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Abstract: In-line phase-contrast X-ray imaging provides images where
both absorption and refraction contribute. For quantitative analysis of
these images, the phase needs to be retrieved numerically. There are
many phase-retrieval methods available. Those suitable for phase-contrast
tomography, i.e., non-iterative phase-retrieval methods that use only one
image at each projection angle, all follow the same pattern though derived
in different ways. We outline this pattern and use it to compare the
methods to each other, considering only phase-retrieval performance and
not the additional effects of tomographic reconstruction. We also outline
derivations, approximations and assumptions, and show which methods are
similar or identical and how they relate to each other. A simple scheme for
choosing reconstruction method is presented, and numerical phase-retrieval
performed for all methods.
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1. Introduction

Classical medical three-dimensional X-ray imaging systems (computed tomography, CT) rely
on absorption for contrast [1]. Phase-sensitive detection shows promise for improved contrast
where absorption is insufficient [2, 3] and, thus, for improved biomedical imaging. Unfortu-
nately the simplest phase-contrast imaging arrangements do not automatically provide quan-
titative phase data suitable for tomographic reconstruction, making the application of phase-
retrieval algorithms necessary. In the present paper we evaluate and compare the phase-retrieval
methods applicable to in-line phase-contrast tomography and prove that they all, despite differ-
ent origins, follow the same mathematical pattern. Thus, the applicability of the algorithms for
different imaging situations can be compared in an unbiased way.

If the refractive index of a material is n = 1− δ + iβ , the imaginary part β describes the
absorption while the real part δ describes the phase shift introduced by the material. The phase
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is not directly observable and must be turned into phase contrast, i.e., intensity variations. Since
the early publications on X-ray phase-contrast imaging [4–11], different methods for doing this
have been developed, as thoroughly reviewed by Nugent [12]. Currently four methods are in
use: interferometry, diffraction-enhanced imaging, in-line phase contrast, and grating interfer-
ometry (Talbot imaging) [2, 13, 14]. Out of those methods, the last two show distinct advan-
tages. They can both be used with broad-band sources. A version of the grating interferometry
(Talbot-Lau interferometry) can also be performed with extended sources as the demands on
spatial coherence are lowered, at the cost of losing a portion of the flux. In-line phase contrast
(in-line holography, propagation-based phase contrast) is the simplest arrangement and there-
fore the least sensitive to, e.g., misalignments of the optical components. It requires a small
source of high spatial coherence and has therefore been limited to synchrotron or low-power
microfocus sources, but has recently been demonstrated with table-top liquid-jet-anode sources
of higher power [15]. None of the X-ray phase-contrast methods yield direct measurements of
the phase, so data processing is required. The simplest is for interferometry, which only re-
quires unwrapping of the 2π phase shifts. The most demanding is for in-line phase contrast
which requires phase retrieval; the experimental simplicity is paid for by more complex data
processing.

object

detector

X-ray

source

intensity

Fig. 1. Illustration of in-line phase contrast. Extending the propagation distance after pas-
sage through the object lets intensity differences due to refraction develop.

In this paper, we consider the method of in-line phase contrast, illustrated in Fig. 1. Because
of its simplicity and relatively low sensitivity to misalignments it is suitable for tomography.
The arrangement is similar to absorption X-ray imaging. The main difference is the propaga-
tion distance: in absorption, a projection through the object is captured at a plane close to the
sample. In in-line phase contrast, the X-rays propagate a distance through free space after leav-
ing the sample, before being registered by the detector. This distance gives time for the phase
introduced by the sample to develop into phase contrast. If the propagation distance is chosen
properly, the phase-contrast will consist of edge enhancement, as shown in the example in Fig. 2
where (a) is the object and (b) the simulated phase-contrast image. While the edges in (b) are
clear and small structures can be detected, the quantitative relation between phase-contrast im-
age and object is not intuitive. Fig. 2(c) shows instead the phase of the object in (a), a physical
quantity directly related to object properties. Figure 2(c) has been obtained from Fig. 2(b) us-
ing phase retrieval, a method for reconstructing phase from measured intensity. Phase retrieval
was first used for optical wavelengths [16] and then brought into the X-ray regime when the
need arose. The paper by Nugent [17] is an excellent summary of phase-retrieval techniques
in X-ray imaging, while Gureyev et al. [18] give a readable overview of in-line phase-contrast
imaging, including practical considerations for designing a system. For in-line phase tomogra-
phy, the phase is retrieved for all images, and three-dimensional tomographic reconstruction is
performed on the retrieved phase. In this paper, we consider the phase retrieval but not the final
step, i.e., that of three-dimensional reconstruction.

In general, phase retrieval requires at least two measurements of the intensity, taken at two

#143055 - $15.00 USD Received 22 Feb 2011; revised 28 Apr 2011; accepted 4 May 2011; published 11 May 2011
(C) 2011 OSA 23 May 2011 / Vol. 19, No. 11 / OPTICS EXPRESS   10361



(a)

200 μm200 μm 200 μm

(b) (c)

Fig. 2. (a) Phase contribution of an object consisting of polystyrene cylinders and spheres
in air. (b) Simulated phase-contrast image of the object. (c) Phase retrieved from (b), using
the single-material phase-retrieval method. Color scale is linear from minimum (black) to
maximum (white).

different distances from the source [17]. (The same effect can also be achieved by using differ-
ent amounts of defocus in, e.g., phase-contrast microscopy [19], or by taking images at different
wavelengths.) This relates to the uniqueness of the retrieved phase. If only one image is cap-
tured, at a certain distance from the source, we could find a phase object with constant absorp-
tion that would give rise to the registered intensity. But we could also find a pure absorption
object that would produce the exact same intensity. Considering that most objects have both
varying absorption and phase, there are an infinite number of solutions to the problem. Conse-
quently, the phase retrieved from only one image will not be unique. But the intensity generated
by absorption and the intensity generated by phase will propagate differently, so if two images
are taken at different distances, the phase and absorption properties can be untangled. As an
example, a contact image taken just after the sample contains only the contributions from ab-
sorption, and once the absorption is known the phase information can be retrieved from an
image taken further away from the object. So with two intensity measurements at different dis-
tances from the source, the retrieved phase will be unique. (Unique in a practical sense, as more
exotic objects like phase vortices are not unambiguously recovered by phase retrieval [17].)

In tomography, hundreds of images will be taken in fast succession while either the object or
the system is rotated. Taking two images, at two different distances and at each rotation angle,
causes problems: it is difficult to arrange experimentally, it increases the dose delivered to the
sample, and it increases the time spent making the measurements. The dose increment could
be avoided by using only half the dose in each image, but this would instead increase the noise
levels. Thus, taking only one image at each angle is preferable. In most cases, the investigated
samples are not completely unknown, and prior knowledge can be used to reduce the number of
required images. For example, in a homogeneous object (contains only one material and air) β
and δ are known constants and the projected thickness can be found from only one image. The
two most common assumptions on material properties are either that the absorption is constant
and thus can be neglected, or that absorption and phase coefficients β and δ are proportional
to each other. The second case will, for the remainder of this paper, be referred to in short as
absorption proportional to phase.

In this paper, we review in-line phase retrieval methods applicable to tomography. First, that
means we consider only methods that require one image at each projection angle. Second,
we consider only analytical methods as we have hundreds of images to process, and iterative
methods take longer. In the literature, we have identified seven methods that fulfil these criteria.
(Sometimes identical or nearly identical methods have been derived in different ways by various
authors, and are then considered as one method.) Surprisingly, despite being derived in different
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ways with different approximations and assumptions along the way, all these methods follow
the same pattern and are numerically implemented in the same manner. This pattern is outlined
in Sec. 2.1. This general pattern makes it very easy to compare them, and also to implement
them numerically. As the methods differ only at specific points, the same numerical code can
be used for all methods with an option for the user to choose the relevant method at each run of
the program. In Sec. 2.2 we list and compare the assumptions and approximations made in the
derivations, and thus identify the different situations where some methods should work better
than others. Section 3 contains a scheme for choosing the most suitable phase-retrieval method
in a particular situation, based on the information in Sec. 2.2. Finally, in Sec. 4 we test the
methods on simulated and experimental phase-contrast images, and then in Sec. 5 discuss the
results and conclude which methods are preferable in different situations.

The considered methods are (1) the Bronnikov [20] method that assumes no absorption, (2)
the modified Bronnikov algorithm by Groso et al. [21] that allows for small absorption, (3)
the phase-attenuation duality algorithm by Wu et al. [22] for absorption proportional to phase,
(4) the method for homogeneous object or single material by Paganin et al. [23], (5) the two-
material method by Beltran et al. [24], and (6) the Fourier method with the Born approximation
or (7) the Rytov approximation derived by Gureyev et al. [25]. Number 6, the Fourier method
with Born approximation, has also been derived by Zabler [26], Guigay [27], and Turner [28]
under somewhat different approximations.

2. Phase-retrieval methods

2.1. General pattern

Take a function g(I(r
⊥

)) of the measured 
intensity.

Calculate the Fourier transform of g(r
⊥
).

Multiply by a filter Hp(w) in the frequency 
domain.

Calculate the inverse Fourier transform to 
get the filtered quantity gF(r

⊥
).

Take a function f(gF) to get the phase ϕ(r
⊥
).

Calculate the Fourier transform of ϕ(r
⊥
).

Multiply by a filter Hfbp(w) in the 
frequency domain.

Calculate the inverse Fourier transform.

Backproject.

g(I)

Hp(w)

f(g
F
)

Hfbp(w)

phase 
retrieval

filtered 
back-
projection

F

F 
-1

F

F 
-1

Fig. 3. The process of phase retrieval followed by tomographic reconstruction.

All seven methods listed in the introduction follow the same pattern. The steps of this pattern
are outlined in Fig. 3, assuming the object is illuminated by a plane wave. (At the end of Sec. 2.2
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it is shown how to extend the theory to the more practical cone-beam case, where the source is
placed at a finite distance from the object and the illumination is a spherical wave.) As input,
the algorithms take the intensity I(r⊥) in the image plane registered as a function of transverse
position r⊥ =(x,y) on the detector. First, a function g(I(r⊥)) is calculated. This function, which
varies between the different methods, is rather simple and sometimes just a normalization.
Then the quantity g(r⊥) is filtered in the frequency domain. Intuitively, this filtering can be
perceived as a deconvolution of a diffraction integral (like the Guigay equation [27]) or as a
Fourier transform solution of a wave equation (like the transport of intensity equation [9, 29]).
The filtering is performed by first taking the Fourier transform of g(I), multiplying by a filter
function Hp(w) where w = (u,v) is the spatial frequency, and then taking the inverse Fourier
transform to get the filtered quantity gF(r⊥). Again, the filter function Hp(w) depends on the
chosen method. Finally, a function f (gF) is taken to yield the 2D phase distribution ϕ(r⊥) at
a plane just after the object, i.e., at the contact plane. The function f (gF) is rather simple and
often an identity, f (gF) = gF . The procedure can be written as one equation,

ϕ(r⊥) = f
(
F−1{Hp ·F [g(I)]

})
(1)

where F denotes the 2D Fourier transform with respect to r⊥.

Take a function g(I(r
⊥

)) of the measured 
intensity.

Calculate the Fourier transform of g(r
⊥
).

Multiply by a filter Htot(w) in the 
frequency domain.

Calculate the inverse Fourier transform.

Backproject.

g(I)

Htot(w)

F 
-1

F

Fig. 4. The process of phase retrieval and tomographic reconstruction performed together.

As shown in Fig. 3, the process can be continued to retrieve not just the 2D projections of
the phase, but the 3D phase distribution of the object. Then for each tomographic angle, the 2D
phase is filtered again in the Fourier plane, this time by a function Hfbp(w). For the standard
method of 3D reconstruction, namely filtered backprojection, Hfbp(w) = |u|. Other methods are
in use, in particular some methods where the filter has been tailored specifically to suit phase-
contrast images [20,22]. After the filtering, the image is back-projected onto the 3D volume of
interest [30].

The process is identical for all seven phase-retrieval methods, except that different functions
g(I), Hp(w), f (gF), and sometimes Hfbp(w) are used. Each method is completely described
by those four functions, and by comparing the functions we can compare the methods. This is
done in Sec. 2.2.

In Fig. 3 we see that before and after taking the function f (gF), there is a Fourier transform
and an inverse Fourier transform. If f (gF) = gF or some other very basic function, the two
transforms need not be performed. Then the two filters Hp(w) and Hfbp(w) can be combined
into a single filter Htot(w), and the procedure in Fig. 3 can be simplified into that of Fig. 4. The
new process starts by taking the function g(I(r)) for each tomographic angle, followed by a
Fourier transform and multiplication in frequency space by the combined filter Htot(w). After
an inverse Fourier transform, each image is back-projected to the 3D volume. After processing
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images at all angles, a 3D phase-retrieved volume has been reconstructed. This reconstruction
is hardly more time-consuming than filtered back-projection alone. The first combined method
was derived by Bronnikov [20].

While the combined approach in Fig. 4 efficiently saves computational time, the process in
Fig. 3 has the advantage of flexibility. For example, several different 3D reconstruction tech-
niques can be tested on the same set of phase-retrieved images, without having to re-calculate
the phase retrieval in between. It is possible to choose a custom-made algorithm for the phase
retrieval, and combine it with commercial, fast software for the 3D reconstruction. We also note
that some phase-retrieval methods are suitable for the combined approach in Fig. 4, while oth-
ers are not. A slightly more complicated function f (gF), containing, e.g., a logarithm, makes
the combined approach impossible to use.

As the intention of this paper is to compare phase retrieval methods, we will concentrate
on the first three functions g(I), Hp(w), and f (gF). While comparing different Hfbp would be
interesting, it lies outside the scope of the present survey. For methods that combine phase
retrieval and 3D reconstruction, we have done the mathematics necessary to extract only the
phase-retrieval part as described by the three functions.

2.2. Comparison of different methods

In the derivations of the seven phase-retrieval methods, different assumptions have been made.
Some concern the material, while others deal with the wave propagation. One common assump-
tion is to start from the Fresnel diffraction integral, another to use the paraxial (or parabolical)
wave equation. As the Fresnel diffraction integral is actually the solution of the paraxial wave
equation [31], these two assumptions are the same and will be referred to as the Fresnel approx-
imation. Sometimes the Transport of Intensity Equation (TIE) [29] is used. It is derived from
the paraxial wave equation, with an additional assumption identical to assuming a large Fresnel
number, NF = a2/λd � 1 [32]. This expression relates the smallest feature size a of the object
to the wavelength λ and the propagation distance d, and holds for relatively small propagation
distances. Another approximation used in several derivations is the slowly varying phase (SVP)
approximation, also referred to as moderate phase variation, |ϕ(r⊥ + λdwm)− ϕ(r⊥)| � 1
which implies that the changes in phase in the object are not too rapid. The frequency |wm| is
the highest spatial frequency of the object, or at least the highest frequency to be included in
the reconstruction.

For all methods, the object is characterized by its three-dimensional refractive index n(r) =
1−δ (r)+ iβ (r), where δ represents the phase and β the absorption, and r is position in three
dimensions. The quantity β is related to the linear absorption coefficient μ by μ = 4π/λ · β
[33]. Under the projection approximation, the intensity I(r⊥) in the contact plane is given by
[33]

I(r⊥) = Iin exp

[
−
∫

dz μ(r⊥,z)
]

(2)

where r⊥ is the coordinates in the projection plane, perpendicular to the projection direction, z
the coordinate along the projection direction, and the incident intensity Iin is assumed constant.
If the material is homogeneous, this turns into Beer’s law I(r⊥) = Iin exp[−μT (r⊥)] where
T (r⊥) is the projected thickness of the material. The phase is similarly given by

ϕ(r⊥) =−2π
λ

∫
dzδ (r⊥,z) (3)

which for homogeneous objects becomes ϕ(r⊥) = −δT (r⊥) · 2π/λ . In all derivations except
the one for two materials, one out of two approximations is made: either the material has no
absorption, μ(r⊥) = 0, or the absorption is proportional to the phase, μ ∝ δ .
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Table 1. Methods of Phase Retrieval Suitable for In-Line Phase-Contrast Tomography, and
Their Properties1

Method g(I) Hp(u,v) f (gF) Derivation

Bronnikov I
Iin

−1
[
2πλd|w|2]−1 gF

Assume μ = 0. Use weak
focusing condition.

Modified
Bronnikov

I
Iin

−1
[
2πλd|w|2 +α

]−1 gF
Assume μ ≈ 0. Solve TIE.

Phase-
atten.
duality

I
Iin

[
2π reλ 2d

σKN
|w|2 +1

]−1 λ re
σKN

lngF

Assume μ ∝ δ . Propagate
Wigner distribution func-
tion for small Fresnel num-
bers.

Single
material

I
Iin

[
4π2d δ

μ |w|2 +1
]−1 − 1

μ lngF
Assume known δ and μ
(implies μ ∝ δ ). Solve TIE.

Two
materials

I exp[μ2A(r⊥)]
Iin

[
4π2d δ1−δ2

μ1−μ2
|w|2 +1

]−1 − 1
μ1−μ2

lngF
Assume two materials and
SVP. Solve TIE.

a
[
sin

(
πλd|w|2)]−1Fourier

method,
Born
type b

1
2

(
I

Iin
−1

)

[
γ cos

(
πλd|w|2)+ sin

(
πλd|w|2)]−1

gF

Use Born approximation
and Fresnel propagation.
Finally, assume (a) μ = 0 or
(b) μ ∝ δ .

a
[
sin

(
πλd|w|2)]−1Fourier

method,
Rytov
type b

1
2 ln I

Iin [
γ cos

(
πλd|w|2)+ sin

(
πλd|w|2)]−1

gF

Use Rytov approximation
and Fresnel propagation.
Finally, assume μ = 0 (a) or
μ ∝ δ (b).

1The functions g(I), Hp(u,v) and f (gF ) are introduced in Sec. 2.1, and give a full description of the methods.

Below follows a short description of each method and its derivation. The functions g(I),
Hp(w), and f (gF) of all methods are given in Table 1, while the different approximations are
listed in Table 2. For the methods of single material and two materials, the final result will
be given as projected thickness of the sample, while for the others it is given as phase. For
the single-material method, the result can be turned into phase using the simplified version of
Eq. (3). For the same two methods [23, 24], our expressions differ slightly from the ones given
in the paper, as we use a different definition of the Fourier transform. We define the Fourier
transform f̂ (w) of a function f (r⊥) as

f̂ (w) =
∫ ∫ ∞

−∞
d2r⊥ f (r⊥)exp(−2πr⊥ ·w) (4)

and its inverse as
f (r⊥) =

∫ ∫ ∞

−∞
d2u f̂ (w)exp(2πw · r⊥) . (5)

This definition matches the common definition of the Discrete Fourier Transform (DFT) and
thus of the Fast Fourier Transform (FFT) which is generally used for numerical evaluation of
the transforms.

Bronnikov [20]. This was the first method derived. The absorption is assumed to be zero,
and weak focusing conditions [34] applied. The weak focusing condition formula is similar
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Table 2. Approximations Made in the Derivation of the Methods of Table 11

Method μ ≈ 0 μ ∝ δ 2 mat. Fresnel a2

dλ � 1 SVP Born Rytov

Bronnikov � � �
Modified Bronnikov � � �
Phase-att. duality � � � �
Single material � � �
Two materials � � � �

a �
Fourier (Born) b � � �

a �
Fourier (Rytov) b � � �

1The first three approximations apply to the material, which is assumed to have no absorption (μ ≈ 0), to have
absorption proportional to phase (μ ∝ δ ), or to consist of two known materials and air. The following apply to
the method of propagation and are, in order: the Fresnel approximation, the assumption that the Fresnel number
is large, the slowly varying phase approximation (SVP), the first Born approximation, and the first Rytov approx-
imation.

to the TIE, and is derived from the Fresnel diffraction integral for large Fresnel numbers. The
derivation goes all the way to the 3D reconstruction, so to get the intermediate step of the phase
we have applied Fourier methods to Eq. (5) of Ref. [20]. The method is limited to very thin
samples, because of the assumption of no absorption.

Modified Bronnikov [21]. The object is assumed to be of weak and almost homogeneous
absorption, and the TIE is applied and solved. A result identical to Bronnikov’s is derived, and
afterwards a small term α is added to the filter function to account for what little absorption
there might be. We note that although the method of derivation differs, the initial assumptions
are the same as for the Bronnikov method: no absorption, Fresnel approximation, and large
Fresnel number. The absorption requirement is relaxed when α is introduced.

Phase-attenuation duality [22]. It is assumed that the phase-attenuation duality applies,
where phase and absorption are both proportional to the electron density and thus proportional
to each other, μ ∝ δ . This holds where Compton scattering is the main contributor to μ , such
as for light materials and photon energies of 60−500 keV. Additionally, the SVP approxima-
tion is made. Then the Wigner distribution function is found and propagated to yield a solution
for large fresnel numbers. The propagation of the Wigner function is valid in the Fresnel ap-
proximation [35], so the applied approximations are absorption proportional to phase, Fresnel
approximation, large Fresnel number, and SVP approximation. The proportionality constant
between phase and absorption is δ/μ = λ 2re/2πσKN where λ is the wavelength, re the classi-
cal electron radius, and σKN the total cross section for X-ray photon Compton scattering from
a single free electron [22].

Single material [23]. It is assumed that the object is homogeneous, and that δ and μ are
known. This assumption implies that μ ∝ δ . Under this condition the TIE is solved to yield the
thickness of the material. Thus, the assumptions are absorption proportional to phase, Fresnel
approximation, and large Fresnel number.

Two materials [24]. The object is assumed to consist of air and two other materials, one
embedded in the other, of known β1 and δ1 (embedded material) and β2 and δ2 (encasing
material). It is also assumed that the total projected thickness of the object A(r⊥) (i.e., the
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sum of the projected thickness of the two materials) is known. The TIE is solved assuming
that the thickness of the encasing material varies slowly, an assumption very similar to that of
slowly varying phase. So the assumptions are two known materials of known total thickness,
the Fresnel approximation, large Fresnel number, and slowly varying phase.

Fourier method with Born approximation [25]. Starting form the Fresnel diffraction inte-
gral, it is assumed that the Born approximation applies. In this context it means the scattered
field ψ(r⊥) is small both in amplitude and phase, |ψ(r⊥)| � 1. The Fresnel integral is prop-
agated to yield the results. Finally, either μ = 0 or μ = γδ · 4π/λ is assumed, where γ is a
proportionality constant. The assumptions are thus the Fresnel approximation, the Born ap-
proximation, and either no absorption or absorption proportional to phase. In the case of no
absorption, the Born approximation is not needed and the same expression can be derived as-
suming only the Fresnel approximation and slowly varying phase (SVP) [26]. Similarly if the
absorption is proportional to the phase, the same expression can be derived under less stringent
assumptions [27, 28], namely Fresnel approximation, homogeneous object, weak absorption,
and slowly varying phase (SVP).

Fourier method with Rytov approximation [25]. Starting from the Fresnel diffraction in-
tegral, it is assumed that the Rytov approximation applies, |∇⊥ψ(r⊥)|2 � |∇2

⊥ψ(r⊥)|. This
approximation is often equivalent to the Born approximation [25]. The Fresnel diffraction in-
tegral is propagated to yield the results. Finally, either μ = 0 or μ = γδ · 4π/λ is assumed.
The assumptions are thus the Fresnel approximation, the Rytov approximation, and either no
absorption or absorption proportional to phase.

Comparing the results of the derivations, as shown in Table 1, shows for example that if the
somewhat arbitrary constant α of the modified Bronnikov method is set to zero, it is identical
to the Bronnikov method. Whereas if the constant is set to λ/2π · μ/δ , it turns instead into
something very close to the single-material method. For a homogeneous object at high energies,
δ/μ = λ 2re/2πσKN [22] and the phase-attenuation duality method is identical to the single-
material method. If the approximation of a large Fresnel number is used on the two Fourier
methods, they turn into something very similar to the single-material method, and for the Born
approximation with no absorption this yields the Bronnikov method. The Fourier methods in the
Born and Rytov approximations become identical if the contrast is low enough that ln(I/I0)≈
I/I0 − 1 [25]. In short, the seven methods are similar and can sometimes be turned into each
other by choices of parameters, approximations, or just a change of notation.

In Table 2, the approximations of the different methods are listed. First, we note that all meth-
ods apply the Fresnel approximation. This is reasonable, since development of phase contrast
requires a certain propagation distance, so it is highly unlikely that the Fresnel approximation
would not be valid. The possible exception would be for large cone-beam angles. All methods
also assume the projection approximation of Eqs. (2) and (3), although this is not noted in the
table. We can also see that the first five methods are restricted to shorter propagation distances as
the Fresnel number is high, whereas the last two can be used for longer propagation distances.
The first assumes no absorption at all, while the others in some way incorporate absorption.

As listed in Table 1, all methods assume monochromatic light and point X-ray sources. Some
methods, however, incorporate the effects of polychromatic light and extended sources (phase-
attenuation duality [22, 36] and the single-material method [37]). Here, we have chosen a sim-
plified version of these methods, for easy comparison to the others.

For the Bronnikov method and both Fourier methods, the denominator of the filter function
sometimes goes to zero. This implies noise amplification at these frequencies. To amend this,
Gureyev et al. [25] suggest a Tikhonov’s regularization term for the Fourier methods. Also
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known as a Wiener filter [38], the principle is that the filter Hp(w) = 1/hp(w) is replaced by

Hwien(w) =
h∗p(w)

hp(w)h∗p(w)+η
(6)

where the constant η can be adjusted depending on noise level. A large η gives small noise
amplification, but also reduces the effect of the phase retrieval. A small η gives a better recon-
struction of the object, but more noise amplification. The regularization has been implemented
for the Fourier methods [25], but the Bronnikov method would also benefit from it. In fact, the
α introduced in the modified Bronnikov method can be seen as a kind of regularization.

The formulas in Table 1 are given for illumination by a plane wave, and propagation distance
d. In most practical cases, the illumination will come from a point source (or at least approx-
imately so) placed a distance R1 from the object, and the image will be captured a distance
R2 behind the object. The effect on the reconstruction formulas is readily included, since the
intensity IR1 captured in the cone-beam case is related to the intensity I∞ generated by a plane
wave by [23]

IR1(Mr⊥,R2) =
1

M2 I∞

(
r⊥,

R2

M

)
, (7)

where M = (R1 +R2)/R1 is the magnification of the system. For incident plane waves, the
transverse coordinate r⊥ was the shared coordinate of object and detector plane both, whereas
now r⊥ is the object-plane transverse coordinate and the detector plane coordinate is Mr⊥. For
our case, Eq. (7) implies three changes to the equations in Table 1. First, the intensity measured
at distance R2 should be multiplied by M2. Second, the intensity I(r⊥) in the formulas should
be replaced by the measured intensity IR1(Mr⊥). Third, and most important, the propagation
distance d in Table 1 should be replaced by the effective propagation distance R2/M. If those
changes are applied, all the methods in Table 1 can be used for phase retrieval in cone-beam
geometry. We note that the first two changes have rather minor effects on the results. First,
the incident intensity Iin is often measured at a distance R2, as a background image with no
object in it. Then the same factor M2 will be applied to both I(r⊥) and Iin, and since all meth-
ods use I(r⊥)/Iin, the effect of this change will cancel. Second, the Fourier transform should
still be taken with respect to r⊥ and not with respect to Mr⊥. Consequently, this change has
marginal effects on the numerical calculations as long as the scale Mr⊥ of the detector plane is
downscaled by M before given as an object coordinate.

3. Choosing your method

Assuming a point source and monochromatic light, you can choose your method of reconstruc-
tion following the brief scheme in Fig. 5. First, consider the distance at which your images are
registered. If the Fresnel number is much smaller than one you must go with one of the Fourier
methods, using either the Born or Rytov approximation. The two methods give fairly similar
results, but the Born approximation is slightly easier to implement as the Rytov approximation
contains a logarithm in g(I), which causes problems for zero intensity. The Fourier methods
tend to amplify noise at specific frequencies, as can be seen from the zeros of the denominator
of Hp(w). For short distances (Fresnel numbers around or larger than 1) one of the other five
methods will give equivalent or better results. Also, none of the methods apply unless μ ∝ δ
or there is no absorption. For samples that do not fulfil one of these requirements there is no
suitable reconstruction method, and your best long-distance option is to try one of the Fourier
methods anyway.

For short distances, i.e., large Fresnel numbers, there are five methods remaining, and three of
them are reserved for special cases. First, if the beam energy is high, namely 60−500 keV, the
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Is the Fresnel number <<1?

Is the beam energy 60-500 keV?

Is the sample made from two materials 
with known total projected thickness?

yes

no
Fourier 
methods

yes

no
Phase-att. 
duality

Two materials

Single material 
or modified 
Bronnikov

yes

no

Fig. 5. Procedure for choosing your phase-retrieval method.

phase-attenuation duality method is superior to any of the others. All the other methods place
demands on the material, for example that it is homogeneous. For phase-attenuation duality,
the high beam energy means μ is automatically proportional to δ for all light materials, and
thus the method works for homogeneous or multi-material samples alike. Second, if the sample
consists of two known materials and air, and you know the total projected thickness of the
sample, the two-material method should be used. Third, if both noise and absorption are very
low, the Bronnikov method is the simplest. However, since it is based on the assumption of no
absorption at all, it tends to produce artifacts for most objects. It is therefore suggested that the
modified Bronnikov method, which is almost as easy to implement, is used instead.

For all remaining cases, i.e., short propagation distance, lower beam energy (< 60 keV), and
non-zero absorption, either the single material method or the modified Bronnikov method are
the best options. They are very similar, with the main difference in the f (g) function, which im-
plies they give somewhat different reconstructed profiles. The single-material method requires
known material constants, but once those are known, the method is deterministic. The modified
Bronnikov method involves a constant α which is normally decided from trial and error. Com-
paring the two methods suggest a good starting point is α = λ/2π · μ/δ . The single-material
method is formally limited to homogeneous objects, e.g., samples that consist of one material
and air. The derivation of the modified Bronnikov method is not entirely clear on this point,
but its similarity to the single-material method implies that the same limit applies. In practice,
though, both methods are used for multi-material samples as well, with different kinds of ar-
tifacts showing up. The artifacts consist of blurring, if the real μ/δ is higher than the value
chosen in the reconstruction, or edge amplification, if the real μ/δ is lower than the value
used. The method is used despite those artifacts, simply because there is no method to handle
multi-material objects for lower beam energies. Multi-material objects imply a more compli-
cated relationship between absorption and phase, and would require more than one image at
each tomographic angle for proper phase retrieval.

Finally, situations where the effects of extended source and/or polychromatic light are signif-
icant lie outside the scope of the present survey. As extended versions of the phase-attenuation
duality [22,36] and single-material [37] methods contain tools to handle this situation, they are
a logical starting point.

4. Numerical results

Numerical calculations and simulations have been performed to illustrate the phase-retrieval
methods. First, the object in Fig. 2(a) was numerically propagated to the detector plane by nu-
merical evaluation of the Fresnel diffraction integral, to yield an image similar to Fig. 2(b) ex-
cept it is now free from noise. Figure 6 shows the result when six different phase-retrieval meth-
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Fig. 6. Retrieved phase of the object in Fig. 2(a) from simulated noise-free phase-contrast
images, for R1 = 0.6 m, R2 = 2.4 m, photon energy 15 keV, and simulated detector pixel
size 9 µm. The phase is retrieved using (a) the Bronnikov method, (b) the modified Bron-
nikov method for α = 1.0 · 10−3, (c) the phase-attenuation duality, (d) the single-material
method, (e) the Fourier-Born method using γ = 5.0 ·10−4, and (f) the Fourier-Rytov method
using γ = 5.0 ·10−4. All color scales are linear ranging from -6 to 13 radians for (a), -2 to
7 radians for (b) and (d)–(f), and -3 to 10 radians for (c). Part (g) shows line profiles, taken
along the white line in figures (a)–(f), for all six methods.

ods were used. The object consists of polystyrene cylinders and spheres in air, with polystyrene
parameters taken as β = 3.553 · 10−10 and δ = 1.043 · 10−6. The diameters are 100, 50, 20,
and 10 µm respectively, leading to a maximum absorption of 0.5% and maximum phase of 7.9
radians for the thickest part of the object. The radiation is assumed monochromatic at 15keV
and the source Gaussian of full width at half maximum (FWHM) 10 µm. The simulated de-
tector pixels are 9 µm and the detector point-spread function (PSF) is Gaussian of FWHM 25
µm. The distance from source to object is R1 = 0.6m and the distance from object to detector is
R2 = 2.4m, yielding a magnification of M = 5. The resulting phase-retrieved images, displayed
in Fig. 6, show that most methods give very similar results in the absence of noise. Two of
them stand out: the Bronnikov method in Fig. 6(a) assumes no absorption, and since the ob-
ject has non-uniform absorption this causes a brighter background in the left half of the image.
The phase-attenuation duality image in Fig. 6(c) is not as sharp as the others, and the smallest
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Fig. 7. Retrieved phase of the object in Fig. 2(a) from simulated images (a) with a pixel SNR
of 4, under the same conditions as Fig. 6. The phase is retrieved using (b) the Bronnikov
method, (c) the modified Bronnikov method for α = 1.0 · 10−3, (d) the single-material
method, (e) the Fourier-Born method using γ = 5.0 ·10−4, and (f) the Fourier-Rytov method
using γ = 5.0 · 10−4. For the Fourier methods a Tikhonov’s regularization term η = 10−6

was used. All color scales are linear ranging from 0.3 to 2 in normalized pixel intensity for
(a), -14 to 22 radians in (b), and -7 to 11 radians in (c)–(f). Part (g) shows line profiles,
taken along the white line in figures (b)–(f), for all five methods.

structures are not reconstructed, since the method is not suited for this photon energy.
Figure 7 shows the same situation as Fig. 6, except that noise is now included at a pixel signal-

to-noise ratio (SNR) of 4. Figure 7(a) now displays the phase-contrast image on the detector,
while (b)–(f) show the results of five phase-retrieval methods. The phase-attenuation duality is
not included, since there is no point in comparing it to the others in the wrong wavelength re-
gion. Here the differences between methods are more obvious. The modified Bronnikov and the
single-material methods give the best results, while the Bronnikov method shows the same er-
ror as in Fig. 6. The two Fourier methods show amplification of noise at particular frequencies,
despite the use of regularization to improve the situation.

Figure 8 shows some special cases. In Fig. 8(a) we see the same retrieved image as in Figs. 6
and 7, but this time using radiation of photon energy 100 keV. Phase retrieval was performed
using the phase-attenuation duality method, which at this photon energy gives a correct re-
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Fig. 8. Some special cases of phase retrieval. (a) Retrieved phase of the object in Fig. 2
from a simulated noise-free phase-contrast image at 100 keV, using the phase-attenuation
duality method. (b) Simulated noise-free phase-contrast image of an object consisting of
a 400 µm square rod of PMMA containing 100 µm diameter spheres of water (upper),
teflon (middle), and air (lower). (c) Phase retrieved from the image in (b), assuming the
encasing material is PMMA and the material of interest is teflon, using the two-material
method. (d) Simulated noise-free phase-contrast image of a 20 µm cylinder at R1 = 6m and
R2 = 24m. (e) Phase retrieved from (d) using the Fourier-Rytov method (γ = 5.0 · 10−4)
with regularization term η = 10−2. (f) Same as (e), except the single-material method is
used for phase retrieval.

lationship between μ and δ . The phase is now properly reconstructed. In order to judge the
quality of the phase-attenuation duality method, Fig. 8(a) should be used in place of Fig. 6(c).

Figure 8(b) shows a simulated phase-contrast image of an object consisting of more than
one material, namely a 400 µm square rod of PMMA (β = 6.459 · 10−10, δ = 1.186 · 10−6)
containing three 100 µm spheres of water (upper, β = 8.968 · 10−10, δ = 1.026 · 10−6), teflon
(middle, β = 2.591 · 10−9, δ = 1.953 · 10−6), and air (lower). All parameters are the same as
in Fig. 6. Figure 8(c) contains the phase retrieved using the two-material method, assuming the
encasing material is PMMA and the embedded material is teflon. The total thickness of the
sample is assumed to be the thickness of the rod, 400 µm. The two-material method attempts
to reconstruct the thickness of the embedded material, in this case teflon. Ideally, the retrieved
image should contain only the sphere in the middle of the image. The water sphere causes arti-
facts because the method is not adjusted to this material. The air bubble causes similar effects,
both in absorption and edge amplification, because it was not included in the total thickness
of the sample (it is reasonable to assume that the exact size and location of air bubbles inside
a sample are unknown). The edges of the rod, finally, show up because of the approximations
in the derivation of the method: the encasing material is assumed to be slowly varying. This
implies the method can handle the difference in absorption between the interior and exterior of
the rod, so the background color of the retrieved image is uniform. However, it cannot handle
the rapid change at the edge of the rod, which shows up as an amplified edge in the retrieved
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image.
Figure 8(d) shows a simulated noise-free phase-contrast image of a single cylinder of

polystyrene, of diameter 20 µm, for a longer propagation distance (R1 = 6m, R2 = 24m). If
the smallest detail is 10 µm this corresponds to a Fresnel number of NF ≈ 0.2. The radiation is
monochromatic at photon energy 15keV, the source has a FWHM of 2 µm, the detector PSF is a
Dirac delta function, and the pixel size is 3 µm. Due to the longer propagation distance, the edge
amplification has turned into a series of oscillations. Figure 8(e) contains the phase retrieved
using the Fourier method in the Rytov approximation. The image displays both amplification
of specific frequencies seen in the background, and a fairly sharp image of a cylinder of correct
width. Figure 8(f) was retrieved using the single-material method, and shows the cylinder as
blurred and of the wrong diameter, but without the background effects.

(a)

500 μm

(b)

500 μm

(c)

500 μm

(d)

500 μm

(e)

500 μm

(f)

500 μm

Fig. 9. Phase retrieval on experimental data, in this case blood vessels in a rat kidney using
CO2 as contrast medium. (a) Phase-contrast image of the blood vessels, taken at source-to-
object distance R1 = 0.6 m and object-to-detector distance R2 = 2.4 m at a photon energy
centered at around 15 keV, using a detector of pixel size 9 µm. (b) Phase retrieved using the
Bronnikov method. (c) Phase retrieved using the modified Bronnikov method for α = 2.1 ·
10−3. (d) Phase retrieved using the single-material method. (e) Phase retrieved using the
Fourier method in the Born approximation, for γ = 1.0 ·10−3 and regularization parameter
η = 1 ·10−6. (f) Same as (e), except in the Rytov approximation. All color scales are linear
ranging from 0.5 to 1.3 in normalized pixel intensity for (a), -70 to 70 radians in (b), and
-7 to 3 radians in (c)–(f).

Figure 9 contains phase retrieval on experimental data. Figure 9(a) shows blood vessels in
an extracted rat kidney using CO2 as contrast medium, obtained using a broad-band Galinstan-
based liquid-jet microfocus X-ray source operated at 50 kVp [39]. The source-to-object distance
is R1 = 0.6 m and the object-to-detector distance R2 = 2.4 m, the photon energy is centered
around 15 keV, and the detector pixel size is 9 µm. The average dose is 100mGy and the kidney
around 7 mm thick. For the reconstruction, the materials are considered as air and soft tissue
(β = 9.73 ·10−10, δ = 1.077 ·10−6). Figure 9(b)-(f) contains the retrieved phase using different
phase-retrieval methods. The Bronnikov method shows a clear disadvantage, as it magnifies
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low-frequency noise to such an extent that the entire image is blurred. The modified Bronnikov
method and the single-material method both give good results. As the noise level is relatively
low, the two Fourier methods using regularization give nearly the same quality as the other two.

Table 3. Least Mean Square Error of Normalized Retrieved Phase Images for Different
Noise Levels1

Method No noise SNR=20 SNR=4

Bronnikov 2.43 2.51±0.11 3.30±0.27
Modified Bronnikov 0.45 0.73±0.06 2.53±0.27
Single material 0.73 0.94±0.09 2.64±0.29
Fourier (Born) 0.45 2.01±0.05 4.01±0.07
Fourier (Rytov) 0.77 1.75±0.05 3.99±0.07

1All values should be multiplied by 1×10−3.

Table 3 shows the least mean square error for the normalized retrieved phases, for five of
the phase-retrieval methods at three different noise levels. The object of Fig. 2(a) is propa-
gated numerically and phase retrieval performed on the result, using the same parameters as in
Fig. 6. The result is compared to the known object, generating Table 3. One column includes
no noise, the others include Poisson noise at a pixel SNR of 20 and 4, respectively. For the
two later cases, the table contains mean and standard deviation calculated from 1000 different
realizations of the noisy image. Before calculation of the mean square error, the object has been
normalized to a mean value of 1. Then the scale of the retrieved phase has been adjusted for
minimal mean square error. The phase-attenuation duality is not included, as it applies to a
different wavelength region, but would give results very similar to the single-material method.
The two-material method is not included as it is a rather special case. The data in the table sup-
port the conclusions drawn from the images: except for the Bronnikov algorithm, all methods
give similar results for high SNR. For low SNR, the modified Bronnikov and single-material
methods give better results.

5. Discussion and conclusions

The different phase-retrieval methods suitable for in-line X-ray phase-contrast tomography
have been characterized and compared, and most of the information concentrated into Tables
1 and 2. From the expressions in Table 1 and the levels of approximations in Table 2 we can
construct a scheme for choosing the most suitable phase-retrieval method, as shown in Fig. 5.
Finally, phase retrieval has been performed on simulated and experimental data, illustrating and
confirming the scheme in Fig. 5. Comparison is done for the retrieved two-dimensional projec-
tions rather than for reconstructed three-dimensional slices, and the tomographic reconstruction
is not considered in this paper. Optimally retrieved projections are likely to give improved re-
constructed slices, although this has not been explicitly analyzed in this paper.

Figure 8(e)–8(f) contains the phase retrieved from far-field images. Methods suitable only
to the near-field (in this case the single-material method) give a blurred reconstruction of the
wrong dimensions, while the Fourier methods (in this case in the Rytov approximation) give
a better reconstruction of the actual object, but also tend to amplify noise at particular fre-
quencies. This can be seen in Figs. 7 and 9 where noise amplification is also present, from the
expressions in Table 1 where the denominator of the spatial-frequency filter goes to zero for
specific frequencies, and from the mean square errors in Table 3 which increase significantly
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in the presence of noise. So as Fig. 5 indicates, the Fourier methods are the only options in the
far-field case, but for near-field images other methods give equivalent or better results.

If the photon energy is high and the object made from light materials, the phase-attenuation
duality method is the best option as it is not limited to homogeneous objects. For lower beam
energies it should not be used, as it gets the values of δ/β wrong as illustrated in Fig. 6. If the
sample consists of two materials, there is some benefit to the two-material method, as illustrated
in Fig. 8(b)–8(c).

The first phase-retrieval method to be developed, the Bronnikov method, is not included in
the scheme in Fig. 5, and the reason for this is illustrated in Figs. 6, 7, and 9. While it gives
reasonable results for noise-free data, any low-frequency noise is strongly amplified as the de-
nominator of the spatial-frequency filter goes to zero for low frequencies. This is particularly
obvious in experimental data where low-frequency noise is most likely present in the back-
ground. In place of the Bronnikov method, the modified Bronnikov method can be used. The
methods are very similar, but the modified Bronnikov method avoids the strong amplification
at low frequencies and thus gives better results.

The two most widely applicable methods are the modified Bronnikov and the single-material
method. Though derived differently, they are very similar, and will give similar results.

In summary, the phase retrieval methods suitable for phase-contrast tomography have been
characterized, and found to follow the same mathematical scheme. This information has been
used to compare the methods under different circumstances, and to provide a simple strategy
for choosing the most suitable phase-retrieval method.
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