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Resolution of static and dynamic stimuli in the peripheral visual field
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a b s t r a c t

In a clinical setting, emphasis is given to foveal visual function, and tests generally only utilize static stim-
uli. In this study, we measured static (SVA) and dynamic visual acuity (DVA) in the central and peripheral
visual field on healthy, young emmetropic subjects using stationary and drifting Gabor patches. There
were no differences between SVA and DVA in the peripheral visual field; however, SVA was superior
to DVA in the fovea for both velocities tested. In addition, there was a clear naso-temporal asymmetry
for both SVA and DVA for isoeccentric locations in the visual field beyond 10� eccentricity. The lack of
difference in visual acuity between static and dynamic stimuli found in this study may reflect the use
of drift-motion as opposed to displacement motion used in previous studies.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The visual world in which we live contains both static and
dynamic components. As such, the visual system has developed
to respond to a wide variety of stimuli.

The most widely used measure of visual function is the mea-
surement of visual acuity, which is the ability of the eye to resolve
detail in an image. The conventional method of measuring visual
acuity employs stationary letters or symbols (optotypes) of high
contrast viewed at a specific testing distance. In a clinical setting
emphasis is concentrated on foveal visual acuity; in fact, it is gen-
erally only foveal acuity that is measured for example when
assessing suitability for holding a motor vehicle driving license in
many countries (Bohensky, Charlton, Odell, & Keeffe, 2008).

Resolution thresholds of the eye are limited by the optics of the
eye, the spacing of the photoreceptors and the spacing of ganglion
cells in the retina (Anderson, Mullen, & Hess, 1991; Atchison,
Schmid, & Pritchard, 2006; Banks, Sekuler, & Anderson, 1991;
Campbell & Green, 1965; Ennis & Johnson, 2002; Frisén & Glans-
holm, 1975; Lundström et al., 2007; Millodot, Johnson, Lamont, &
Leibowitz, 1975; Popovic & Sjöstrand, 2005; Thibos, Cheney, &
Walsh, 1987; Wang, Thibos, & Bradley, 1997; Williams, Artal, Nav-
arro, McMahon, & Brainard, 1996).

In the fovea, spatial resolution is predominantly optically lim-
ited, in contrast to the periphery (beyond 10�) where spacing of
midget ganglion cells is the major factor determining the limits
of resolution (Anderson, Wilkinson, & Thibos, 1992; Banks et al.,
1991; Campbell & Green, 1965; Curcio & Allen, 1990; Frisén &

Glansholm, 1975; Lundström et al., 2007; Millodot et al., 1975;
Popovic & Sjöstrand, 2001, 2005; Thibos et al., 1987).

Static visual acuity (SVA) declines rapidly with increasing
eccentricity from the fovea in a symmetrical fashion in both the
nasal and temporal visual fields out to an eccentricity of approxi-
mately 10� (Anderson, Zlatkova, & Demirel, 2002; Frisén & Glans-
holm, 1975; Thibos et al., 1987). Beyond this, SVA is better in the
temporal visual field than in the nasal visual field. These differ-
ences have been attributed to lateral asymmetry of retinal ganglion
cells beyond the optic nerve head (Anderson et al., 2002; Fahle &
Schmid, 1988; Frisén, 1987; Frisén & Glansholm, 1975; Rovamo,
Virsu, Laurinen, & Hyvärinen, 1982).

When relative motion exists between an observer and an object
of interest, there will also be a corresponding movement of the im-
age of the object on the observer’s retina in relation to the fovea. In
order to maintain good image clarity, the eye must track and focus
the moving object so that the image is correctly imaged upon the
fovea. This requires a pursuit tracking movement of the eye. The
term ‘‘dynamic visual acuity’’ (DVA) was first proposed by Ludvigh
and Miller (1958) to describe the ability of the eye to resolve stim-
uli, moving in relation to an observer.

It is accepted that foveal DVA diminishes as the angular velocity
of a stimulus increases (Bex, Dakin, & Simmers, 2003; Brown,
1972a, 1972b; Burg, 1965; Chung & Bedell, 2003; Demer, 1995;
Demer & Amjadi, 1993; Fergenson & Suzansky, 1973; Ludvigh &
Miller, 1958; Murphy, 1978; Westheimer & McKee, 1975). In addi-
tion to velocity dependence, other factors affecting DVA have also
been widely studied. These include illumination, pupil diameter,
contrast, gender, age, alcohol, marijuana, and training effects.
Further information regarding these factors can be found in the re-
view articles by Miller and Ludvigh (1962) and Morrison (1980), as
well as in Dwight Holland’s (2001) doctorial thesis.
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Most studies of DVA have examined stimuli moving at relatively
large angular velocities and those utilizing eye-tracking devices
show that inadequate pursuit eye-movements is the key factor
resulting in decreased DVA (Barmack, 1970; Brown, 1972a; Demer
& Amjadi, 1993; Reading, 1972a). This ‘‘mismatch’’ between eye-
movements and stimulus velocity causes retinal image slip, which
results in movement of the image relative to the fovea.

The majority of researchers have used Landolt C stimuli (Emoto,
2010; Haarmeier & Thier, 1999; Long & Johnson, 1996; Ludvigh &
Miller, 1958; Miller, 1958; Miller & Ludvigh, 1962; Peters &
Bloomberg, 2005; Reading, 1972b; Smither & Kennedy, 2010;
Ueda, Nawa, Yukawa, Taketani, & Hara, 2006) although there are
a few exceptions. Behar, Kimball, and Anderson (1976) and Burg
(Burg, 1966; Burg & Hulbert, 1961) used Bausch & Lomb checker-
board targets. Demer and Amjadi (1993) used Sloan optotypes.
Geer and Robertson (1993) and Schneiders et al. (2010) both uti-
lized Landolt E stimuli. Gratings in various forms have been used
by McKee and Nakayama (1984) and Aznar-Casanova, Quevedo,
and Sinnett (2005).

Differences in DVA between different stimuli have been
reported, whereby the major factor affecting performance is the
orientation of stimulus in relation to the direction of movement
(Prestrude, 1987).

The type of stimulus also dictates the type of movement that
can be presented; displacement motion or drifting motion. During
displacement motion, the stimulus changes position in the visual
field over time. For drifting motion the stimulus remains at the
same location whilst every element of the pattern undergoes a
temporal phase change; giving the impression of movement within
an aperture (Aznar-Casanova et al., 2005). Gratings and Gabor
patches can be utilized to show both displacement and drift
motion, whereas other stimuli can only be presented using dis-
placement movement.

The disadvantage of displacement motion is that stimuli do not
remain at the same location and consequently, the retinal area stim-
ulated varies depending on both stimulus velocity and duration.

It is important to note that subjects in the majority of previous
studies had to follow moving stimuli, and that the associated
reduction in DVA occurred when ocular pursuit movements were
no longer able to maintain the stimulus on the fovea.

Two noteworthy studies conducted Brown (1972a, 1972b) exam-
ined DVA in the peripheral visual field in the absence of voluntary
eye-movements. DVA using displacement motion and under steady
fixation, deteriorated when relative movement exceeded approxi-
mately 2–4�/s. These results have also been repeated by Demer
and Amjadi (1993) and Aznar-Casanova et al. (2005). Aznar-Casa-
nova et al. (2005) used an exposure duration of 700 ms, whereas De-
mer and Amjadi (1993) used 16 s, and Brown (1972a, 1972b),
400 ms.

In the case of drifting motion, deterioration in DVA begins from
velocities as low as 0.5�/s (Aznar-Casanova et al., 2005) showing
that the mechanisms behind impaired performance are not identi-
cal for displacement and drifting motion.

The aim of this study was to measure SVA and DVA at specific
locations in the horizontal visual field on healthy, young emmetro-
pic subjects. The stimuli, namely stationary and drifting Gabor
patches, were chosen as these allowed well-defined retinal locations
to be tested irrespective of stimulus velocity.

2. Methods

2.1. Apparatus

Stimuli were generated on a PC microcomputer (MSI K9A2 Plat-
inum motherboard) running Windows XP and MATLAB� software

(MathWorks, Natick, MA) with extensions supplied with the Psy-
chophysics Toolbox (Brainard, 1997). Four ATI Radeon™ HD 4350
graphic cards were used to drive 8 IBM (G96) 190 0 CRT monitors
with a resolution of 1280 � 1024 (dot pitch 0.25 mm) with a
refresh rate of 85 Hz and with a mean luminance of 43–45.3 cd/
m2. An i1Display 2 colorimeter from X-Rite was used to calibrate
and correct the luminance and gamma function of the monitors.
One of the eight monitors was used solely as a slave monitor to
control stimulus presentation within Matlab on the remaining
monitors.

The remaining seven monitors were situated at a distance of
3.0 m from the subject thus forming an arc with a constant radius
of 3.0 m (see Fig. 1). A forehead-rest was utilized to maintain this
observation distance without restricting the horizontal visual field.

2.2. Stimulus generation

Test stimuli consisted of circular Gabor patches (i.e., rx = ry)
with a visible angular diameter of 2� (r = 0.5�). Only high contrast
(98% or greater) stimuli were used in this study.

The general formula for the Gabor stimuli was as follows:

Lðx; yÞ ¼ Lm½1þ sinð2pxfs þ /Þ� � exp½�ðx2 þ y2Þ=ð2r2Þ�

Dynamic stimuli were identical to static stimuli in every respect
except that the sine wave function was temporally modulated, cre-
ating an associated translation of the grating within the Gaussian
envelope. Two velocities were adopted: 1�/s and 2�/s and the direc-
tion of movement were always laterally, from right to left (creating
similar motion as if reading a text from left to right). The choice of
tested velocities was based upon previous studies (Demer, 1995;
Demer & Amjadi, 1993; Westheimer & McKee, 1975) showing
marked deterioration of visual acuity for stimuli drifting at veloci-
ties greater than approximately 2�/s.

The Gabor patches were orientated obliquely; leaning either
±45� from the vertical in order to reduce the superiority of acuity
for gratings orientated vertically or horizontally (Berkley, Kitterle,
& Watkins, 1975; Campbell, Kulikowski, & Levinson, 1966; West-
heimer, 2003) and the possible influence of off-axis astigmatism

Fig. 1. Experimental setup with seven CRT-screens. The subjects fixated on the
central screen (FOV) with their right eye, whilst the left eye was occluded with a
patch. Negative eccentricity (�10� to �30�) represents the nasal visual field of the
right eye, whereas positive eccentricity (+10� to +30�) represents the temporal
visual field.

1830 P. Lewis et al. / Vision Research 51 (2011) 1829–1834



Author's personal copy

in the peripheral visual field (Gustafsson, Terenius, Buchheister, &
Unsbo, 2001; Rempt, Hoogerheide, & Hoogenboom, 1976).

2.3. Experimental method

Resolution thresholds were determined for 0, 1 and 2�/s at the
following retinal locations: in the fovea, 10�, 20� and 30�; both
nasally [�] and temporally [+].

2.3.1. Subjects
A total of 10 naïve subjects participated (mean age 25.5 years,

ranging from 19 to 38 years). All were emmetropic (refrac-
tion 6 ±0.50D and astigmatism < �0.50DC) and had unaided foveal
visual acuities of 6/6 or better and no known ocular disease. Sub-
jects viewed the fixation screen with their right eye while wearing
a patch over their left eye. No optical correction was utilized fov-
eally or eccentrically.

Written informed consent was obtained from each subject after
the nature and purpose of the experiment had been explained. The
tenets of the Declaration of Helsinki were followed.

2.3.2. Procedure
Subjects were seated at a distance of 3.0 m from the seven mon-

itors and instructed to observe a fixation target (in the form of a
magnified asterisk ‘‘�’’) on the centermost monitor for all measure-
ments except for those in the fovea where the fixation target was
replaced by the stimulus.

Each measurement trial was initiated by the subject pressing a
key on a modified numerical keypad. A tone preceded each stimu-
lus presentation. Following a delay of 500 ms, the stimulus
appeared on the monitor being tested and remained visible for a
duration of 300 ms; this to avoid saccadic re-fixation eye-
movements. All responses were recorded using the modified
numerical keypad.

The thresholds were determined by a two-alternative forced-
choice (2AFC) procedure in which the subjects had to determine
the orientation of the grating. The threshold value corresponded
to the stimulus strength estimated giving 75% correct response rate
and the psychometric function was assumed to be logistic. An
adaptive Bayesian algorithm proposed by Kontsevich and Tyler
(1999) was used to calculate a probability density function for
the threshold, with the expectation value taken as the measure-
ment. After 31 trials the probability density function in general
assumed a normal distribution, with an average standard deviation
of 0.085 log MAR.

Resolution thresholds were obtained at one retinal eccentricity
at a time so that visual attention was concentrated on the correct
location. The order of testing followed a predetermined random
protocol in order to reduce possible training effects and subjects
were given the opportunity to take breaks between trials.

2.3.3. Control experiments
Two control experiments were performed in order to determine

the effect of exposure duration and to ascertain the highest spatial
frequency at which the subject could still perceive motion of Gabor
stimuli moving at 1 and 2�/s.

In the first control experiment, which in effect followed the
same procedure as in the main experiment, resolution thresholds
were measured using exposure durations of 300, 700 and
1500 ms at 10� and 20� in the nasal visual field of three subjects
who had participated in the previous experiment. The average of
three measurements was recorded for each eccentricity and
velocity.

In the second control experiment, exposure duration was main-
tained at 300 ms whilst spatial frequency was altered, however
the aim of this experiment was to see the highest spatial frequency

whereby the subject could still perceive movement of the Gabor
patch. The same two velocities were used as in the main experiment,
namely 1 and 2�/s. One experienced subject (PL) participated in this
experiment. The average of three series consisting of 45 trials was
recorded for both velocities and for eccentricities of 10� and 20� in
the nasal visual field.

3. Results

The main result of this study is that there were no differences be-
tween SVA, DVA1�/s and DVA2�/s in the periphery for the mean of the
population tested. This was confirmed by two-way repeated mea-
sures ANOVA (p > 0.05/3) with adjustment for multiple comparisons
(Bonferroni) at all eccentricities. The exception was the fovea, where
SVA was better than both DVA1�/s (p < 0.05) and DVA2�/s (p < 0.01).
There was however no difference between DVA1�/s and DVA2�/s in
the fovea.

The mean visual acuity ± one standard error of the mean (SEM)
for all subjects under static and dynamic conditions is shown in
Fig. 2.

One-way repeated-measures ANOVA followed by Bonferroni
multiple comparisons showed significantly differences between
the nasal and temporal visual fields for eccentricities of 20� and
30� for SVA, DVA1�/s and DVA2�/s. There was however no naso-
temporal asymmetry between SVA, DVA1�/s and DVA2�/s at an
eccentricity of 10�.

The mean of all values for SVA and DVA for all subjects are pre-
sented below in Table 1.

3.1. Results of control experiments

Results of the first control experiment (see Fig. 3), in which
exposure duration was altered, showed no significant difference
in visual acuity between 300, 700 and 1500 ms for stimuli moving
at a velocity of 1�/s at two tested locations in the nasal visual field.

Thresholds for perceiving movement of 1 and 2�/s were
obtained on one subject (see Fig. 4). The highest spatial frequency
in which movement was still perceived at 1�/s was 0.57 log MAR at
10 N and 0.60 log MAR at 20 N. For a velocity of 2�/s the threshold
were 0.93 log MAR and 0.77 log MAR respectively for 10� and 20�
in the nasal visual field. This means the subject was able to discern
that stimuli were in motion up to, or even above the limit of reso-
lution for an exposure duration of 300 ms.

4. Discussion

This study on a population of healthy young emmetropes
showed no difference between static (SVA) and dynamic visual
acuity (DVA) at eccentricities of ±10�, 20� and 30�. Foveal

Fig. 2. Mean static and dynamic acuity for all subjects. Error bars denote ± SEM.
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resolution was best for SVA and decreased with increasing stimu-
lus velocity. This is in accordance with previous studies that have
measured DVA under conditions of steady fixation (Aznar-Casa-
nova et al., 2005; Brown, 1972b; Demer & Amjadi, 1993; Macedo,
Crossland, & Rubin, 2008; Nes, 1968). Aznar-Casanova et al.
(2005) showed that visual acuity measured using drifting gratings
decreased with increasing stimulus velocity. They found that in the
case of drift motion, foveal visual acuity began to deteriorate from
as little as 0.5�/s, which supports the findings in this study. The
visual system on the other hand has been shown to tolerate retinal
motion of 2–4�/s when viewing stimuli moving within the visual
field, also termed ‘‘displacement motion’’ (Demer & Amjadi, 1993).

In contrast to earlier studies of DVA in which displacement
motion was employed (Brown, 1972a, 1972b; Burg, 1965; Geer &
Robertson, 1993; Ludvigh & Miller, 1958; Macedo, Crossland, & Ru-
bin, 2011; Miller, 1958; Peters & Bloomberg, 2005; Reading,
1972b; Ueda et al., 2006) we have endeavored to measure visual

acuity at specific locations in the visual field by using a drifting Ga-
bor-patch of a fixed angular size. The area stimulated in this study
was limited to 2� irrespective of stimulus velocity, whereas for
example, in Brown’s study (1972a) the stimuli traversed a greater
area of the retina as stimulus velocity increased. This is one possi-
ble explanation for the perceived improvement in peripheral visual
acuity for relatively low stimulus velocities (under 10�/s) found in
their studies; namely, that the retinal area tested enlarged as stim-
ulus velocity increased.

Similar results have been obtained by Macedo et al. (2008) for
non-crowded stimuli whereby visual acuity improved slightly with
increased retinal slip. In contrast, peripheral visual acuity deterio-
rated substantially for crowded stimuli. Above a certain threshold,
a corresponding retinal image slip results in a deterioration in acu-
ity. Demer and Amjadi (1993) reported that foveal visual acuity
deteriorated rapidly for retinal image motion in the order of
2–4�/s (measured by displacement motion). Aznar-Casanova
et al. (2005) also determined that for low velocity stimuli (0–5�/
s) visual acuity deteriorated at least two and a half times faster
for displacement motion than for drifting motion, as used in this
study.

The results of this study confirm previous studies, which evalu-
ated various measures of peripheral visual function (resolution,
detection, contrast thresholds, temporal resolution, etc) in that a
clear naso-temporal asymmetry for SVA exists. SVA is better in
the temporal visual field than in the nasal visual field, as can be
seen in Fig. 2. Curcio and Allen (1990) showed that the basis of this
naso-temporal asymmetry is anatomical; cell counts show higher
density in the nasal retina than in the temporal retina. Ganglion
cell receptor fields also show same asymmetry.

The observed reduction in acuity may, in part, also reflect the
naso-temporal asymmetry of optical aberrations in the periphery,
whereby both lower-order and higher-order aberrations are more
pronounced in the nasal visual field (Atchison, Pritchard, White,
& Griffiths, 2005; Gustafsson et al., 2001).

However other research (Rosén, Lundström, & Unsbo, 2011)
show no difference in resolution thresholds for high-contrast static
and dynamic stimuli after correction of optical defocus. It would be
interesting to study the effect of correction on low-contrast DVA in
the future.

To our knowledge, no studies have evaluated DVA at multiple
retinal locations along the horizontal visual field. This study shows
a clear naso-temporal asymmetry for both SVA and DVA based on
the averaged results of 10 subjects.

The average difference in SVA and DVA between the nasal and
temporal visual fields at 30� was approximately 0.3 log MAR, and
at 20�, approximately 0.2 log MAR. There was no apparent differ-
ence at 10� other than for a stimulus velocity of 1�/s whereby the
average threshold was 0.1 log MAR lower in the temporal visual
field than in the nasal visual field.

5. Conclusions

This study on a population of young emmetropes showed, for
isoeccentric locations in the visual field beyond 10� eccentricity,

Table 1
Mean static and dynamic log MAR acuities (±1SEM) for all subjects.

(Nasal) Eccentricity (Temporal)

�30 �20 �10 FOV +10 +20 +30

SVA 1.13 ± 0.03 0.89 ± 0.06 0.53 ± 0.04 �0.04 ± 0.01 0.56 ± 0.04 0.66 ± 0.03 0.83 ± 0.02
DVA1�/s 1.12 ± 0.03 0.86 ± 0.03 0.60 ± 0.02 0.06 ± 0.03 0.50 ± 0.05 0.68 ± 0.02 0.80 ± 0.02
DVA2�/s 1.13 ± 0.03 0.91 ± 0.03 0.50 ± 0.02 0.12 ± 0.04 0.57 ± 0.02 0.72 ± 0.02 0.81 ± 0.02

Fig. 3. The effect of exposure duration on visual acuity at 10� (squares ‘‘j’’) and 20�
(triangles ‘‘N’’) in the nasal visual field. Error bars represent the standard error of the
mean (SEM) of three repeated measurements on three subjects.

Fig. 4. Motion discrimination thresholds as a function of velocity at 10� and 20� in
the nasal visual field on one experienced subject (PL). Filled diamonds ‘‘�’’ and
squares ‘‘j’’ represent the average of three measurements at 10� and 20�
respectively in the nasal visual field (error bars represent the standard deviation
of these three measurements). Open symbols represent previously measured visual
acuity at the same locations and velocities.
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a clear naso-temporal asymmetry for both SVA and DVA, measured
using high-contrast stimuli. There were no differences between
SVA and DVA in the peripheral visual field, however foveal SVA
was superior to DVA for both velocities tested.

The lack of difference in visual acuity between static and
dynamic stimuli found in this study may reflect the use of drift-
motion as opposed to displacement motion used in previous stud-
ies. The specific area tested also remained constant irrespective of
stimulus velocity.

These findings are possibly more pertinent for patients with
central visual field loss (CFL) in that, such patients are restricted
to using a limited peripheral retinal location when observing both
static and dynamic stimuli.
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