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Abstract: Tomosynthesis is an emerging technique with potential
to replace mammography, since it gives 3D information at a relatively
small increase in dose and cost. We present an analytical singular-value
decomposition of a tomosynthesis system, which provides the measurement
component of any given object. The method is demonstrated on an example
object. The measurement component can be used as a reconstruction of the
object, and can also be utilized in future observer studies of tomosynthesis
image quality.

© 2010 Optical Society of America

OCIS codes: (000.1439) Biology and medicine; (100.3190) Inverse problems; (370.7440) X-
ray imaging.

References and links
1. J. T. Dobbins III and D. J. Godfrey, “Digital x-ray tomosynthesis: current state of the art and clinical potential,”

Phys. Med. Biol. 48, R65–R106 (2003).
2. J. T. Dobbins III, “Tomosynthesis: at translational crossroads,” Med. Phys. 36, 1956–1967 (2009).
3. L. T. Niklason, “Digital tomosynthesis in breast imaging,” Radiology 1997, 399–406 (1997).
4. G. Gennaro, A. Toledano, C. di Maggio, E. Baldan, E. Bezzon, M. La Grassa, L. Pescarini, I. Polico, A. Proietti,

A. Toffoli, and P. C. Muzzio, “Digital breast tomosynthesis versus digital mammography: a clinical performance
study,” Eur. Radiol. 10.1007/s00330-009-1699-5 (2009).

5. I. Andersson, D. M. Ikeda, S. Zackrisson, M. Ruschin, T. Svahn, P. Timberg, and A. Tingberg, “Breast to-
mosynthesis and digital mammography: a comparison of breast cancer visibility and BIRADS classification in a
population of cancers with subtle mammographic findings,” Eur. Radiol. 18, 2817–2825 (2008).

6. W. F. Good, G. S. Abrams, V. J. Catullo, D. M. Chough, M. A. Ganott, C. M. Hakim, and D. Gur, “Digital breast
tomosynthesis: a pilot observer study,” Am. J. Radiology 190, 865–869 (2008).

7. S. P. Poplack, T. D. Tosteson, C. A. Kogel, and H. M. Nagy, “Digital breast tomosyntheis: Initial experiance in
98 women with abnormal digital screening mammography,” Am. J. Radiology 189, 616–623 (2007).

8. A. S. Chawla, J. Y. Lo, J. A. Baker, and E. Samei, “Optimized image acquisition for breast tomosynthesis in
projection and reconstruction space,” Med. Phys. 36, 4859–4869 (2009).

9. T. Wu, R. H. Moore, E. A. Rafferty, and D. B. Kopans, “A comparison of reconstruction algorithms for breast
tomosynthesis,” Med. Phys. 31, 2636–2647 (2004).

10. Y. Zhang, H.-P. Chan, B. Sahiner, J. Wei, M. M. Goodsitt, L. M. Hadjiiiski, J. Ge, and C. Zhou, “A comparative
study of limited-angle cone-beam reconstruction methods for breast tomosynthesis,” Med. Phys. 33, 3781–3795
(2006).

11. H. H. Barrett and K. J. Myers, Foundations of Image Science (John Wiley, Hoboken, New Jersey, 2004).
12. M. Bertero and P. Boccacci, Inverse Problems in Imaging (Institute of Physics Publishing, Bristol, UK, 1998)

#131468 - $15.00 USD Received 12 Jul 2010; revised 8 Sep 2010; accepted 10 Sep 2010; published 15 Sep 2010
(C) 2010 OSA 27 September 2010 / Vol. 18,  No. 20 / OPTICS EXPRESS  20699



13. H. H. Barrett, J. N. Aarsvold, and T. J. Roney, “Null functions and eigenfunctions: tools for the analysis of
imaging systems,” Lect. Notes. Comput. Sci. 11, 211–226 (1991).

14. A. Burvall, H. H. Barrett, C. Dainty, and K. J. Myers, “Singular-value decomposition for through-focus imaging
systems,” J. Opt. Soc. Am. A 23, 2440–2448 (2006).

15. J. Yao and H. H. Barrett, “Predicting human performance by a channelized Hotelling observer,” Proc. SPIE 1768,
161–168 (1992).

16. H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, “Model observers for assessment of image quality,”
Proc. Natl. Acad. Sci. USA 90, 9758–9765 (1993).

17. M. Y. Chiu, H. H. Barrett, R. G. Simpson, C. Chou, J. W. Arendt, and G. R. Gindi, “Three-dimensional radio-
graphic imaging with a restricted view angle,” J. Opt. Soc. Am. 69, 1323–1333 (1979).

18. R. Pierri, A. Liseno, F. Soldovieri, and R. Solimene, “In-depth resolution for a strip source in the Fresnel zone,”
J. Opt. Soc. Am. A 18, 352–359 (2001).

19. A. D. Polianin and A. V. Manzhirov, Handbook of integral equations (CRC Press, Florida, 1998) chapter 11.2.
20. C. Lanczos, Linear differential operators (Van Nostrand, London, 1961).
21. A. E. Burgess, “Visual signal detection with two-component noise: low-pass spectrum effects,”

J. Opt. Soc. Am. A 16, 694–704 (1999).
22. I. Reiser and R. M. Nishikawa, “Task-based assessment of breast tomosynthesis: Effects of acquisition parameters

and quantum noise,” Med. Phys. 37, 1591–1600 (2010).
23. F. O. Bochud, C. K. Abbey, and M. P. Eckstein, “Statistical texture synthesis of mammographic images with

clustered lumpy backgrounds,” Opt. Express 4, 33–43 (1998).
24. K. G. Metheany, C. K. Abbey, N. Packard, and J. M. Boone, “Characterizing anatomical variability in breast CT

images,” Med. Phys. 35, 4685–4694 (2008).
25. C. K. Abbey and J. M. Boone, “An ideal observer for a model of x-ray imaging in breast parenchymal tissue,”

(E.A. Krupinski, Ed.): IWDM 2008, LNCS 5116, 393–400 (2008).
26. C. Zhang, P. R. Bakic, and A. D. A. Maidment, “Development of an anthropomorphic breast software phantom

based on region growing algorithm,” Proc. SPIE 6918, 69180V (2008).
27. S. Park, J. M. Witten, and K. J. Myers, “Singular vectors of a linear imaging system as efficient channels for the

bayesian ideal observer,” IEEE Trans. Med. Imaging 28, 657–668 (2009).

1. Introduction

The tomosynthesis method [1, 2] is currently considered to be of great potential, especially
in detection of breast cancer [3]. The idea is to replace mammography, which gives two-
dimensional (2D) projection, with tomosynthesis which gives three-dimensional (3D) informa-
tion e.g. as slice images. The ultimate purpose is to improve the detection of breast cancer, at a
relatively small increase in dose and cost. Prototype tomosynthesis systems have already been
developed and pilot clinical trials performed [4–7]. These trials have so far not demonstrated
distinct advantages in detection compared to mammography, but indicate that tomosynthesis
images have better visualization of structures without masking by overlapping tissue. Improved
detection has been clearly demonstrated in studies on mastectomy specimens [8].

Tomosynthesis can be said to be half-way between a single projection as used in mammog-
raphy, and the full-angle scan performed in computed tomography (CT). The first produces a
2D representation and the other a 3D representation. Tomosynthesis, where a number of pro-
jections are taken at a limited angle, provides partial 3D information — the resolution in one
direction must be limited. The hope is that tomosynthesis will provide the advantage of 3D
information over conventional mammography, without the increased dose and cost of a full CT.

The 3D object, for example, the breast tissue, must be reconstructed from the 2D projection
images. Several techniques are used [9,10], mainly back-projection methods, iterative methods,
or statistical methods. The reconstruction task is more difficult than in tomography, since the
information is incomplete and a true inverse transform cannot be found. Especially in analytical
methods such as back-projection, this has a tendency to produce artifacts. We propose to use
singular-value decomposition (SVD) [11–13] for the reconstruction, in a manner very similar
to the technique we developed for through-focus imaging systems [14]. The result produced is
the measurement component of the object, which could be regarded as its pseudoinverse [11]
reconstruction and is as close to the inverse as we can get. The measurement component is the
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part of the object that is actually transmitted into the image. An advantage of the method is its
mathematical stringency: what does not show up in the measurement component simply cannot
be reconstructed, and the measurement component is unique for each set of measurements. A
disadvantage is that the measurement component is different from a conventional reconstruction
since it contains negative values. The measurement component could be used for further studies
on image quality and detectability, using a channelized Hotelling observer [11, 15, 16].

At present, we are analyzing a parallel-path setup where the x-ray source moves in a plane
parallel to the detector plane. Other geometries [2] could be analyzed but it would require
some work to adjust the analysis. We consider the geometrical approximation, disregarding
any effects of diffraction. The object is seen as purely absorbing, with no scattering or phase
contribution. Scattering cannot be included, since it breaks the lateral shift-invariance. As we
analyze the ideal case, we do not yet consider noise.

2. SVD analysis
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Fig. 1. Geometry of the considered tomographic system. The different source positions are
χm, and the screen is placed along the z axis.

We consider a geometry where all source positions are in one transverse plane, and images
captured in a second plane parallel to the first and placed behind the object. This geometry is
illustrated in Fig. 1. In the figure the object is shown as limited in both z, x and y direction.
We present this case of limited object and image support as the most general, but will mainly
consider the simplified case of infinite transverse extent. The support in the z direction is per
definition limited to at most the distance between the source and image planes. The variables
used are r = (x,y) for transverse coordinates in object space and z for longitudinal coordinate
in object space. The image plane is placed at the origin (z = 0), and has transverse coordinates
rd = (xd ,yd). The source plane is placed at z = −s and position number m given by rm =
(χm,ψm). The source is assumed to be a point. The object f (r,z) is identical to the absorption
coefficient, the image is gm(rd) for the image taken using source position rm, and g(rd) is the
vector of all images.

A relation between object and image can be found from the steady-state solution of the
Boltzmann transport equation in absorbing media, assuming a point source [11]:

Im(rd) =
Acosθ
|r1 − r0|2 exp

[
−

∫ |r1−r0|

0
dl′ f

(
r1 − r1 − r0

|r1 − r0| l
′
)]

,

#131468 - $15.00 USD Received 12 Jul 2010; revised 8 Sep 2010; accepted 10 Sep 2010; published 15 Sep 2010
(C) 2010 OSA 27 September 2010 / Vol. 18,  No. 20 / OPTICS EXPRESS  20701



where Im(rd) is the irradiance, A is the strength of the point source in emitted flux per unit
volume per unit solid angle, r1 = (rd ,0) = (xd ,yd ,0) is the position of the image point in three
dimensions and r0 = (rm,−s) = (χm,ψm,−s) the position of the source. The angle θ is the
angle of incidence of the ray from rm to rd onto the detector plane. A change of variables to
our chosen coordinate system, namely z = −l′s/|r1 − r0|, leads to

log

(
Im(rd)|r1 − r0|2

Acosθ

)
=

|r1 − r0|
s

∫ −s

0
dz f

(
r0 +(r0 − r1)

z
s

)
.

Using cosθ = s/|r1 − r0| and |r1 − r0| = (|rd − rm|2 + s2)1/2, and changing notation from the
three-dimensional r1 and r0 to the two-dimensional rd and rm, leads to

log

[
1
As

(|rd − rm|2 + s2)3/2
Im(rd)

]
=

∫ −s

0
dz f

(
rd +(rd − rm)

z
s
,z

)
(1)

We introduce a relation between the irradiance Im(rd) registered in the image plane and the
image function gm(rd):

gm(rd) =
s

(s2 + |rd − rm|2)1/2
log

[
1
As

(
s2 + |rd − rm|2

)3/2
Im(rd)

]
. (2)

This definition of gm(rd) is designed to yield a linear relation between object and image, and
inserting Eq. (2) into Eq. (1) leads to the propagation integral from object to image

gm(rd) = [H f ]m (rd) =
∫ z2

z1

dz
∫ ∫ ∞

−∞
d2r b f (r,z) f (r,z)hm(r,rd ,z) , (3)

and its adjoint (or backprojection) operator

[
H †g

]
(r,z) =

M

∑
m=1

∫ ∫ ∞

−∞
d2rd bg(rd)gm(rd)h∗m(r,rd ,z) , (4)

where z1 and z2 limit the object extension in the z direction, −s < z1 < z2 < 0, M is the number
of source positions, b f (r,z) and bg(rd) define the object and image support respectively, the as-
terisk denotes complex conjugate, and the impulse-response function h is the two-dimensional
Dirac delta function

hm(r,rd ,z) = δ
(

r− rd − (rd − rm)
z
s

)
. (5)

The object and image support contained in bf (r,z) and bg(rd) can in general be adjusted ac-
cording to specific situations, but the support in the axial direction can never extend beyond the
source or image plane as indicated by the limits z1 and z2. Eqs. (3)–(5) give a complete descrip-
tion of the propagation, and consequently also of the reconstruction. Now the SVD method for
multiple images, earlier presented for telecentric optical imaging systems [14], can be applied.
However, this method requires shift invariance in the transverse direction, so we apply a change
of variables [17]:

r̃ = (x̃, ỹ) =
(

s
s+ z

x,
s

s+ z
y

)
, z̃ =

s
s+ z

z (6)

with the inverse relations

r = (x,y) =
(

s
s− z̃

x̃,
s

s− z̃
ỹ

)
, z =

s
s− z̃

z̃ . (7)
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Fig. 2. The change of variables moves the source plane to minus infinity. Rays originating
from two source positions, one on-axis and one off-axis, are shown. The object in this figure
is distorted compared to the object in Fig. 1, but the image is not.

Intuitively, the transformation in Eq. (6) means the source plane is moved to minus infinity and
the rays from one source point become parallel as illustrated in Fig. 2. The position rm of the
source determines the inclination of the rays. The object is distorted by this transformation, but
the image remains the same. In these coordinates, the impulse-response function becomes

h̃m(r̃− rd , z̃) =
(

s− z̃
s

)2

δ
(

r̃− rd +
z̃
s
rm

)
, (8)

where h̃m(r̃− rd , z̃) = hm(r,rd ,z). Since the Jacobian of the transformation is

∣∣∣∣ ∂ (x,y,z)
∂ (x̃, ỹ, z̃)

∣∣∣∣ =
s4

(s− z̃)4

the integral relations now become

gm(rd) =
[
H f̃

]
m (rd) =

∫ z̃2

z̃1

dz̃
∫ ∫ ∞

−∞
d2r̃

s4

(s− z̃)4 b̃ f (r̃, z̃) f̃ (r̃, z̃)h̃m(r̃− rd , z̃) , (9)

and [
H †g

]
(r̃, z̃) =

M

∑
m=1

∫ ∫ ∞

−∞
d2 rd bg(rd)gm(rd)h̃∗m(r̃− rd , z̃) , (10)

where f̃ (r̃, z̃) = f (r,z) is the distorted object function and b̃ f (r̃, z̃) = b f (r,z) the distorted
object-support function. The integration limits are z̃1 = sz1/(s+ z1) and z̃2 = sz2/(s+ z2) and
fulfill −∞ < z̃1 < z̃2 < 0. We note that due to the change of variable, the distorted object- and
image-space functions are defined on the Hilbert spaces with weighted inner products [18]

〈
f̃1(r̃, z̃), f̃2(r̃, z̃)

〉
obj =

∫ ∫ ∞

−∞
d2r̃

∫ z̃2

z̃1

dz̃ b̃ f (r̃, z̃) f̃1(r̃, z̃) f̃ ∗2 (r̃, z̃)
s4

(s− z̃)4 (11)

and

〈g1(rd),g2(rd)〉im =
M

∑
m=1

∫ ∫ ∞

−∞
d2rd bg(rd)g1m(rd)g∗2m(rd) .
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The weighted inner product of Eq. (11) is required in order to fulfill the adjoint relation〈
H f̃ ,g

〉
im =

〈
f̃ ,H †g

〉
obj .

Combining Eqs. (9) and (10) finally yields the image-space Hermitian operator as

[
H H †g

]
m (rd) =

M

∑
m′=1

∫ ∫ ∞

−∞
d2r′d bg(r′d)gm′(r′d)kmm′(rd ,r

′
d) (12)

where

kmm′(rd ,r
′
d) =

∫ z̃2

z̃1

dz̃
∫ ∫ ∞

−∞
d2r̃ b̃ f (r̃, z̃)

s4

(s− z̃)4 h̃m(r̃− rd , z̃)h̃∗m′(r̃− r′d , z̃) . (13)

Similarly, the object-space Hermitian operator will be

[
H †H f̃

]
(r̃, z̃) =

∫ z̃2

z̃1

dz̃′
∫ ∫ ∞

−∞
d2r̃′ b̃ f (z̃′, r̃′) f̃ (z̃′, r̃′)p(r̃, r̃′, z̃, z̃′)

where

p(r̃, r̃′, z̃, z̃′) =
s4

(s− z̃)4

M

∑
m=1

∫ ∫ ∞

−∞
d2rd bg(rd)h̃∗m(r̃− rd , z̃)h̃m(r̃′ − rd , z̃

′) .

2.1. Infinite object and image

If both object and image are considered infinite in the transverse direction, and the object con-
fined in the longitudinal direction by z1 < z < z2, both support functions b f (r,z) and bg(rd) are
identically equal to one. While this assumption is obviously not true, its effects on the resulting
analysis are surprisingly small. Its main contribution is edge effects. Theoretically, the object
and images are assumed to be infinite, but for the evaluation, finite object and images must be
used. This leads to strange effects close to the edges, so the rim of the resulting images includes
non-reliable results and should be discarded. The assumption simplifies the analysis consid-
erably, since the system is now transversally shift-invariant and the kernels of the Hermitian
operators may be written kmm′(rd − r′d) and p(r̃− r̃′, z̃, z̃′). Insertion of Eq. (8) into Eq. (13)
yields, after performing the integral in r̃,

kmm′(rd − r′d) =
∫ z̃2

z̃1

dz̃δ
(

rd − r′d −
z̃
s
(rm − r′m)

)
. (14)

This integral could easily be evaluated, but the subsequent analysis gets easier if it is left as it
is. Assuming singular functions of the form

vρ , j(rd) = V j(ρ)exp(2πiρ · rd) (15)

yields, after insertion into Eq. (12), the eigenequation [14]

K (ρ)V j(ρ) = μρ , jV j(ρ) (16)

where K (ρ) is an M×M matrix with elements

Kmm′ =
∫ ∫ ∞

−∞
d2rd kmm′(rd)exp(−2πiρ · rd). (17)

Inserting Eq. (14) into Eq. (17) and performing the integral in rd yields

Kmm′ =
∫ z̃2

z̃1

dz̃ exp

(
−2πiρ · (rm − rm′)

z̃
s

)
, (18)
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which is integrated to yield
Kmm′ = z̃2 − z̃1

for m = m′ or ρ = (0,0), and

Kmm′ =
is

2πρ · (rm − rm′)

{
exp

[
−2πiρ · (rm − rm′)

z̃2

s

]
− exp

[
−2πiρ · (rm − rm′)

z̃1

s

]}

for m �= m′. Thus the elements of K have been found, and Eq. (16) can be solved numerically
to yield the vectors V j(ρ). The image-space singular functions have been found, in exactly
the same manner as Burvall et al. [14]. The object-space eigenfunctions can then be found by
projection of the image-space eigenfunctions using the adjoint operator in Eq. (10).

The solution can also be obtained in object space. The results will be identical to those
obtained from the image-space analysis, but we still outline the analysis required. The kernel
of the Hermitian operator is

p(r̃− r̃′, z̃, z̃′) =
(

s− z̃
s− z̃′

)2 M

∑
m=1

δ
(

r̃− r̃′ + rm
z̃− z̃′

s

)
, (19)

leading to the object-space eigenequation

∫ z̃2

z̃1

dz̃′
(

s− z̃
s− z̃′

)2

Uj(ρ, z̃′)
M

∑
m=1

exp

(
2πiρ · rm(z̃− z̃′)

1
s

)
= μρ , jUj(ρ, z̃)

where it has been assumed the singular functions can be written as

u j,ρ (r̃, z̃) = Uj(ρ, z̃)exp(2πiρ · r̃) .

Introducing Û(ρ, z̃)(s− z̃)2 = U(ρ, z̃) we find the integral equation

Û j(ρ, z̃) =
∫ z̃2

z̃1

dz̃′ Û(ρ, z̃′)
M

∑
m=1

exp

(
2πi

z̃
s

ρ · rm

)
exp

(
−2πi

z̃′

s
ρ · rm

)
.

This integral equation has a degenerate kernel, and such equations can be solved using standard
methods [19].

Equation (19) is the kernel of the object-space Hermitian operator, but can also be seen the
impulse-response function of the system. A delta function at (r̃′, z̃′) in the object will cause a
distribution p(r̃− r̃′, z̃, z̃′) in the reconstruction. The impulse response function is a sum of M
lines whose intensity varies with z̃, and that all meet at r̃ = r̃′, z̃ = z̃′.

3. Numerical results

In section 2, the singular functions have been found for the simplified case of infinite object
and image. These results can be illustrated numerically. Under certain circumstances, the SVD
technique is not very time-consuming and can be run on a normal desk-top computer. The
calculation times are on the order of minutes or tens of minutes. The most time-consuming
part is actually the simulation of the object (see section 3.2). The technique for numerical SVD
calculations is very similar to Burvall et al. [14].
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3.1. Numerical SVD

The geometry is the same as in Fig. 1. We have assumed a distance of 30 cm from source to
image plane, and that the object is located between 10 and 1 cm from the image plane, i.e.
s = 0.3 m, z1 = −0.1 m, and z2 = −0.01 m. Furthermore, it is assumed that all the sources are
placed along a line or arc rather than in a 2D array. While it would be interesting to investigate
other arrangements, this option simplifies the analysis significantly and is often employed in
tomosynthesis. Assuming the source distribution is along the x axis, we have rm = (ξm,0). The
outermost source positions are at χm = ±0.1 m, and the source positions evenly distributed in
between. The examples below are for 11 source positions, i.e., M = 11.

The assumption that rm = (χm,0) is used to simplify the analysis by reducing large parts of
it from 3D to 2D. A closer look at Eq. (18) reveals that it depends on ρ only as ρ · (rm −rm′) =
ρx(χm − χm′), so the elements of K depend only on ρx and not on ρy. Comparison to Eq. (16)
shows that V j(ρ) = V j(ρx) or μρ , j = μρx, j will not depend on ρy either.

Once the image-space singular functions are known, the object-space singular functions
Uρ , j(r̃, z̃) can be found from the projection

[
H †vρ , j

]
=

√
μρ , j uρ , j(r̃, z̃) . (20)

This equation is also known as part of the shifted-eigenvalue equations [20]. Insertion of
Eqs. (9), (8) and (15) into Eq. (20) yields

uρ , j(r̃, z̃) = exp(2πiρ · r̃)Uj(ρ, z̃)

where

Uj(ρ, z̃) =
1√μρ , j

(
s− z̃

s

)2 M

∑
m=1

[V j(ρ)]m exp

(
2πi

z̃
s

ρ · rm

)
.

So Uj(ρ, z̃) =Uj(ρx, z̃) only needs to be calculated for ρ = (ρx,0) and then the same 2D matrix
can be used for all ρy. Figure 3 shows the eigenvalues μρx, j while Fig. 4 contains the absolute
values of some of the singular functions Uj(ρx, z̃). We note that the eigenvalues are approx-
imately zero for low frequencies, and that this band of zero eigenvalues grows broader with
increasing j. The eigenvalues are a combination of discrete and continuous spectra: discrete
in j which handles the axial dimension, but continuous in ρx which handles the transverse
dimensions.

Unlike the 3D imaging case [14], where the singular functions are real, these functions are
complex. In Fig. 4 their absolute value is shown. Interpreting the results intuitively is fairly
difficult, as there are no obvious image planes and the coordinates are a combination of spatial
(z̃) and frequency (ρ). It is easier to interpret the expansion of an example object into these
eigenfunctions, i.e., its measurement component. This requires a relevant sample object.

3.2. Sample object

We illustrate the method using an example of at least some relevance to the future task, namely
tomosynthesis of breast tissue. The object consists of two parts: a designer nodule and a clus-
tered lumpy background (CLB). This approach is chosen since the expected advantage of to-
mosynthesis is the ability to detect low-contrast masses, such as the nodule, that are masked by
overlapping tissue, such as the clustered lumpy background. The designer nodule has a projec-
tion onto the image plane given by given by [21]

gm(rd) = Arect

(
2|rd |

R

)(
1− |rd |2

R2

)v

(21)

#131468 - $15.00 USD Received 12 Jul 2010; revised 8 Sep 2010; accepted 10 Sep 2010; published 15 Sep 2010
(C) 2010 OSA 27 September 2010 / Vol. 18,  No. 20 / OPTICS EXPRESS  20706



−500 −400 −300 −200 −100 0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ρ
x
   [m]

(a)

μ ρ x,j

 

 

j=1

j=2

j=3

j=...

j=11

Fig. 3. Eigenvalues μρx, j for j ranging from 1 to 11.

where A is the amplitude of the nodule, R its radius, and v a real and non-negative shape factor
that determines the sharpness of the edges. We have chosen R = 3mm, A = 0.03, and v = 1.5.
This value of v is reported to give the best fit to average tumor profiles [21]. The 3D object that
gives this projection is [22]

f (r) = A
3

4R
rect

(
2|r|
R

)(
1− |r|2

R2

)
, (22)

as can be shown by finding its projection for a far-away source, i.e., by integrating Eq. (22) with
respect to z.

The CLB simulates the 2D projection of the background by distributing lumps according to
a statistical model [23]. The projection is given by

g(rd) =
K

∑
k=1

Nk

∑
n=1

b

(
1

akn
(rd − rk − rkn),Rθkn

)

where K is the numbers of clusters, each centered on rk, and Nk is the number of blobs or
lumps in each cluster, their positions within the cluster given by rkn. The function b describes
the shape of each blob, akn its strength, and Rθ the rotation matrix of the random angle θkn.
The theory of this 2D background is thoroughly described by Bochud et al. [23]. However, no
proper 3D model exists and we need to model the 3D object rather than its projection. Since the
intention in the current paper is only to provide an illustration, we have extended the model in
the simplest possible way. The lumps are made three-dimensional, and placed in a volume by
the 3D vectors rk and rkn. They were also rotated in 3D rather than in 2D. Apart from that, we
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Fig. 4. Absolute values of the singular functions (a) U1(ρx, z̃), (b) U2(ρx, z̃), (c) U6(ρx, z̃),
and (d) U11(ρx, z̃).

followed the classic CLB as introduced by Bochud [23]. The number K was a Poisson random
variable with expectation value 150 and Nk a Poisson random variable with expectation value
20. The scale akn was set to 1 for all blobs, and the position of the cluster rk a uniform random
variable within the object area which is 40× 40× 90mm. The position within the cluster rkn

is a Gaussian with standard deviation 3.6mm. The function b is an asymmetrical exponential
blob b(r,Rθkn) = exp(−α|Rθknr|β /L(Rθknr)) as given by Bochud [23], of length Lx = 15mm
and width Ly = Lz = 6mm. Parameters of the blob function are α = 2.1 and β = 0.5. The blob
is rotated an angle θkn = θk (uniform random variable on [0,2π]) in the xy-plane, and an angle
φkn = φk (uniform random variable on [0,π]) in the xz-plane.

An example object f̃ (r̃, z̃) is shown in Fig. 5, in the distorted coordinates r̃ and z̃. It is shown
in two slices: one through the middle of the designer nodule in the x̃ỹ plane, and one through
the middle of the designer nodule in the x̃z̃ plane. The object is not a proper 3D breast model,
since it is not connected enough for a breast CT slice [24], but it will give reasonable results
once projected and will serve as an illustration.

3.3. Numerical results

Once an object has been generated, and the singular functions of the system found, they can
be combined to generate the measurement component. It is an expansion of the object into the
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Fig. 5. Example object f̃ (r̃, z̃), including a designer nodule and a 3D clustered lumpy back-
ground. (a) Section through the object at z̃ =−60mm, or z =−50mm. (b) Section through
the object at ỹ = y = 0. Both sections go through the center of the designer nodule.

object-space singular functions according to

f̃meas(r̃, z̃) =
∫ ∫ ∞

−∞
d2ρ

M

∑
j=1

Aj(ρ)Uj(ρ, z̃)exp2πiρ · r̃ ,

where the integral is numerically found as a Fast Fourier Transform. The expansion coefficients
Aj(ρ) are found as

Aj(ρ) =
∫ z̃2

z̃1

dz̃ F̃(ρ, z̃)U∗
j (ρ, z̃)

s4

(s− z̃)4 (23)

where F̃(ρ, z̃) is the 2D Fourier transform of the object f̃ (r̃, z̃) with respect to r̃. Two things
should be noted, as they differ from the expression used in Ref. [14]. First, the complex conju-
gate in Eq. 23 was omitted in [14] since the singular functions were real, but must be included
here. Second, the weighting function w(x̃, z̃) = s4/(s− z̃)4 follows from the earlier change of
variables. Slices through the measurement component are shown in Fig. 6. The slices are taken
at the same positions as those in Fig. 5. In part (b), the low axial resolution is showing up as
elongation of both nodule and background.

The zero-angle projection of the object is shown in Fig. 7(a), along with the same projection
of its measurement component in part (b). The images are generated by direct numerical prop-
agation of the quantities involved, using a sampling of 400 points in the transverse directions
and 300 points in the longitudinal direction. This serves as a test of both the analysis and the
numerical accuracy: the image of an object should be identical to the image of its measurement
component. As can be seen in Fig. 8, the difference between them is below 1% except at the
edges were edge effects could cause it to rise to around 10%.

An interesting point is how the slice through the measurement component is a hybrid between
the projection and the similar object slice. This illustrates the very principle of tomosynthesis.
Unlike tomography, which provides a full reconstruction of every plane of the object, tomosyn-
thesis provides only partial 3D information. The longitudinal resolution will always be low, and
contributions from close-by transverse planes will be present in every slice of the measurement
component.
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Fig. 6. Measurement component of the object in Fig. 5. (a) Section through the measure-
ment component at z̃ = −60mm, or z = −50mm. (b) Section through the measurement
component at ỹ = y = 0. Both sections go through the center of the designer nodule.
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Fig. 7. (a) Image or projection of the measurement component in Fig. 6. (b) Image or
projection of the object in Fig. 5. Both are calculated through direct numerical propagation
of the object and measurement component respectively, for the source placed on the z-axis.
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4. Discussion and future work

The measurement component of an object provides information on how well this object is
transmitted through the imaging system. Comparing the measurement component in Fig. 6 to
its object in Fig. 5, we can see that the information received in the image plane is not complete.
This illustrates the fundamental limit of the acquisition process, and serves as an estimate of the
best reconstruction that could be achieved. We can also see that the measurement component
looks a lot like the object, but that it also borrows traits from the projection in Fig. 7. This
reflects the small angle used in tomosynthesis and its effect on the results. The reconstruction,
while given in 3D, is in many ways an improved projection or a projection with some separation
of information into different layers. It is not the full 3D reconstruction that could be achieved
from e.g. tomography.

It is also becoming evident that there is a lack of three-dimensional models of the breast
tissue. Statistical models for the normal breast, such as the clustered lumpy background [23],
are made for 2D and not for 3D. Since mammography has been the dominating investigation
method, it has simply been sufficient to work only on the 2D projection through the breast.
Extensions to 3D are either intuitive and lack the statistical back-up required for a systematic
study, like the example presented in this paper, or advanced models designed to produce one
really good phantom and not the large number of samples required for a statistical study. There
is need for a model of the breast tissue that has the same statistical properties as experimental
images in 3D but also in its 2D projections, that looks similar to experimental images in 3D
but also in its 2D projections, and that allows for generation of numerous realizations. Strong
candidates at the moment are a more sophisticated extension of the clustered lumpy background
[23], the threshold model by Abbey and Boone [25], or the breast phantoms by Zhang et al. [26].
The example object in Fig. 5 is sufficient as an illustration of the SVD method, but is not
interconnected enough for a real slice through breast tissue.

The next step would be to use the SVD of a more realistic breast tissue model in an image-
quality study, including the effect of noise. The SVD model is particularly suitable for this since
the statistics of the object background are relatively easily transferred to the image through the
use of characteristic functionals [11, Sec. 8.5.3]. The SVD singular functions can also be used
as channels for a channelized observer [27]. This allows for many comparisons, for example
how or if the detection seems to improve with tomosynthesis compared to mammography, or
how the SVD method compares to other reconstruction algorithms.

5. Conclusions

The mixed continuous and discrete operators of a tomosynthesis system have been derived from
the Boltzmann equation, and used to develop an analytical singular-value decomposition of a to-
mosynthesis system. In combination with numerical calculations, it provides the measurement
component of any object, where object refers to the breast tissue. The measurement component
of an example object has been presented. Although the example object is not truly realistic, in-
teresting information on the tomosynthesis process and its effects on reconstruction have been
found. Future prospects involve more realistic 3D breast tissue models, and an image-quality
study involving a channelized Hotelling observer.
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