<td>30</td>
<td>500</td>
<td>58</td>
<td>0.043</td>
</tr>
<tr>
<td>1500</td>
<td>50</td>
<td>380</td>
<td>75</td>
<td>0.025</td>
</tr>
</tbody>
</table>

Fig. 2. Image of Siemens star recorded with a pixel element size of 24 × 24 nm² using 2 min exposure time. The insert shows the central part of the Siemens star.
In addition to high resolution and contrast, high-quality imaging over the full object-plane FOV requires illumination with a good uniformity, which can be defined as $U = (I_{\text{max}} - I_{\text{min}})/(I_{\text{max}} + I_{\text{min}})$, where I is the image intensity. The hollow cone angle of the illumination arrangement in combination with the focal length of the micro-zone plate objective determines the FOV of the microscope. For the micro-zone plates used (cf. Table 1) the FOV varies from 10 to 26 μm. The illumination is nearly uniform over the full ~10 μm FOV ($U = 0.10$). Using a larger FOV results in a less uniform illumination.

To demonstrate the applicability of the compact X-ray microscope for user-motivated research, both dehydrated and hydrated biological specimens were imaged. Figure 5 shows a diatom imaged with a pixel element size of 13×13 nm2 using 5 min exposure time. Diatoms are eukaryotic algae with cell walls made of silicate, which show structures sized from several micrometers down to a few nanometres.

Figure 6 shows an image of a dehydrated COS-7 cell recorded with a pixel element size of 36×36 nm2 using 5 min exposure time. We note the much higher transmission in the thick central part of the cell with the present $\lambda = 2.48$ nm microscope compared to the $\lambda = 3.37$ nm microscope (Hertz et al., 2000). The employed adherent COS-7 cells, derived from foetal monkey kidney, were cultured in Dulbecco’s modified eagles medium (Sigma-Aldrich) containing 10% foetal bovine serum (Invitrogen), 1% penicillin streptomycin (Sigma-Aldrich), and 1% L-glutamine (Sigma-Aldrich). A droplet (~30–40 μL) of the medium with about 2×10^4 cells is placed on a silicon nitride membrane. The cells are then incubated for about 48 h at 37°C in 5% CO$_2$ atmosphere, while the medium is exchanged.
Fig. 6. Image of a dehydrated COS-7 cell recorded with a pixel element size of 36×36 nm2 using 5 min exposure time.

Fig. 7. Image of two COS-7 cells in an aqueous environment recorded with a pixel element size of 36×36 nm2 using 5 min exposure time.

after 24 h. For preparation of the dry samples the medium is removed by careful rinse-off of the medium with PBS (Sigma-Aldrich). Dehydration of the cells is done by a series of ethanol-water washes.

When imaging wet specimens, most of the medium is removed so that only a thin layer of liquid is present on the silicon nitride membrane when the second membrane is put on top of the first one. Residual liquid is thereafter carefully removed. The achieved thickness of the liquid layer in between the silicon nitride membranes is below 10 μm. Figure 7 shows an image of two COS-7 cells in an aqueous environment recorded with a pixel element size of 36×36 nm2 using 5 min exposure time. Both cell images were recorded using the 50 nm zone plate for increased FOV. Figures 6 and 7 appear to have moderate contrast. This is due to the non-uniform illumination profile obtained when using a large FOV, which makes contrast adjustment over the full image difficult without saturation of bright areas.

Discussion

We have demonstrated a compact full-field soft X-ray transmission microscope with sub-60-nm resolution operating at 2.48 nm wavelength, thereby enabling studies of samples with thicknesses up to ~ 10 μm. Images of dry samples using a pixel element size of 6.6×6.6 nm2 and ~ 300 photons/pixel are acquired during a 5-min exposure. The quality of the images, for dry samples, are approaching those recorded using a synchrotron light source. Still there is room for improvements. Of special importance for the practical usefulness of the microscope are reduced exposure times. Currently the illumination of the sample is $\sim 10^5$ photons/(s × μm2). Typically 10^7 to 10^8 photons/μm2 are required for high-quality imaging, depending on the sample. Fortunately, the laser-plasma target delivery system allows operation at much higher repetition rates (Vogt et al., 2001) than the present 100 Hz. A new kHz laser with similar pulse energy as the present laser will increase the average X-ray flux by nearly an order of magnitude. Further reduction in exposure time will be achieved with a new generation of condenser zone plates. By improving the overall pattern quality and increasing the total diameter of the zone plate we expect to reduce the exposure time by another factor of 3. Together these two improvements would result in exposure times on the order of 3–30 s, which is similar to synchrotron-based microscopes. It would also allow increased contrast via Zernike phase contrast, which requires higher photon flux, while maintaining reasonable exposure times. On a longer time scale, multilayer condenser mirrors also at this wavelength are feasible (Gullikson et al., 2006). This would further reduce exposure times and also increase the resolution by improving the numerical aperture match between the condenser and the objective (Stollberg et al., 2006).

In addition to the exposure time, application-oriented research requires simple and efficient sample handling and alignment. The present sample holder is mounted in a helium atmosphere and has the ability to image both dry and wet specimens. The design enables fast sample switching and the sample can be pre-aligned using a visible-light microscope. Due to the modular design of the sample compartment, the microscope can easily be adjusted to new applications. Of special future interest to cell biology is a sample module allowing cryogenic fixation of the sample since it reduces
radiation damage. Such a module would also enable X-ray tomography for 3D imaging (Larabell & Le Gros, 2004). Finally, we note that the microscope can be used for high-resolution imaging with chemical contrast in addition to the natural contrast, employing colloidal gold markers. Stollberg et al. (2007), recently demonstrated an image-analysis algorithm for the size-selective localization of single colloidal-gold particles in cell like structures. Gold particles down to a size of 50 nm could clearly be identified and localized by this algorithm.

Acknowledgements

The authors gratefully acknowledge S. Rehbein for his early work on the zone plate condenser and U. Vogt for insightful discussions concerning imaging using partially coherent illumination. We also thank R. Helg and K. Hammarström in the mechanical workshop for the work done on the design and building of the microscope. This work has been supported by the Swedish Science Research Council and the Göran Gustafsson Foundation.

References

