Solutions

Task 1

a Gas. Ionized Xe, etc. Absorption in other media. 540 eV – $\lambda = \frac{ch}{eE}$

b Frequency doubled NdYAG at 946 nm, Ar ion, Cu- vapor, He-Cd.

c.
$$E_m = \Gamma_d l_m^2$$
. $\Gamma(l) = \exp(gl)\Gamma_s$.

$$l_m^2 = \frac{1}{g^2} \left(\ln \frac{\Gamma_s A}{h\nu} \right)^2$$

Task 2

a.

b. (ii) Transitional metal lasers, Cr:LiSaF, Alexandrite, Ti:Sapphire, etc.

c.
$$\frac{A_{GaAs}}{A_{GaN}} = \frac{\tau_{GaN}}{\tau_{GaAs}} \propto \frac{n_{GaAs} E_{gGaAs}^3}{n_{GaN} E_{gGaN}^3} = 0.065$$

$$\tau_{GaAs} = 1.38ns \ \tau_{GaN} = 119 ps$$

The measured ratio is in fact: 0.106, i. e. $\tau_{GaN} = 146 \, ps$ which is different from the estimate due to our approximation of equal dipole moment transition elements. Nevertheless the scaling gives rather good approximation.

Task 3.

- a. Ro-vibrational. Mid infrared. R and P branches.
- b. He Cd, HeNe, CO2 –N2, Er-Yb, Tm-Ho.
- c. Saturated gain:

$$g(I) = \frac{g_0}{1 + I/I_s}$$

Wrong is the description is the implicit assumption that small signal gain $g_0 = \sigma_e \Delta N$ does not change. The saturated gain remains constant, though.

Solutions for tasks 4,5,6 (IO2659, 2013)

Min Yan

Photonics

School of Information and Communication Technology Royal Institute of Technology, Sweden

May 14, 2013

• Task 4

- (a) The optical length: $L_e = L + (n-1)l = 58.5$ cm; mode spacing $\Delta \nu = \frac{c}{2L_e} = 2.564 \times 10^8$ Hz; the number of modes $N = \frac{\Delta \nu_0}{\Delta \nu} = 468$.
- (b) Reason: a FP etalon can have very narrow transmission windows and $\Delta \nu_{\rm fsr}$ can be comparable to the gain linewidth. A FP etalon can increase cavity length from $L \leq \frac{c}{\Delta \nu_0}$ to $L \leq 2F \frac{c}{\Delta \nu_0}$ for achieving single-longitudinal-mode operation.
- (c) Finesse: $F = \frac{\Delta \nu_{\rm fsr}}{\Delta \nu_c} = \frac{3 \times 10^9}{6 \times 10^7} = 50$. Cavity length: From $\Delta \nu_{\rm fsr} = \frac{c}{2L}$, one has L = 5cm. FWHM spectral width: from $\Delta \nu_c = \Delta \nu_{\rm fsr} \frac{1 - \sqrt{R_1 R_2}}{\pi \sqrt[4]{R_1 R_2}}$, one has $R^2 - 2.004R + 1 = 0$, and therefore R = 93.91%. If mirror is lossy: Compared to the lossless case, the peak transmittance will then be $\left(\frac{1-T}{1-R}\right)^2 = \left(\frac{1-R-A}{1-R}\right)^2 = 0.5$. One then has the mirror absorption loss A = 1.78%.
- Task 5
 - (a) The stability condition: $0 < g_1g_2 < 1$, where $g_1 = 1 \frac{L}{R_1}$; from the left side $g_1g_2 > 0$, one has 0 < L < 1.5m; from the right side $g_1g_2 < 1$, one has L > 0.5m; in summary 0.5m < L < 1.5m.

- (b) Advantage: higher laser power while with reasonably good beam quality (less number of transverse modes).
- (c) Pump efficiency: $\eta_p = \frac{P_m}{P_p} = 0.04$; $P_m = 2P_{\text{lamp}} \times 0.04 = 80$ W. For uniform pumping,

$$P_m = R_p h \nu_{mp} V_a, \tag{1}$$

where $\nu_{mp} = \frac{c}{0.94 \times 10^{-6}}$ Hz, and $V_a = \pi r^2 l$ (r is beam radius). In threshold condition, $R_{cp} = \frac{P_m}{h\nu_{mp}V_a} = 2.964 \times 10^{26} \text{m}^{-3} \text{s}^{-1}$.

- (d) ...
- Task 6
 - (a) Necessary parameters: cavity single-pass logarithmic loss $\gamma = -\frac{1}{2}\ln(R_1R_2) + \gamma_i = 0.0609$; cavity photon life time $\tau_c = \frac{L_e}{\gamma c} = 5.15$ ns.

Critical population inversion: $N_c = \frac{\gamma}{\sigma l} = 4.35 \times 10^{23} \text{m}^{-3}$. Critical pump rate: $R_{cp} = \frac{\gamma}{\sigma l \tau} = 1.89 \times 10^{27} \text{m}^{-3} \text{s}^{-1}$. Photon number inside cavity: $\phi_0 = V_a \tau_c (R_p - R_{cp}) = \pi r_b^2 l \tau_c R_{cp} = 3.44 \times 10^9$.

Output power: $P_{out} = \phi_0 \frac{\gamma_2 c}{2L_e} h\nu = 31.7 \text{mW}.$

- (b) Modulation frequency is inverse of the round trip time, or the longitudinal mode frequency separation $\nu_m = \Delta \nu = \frac{c}{2L_e} = 256.4$ MHz; pulse separation is the round trip time $\tau_p = \frac{2L_e}{c} = 3.9$ ns; pulse duration (homogeneously broadened case) $\Delta \tau_p = \frac{0.45}{\sqrt{\Delta \nu \Delta \nu_0}} = 81.1$ ps.
- (c) Mode locking is achieved by the lensing effect (through nonlinear Kerr effect) incurred to the beam in the Ti:sapphire plate, together with the aperture.

Remarks:

- Calculator is needed.
- Planck constant should be given: $h = 6.626 \times 10^{-34} \text{m}^2 \text{kgs}^{-1}$.