

Relaxation Oscillation

Two-level Rabi-Oscillation (Damped)

Relaxation Oscillation

Two-level Rabi-Oscillation (Damped)

$$N(t) = N_0 + \delta N(t)$$

$$\phi(t) = \phi_0 + \delta \phi(t)$$

rate equations
If $1/t_0 \ll \omega'$ (this is the case e.g. when $R_p \gg R_{cp}$)
 $\delta \phi \propto \exp\left(-\frac{t}{t_0}\right) \sin(\omega' t + \phi)$
 $\delta N \propto \exp\left(-\frac{t}{t_0}\right) \cos(\omega' t + \phi)$
 $\cdot \frac{1}{t_0} = \frac{1}{2} \left(B\phi_0 + \frac{1}{\tau}\right) \qquad \omega' = \left(\omega^2 - \frac{1}{t_0^2}\right)^{\frac{1}{2}}$
 $\cdot t_0 = \frac{2\tau}{x} \qquad \omega = \left(\frac{x-1}{\tau\tau_c}\right)^{1/2} \qquad x = \frac{R_p}{R_{cp}}$
No oscillation when $t_0 < 1/\omega$

 $\left(\frac{\tau_c}{\tau}\right) > 1 \ge \frac{4(x-1)}{x^2}$ Typical in gas lasers

Relaxation Oscillation: Pulsation

Perturbations in pumping level or cavity loss result in "intensity noise"

Semiconductor lasers and many gas lasers (He-Ne, Ar, Excimers) has a short au ~ns

Q-switching: Slow

How to Q-switch?: Active vs. Passive

- Active
 - Electro-optical

Pockels cell Q-switches widely used

Fast (typically t_s < 20 ns)

- High voltage (1~5 kV)
- Rotating prism

Common mechanical Q-switching Wavelength independent Slow (400 Hz) and noisy

Acousto-optic

Low insertion loss, high repetition (kHz) Limited loss by diffraction, Low gain

How to Q-switch? : Active vs. Passive

- Passive

Saturable Absorber
 Before saturation: absorption → low Q

After saturation: Transparent \rightarrow High Q

Single mode operation

$$\frac{l_1}{l_2} = \left[\frac{\exp(g_1 - \gamma_1)}{\exp(g_2 - \gamma_2)}\right]^n = \exp n[(g_1 - \gamma_1) - (g_2 - \gamma_2)]$$

 $exp~2300 \times 0.001 \approx 10$ times large discrimination for 50 cm long cavity.

In many cases, the pulse energy and duration are then fixed.

Changes of the pump power would influence the pulse repetition rate.

Pumping schemes for Q-switching

Pulsed pumping R_p < 100 Hz High Gain, Large output pulse energy

Continuous pumping Q-switching at < 100 kHz, Low gain

Theory of Active Q-switching: Peak power, Pulse Energy, Pulse duration

Peak power
$$P_p = \left(\frac{\gamma_2 c}{2L_e}\right) h \nu \phi_p$$
 Eq. 7.2.18 $P_p = \left(\frac{\gamma_2}{2}\right) \left(\frac{A_b}{\sigma}\right) \left(\frac{h\nu}{\tau_c}\right) \left(\frac{N_i}{N_p} - \ln\frac{N_i}{N_p} - 1\right)$

 $\int_{0}^{\infty} B\phi N \, dt = V_a \tau_c \big(N_i - N_f \big)$

Pulse Energy
$$\int_{0}^{\infty} \phi \, dt = V_a \tau_c$$

$$E = \left(\frac{\gamma_2}{2\gamma}\right) \left(N_i - N_f\right) (V_a h \nu) = \left(\frac{\gamma_2}{2} \frac{N_i}{N_p}\right) \eta_E \left(\frac{A_b}{\sigma}\right) h \nu \quad \text{where } \eta_E \equiv \frac{N_i - N_f}{N_i} \quad \text{Energy utilization factor}$$

 ∞

0

Pulse duration
$$\Delta \tau_p \equiv \frac{E}{P_p} = \tau_c \frac{(N_i/N_p)\eta_E}{[(N_i/N_p) - \ln(N_i/N_p) - 1]}$$
 $\frac{\Delta \tau_p}{\tau_c} = \text{Function } (N_i/N_p)$

Gain-switching

- $R_p \gg R_{cp}$: Large peak inversion 4~10 times N_c
- Pumping duration 5~20 τ_c <1 μ s
- No need to worry about Gain saturation!

 $E(t) = \sum_{l=-n}^{\infty} E_0 \exp\{j[(\omega_0 + l\Delta\omega)t + \varphi_l]\} \qquad \varphi_l: \text{Random phase}$

Mode-locking principle: description in frequency domian

Mode-locking = phases of longitudinal modes are correlated \rightarrow constructively interfered

Let
$$\varphi_l - \varphi_{l-1} = 0$$

$$E(t) = \sum_{l=-n}^{n} E_0 \exp\{j[(\omega_0 + l\Delta\omega)t]\}$$

$$= \sum_{l=-n}^{n} E_0 \exp(jl\Delta\omega t) \exp(j\omega_0 t)$$

$$= A(t) \exp(j\omega_0 t)$$

Mode-locking principle: description in frequency domian

Mode-locking = phases of longitudinal modes are correlated \rightarrow constructively interfered

Mode-locking principle: description in time domian

Amplitude-modulation (AM)

Principle: Direct modulation of cavity loss γ at $\nu_m = c/2L$

Method: Pockels cell, acoutsto-optic modulator (AOM)

The minimum pulse duration is limited by the speed of the active element.

 $\Delta \tau_p > 100 \ ps$

How to Mode-lock? : <u>Passive</u>

Fast saturable absorber (response time τ < pulse duration $\Delta \tau_p$)

Slow saturable absorber (response time au > pulse duration Δau_p)

TABLE 8.1. Most common media providing picosecond and femtosecond laser pulses together with the corresponding values of: (a) gain linewidth, Δv_0 ; (b) peak stimulated emission cross-section, σ ; (c) upper state lifetime, τ ; (d) shortest pulse duration so far reported, $\Delta \tau_p$; (e) shortest pulse duration, $\Delta \tau_{mp}$, achievable from the same laser

Laser medium	Δv_0	$\sigma [10^{-20} \mathrm{cm}^2]$	τ[μs]	Δau_p	Δau_{mp}
Nd:YAG	135 GHz	28	230	5 ps	3.3 ps
$\lambda = 1.064 \mu m$					
Nd:YLF	390 GHz	19	450	2 ps	1.1 ps
$\lambda = 1.047 \mu m$					
Nd:YVO ₄	338 GHz	76	98	<10 ps	1.3 ps
$\lambda = 1.064 \mu m$					
Nd:glass	8 THz	4.1	350	60 fs	55 fs
$\lambda = 1.054 \mu m$					
Rhodamine 6G	45 THz	2×10^{4}	5×10^{-3}	27 fs	10 fs
$\lambda = 570 \text{nm}$					
Cr:LISAF	57 THz	4.8	67	18 fs	8 fs
$\lambda = 850 \text{nm}$					
Ti:sapphire	100 THz	38	3.9	6–8 fs	4.4 fs

Difference in time delay at ω_1 and ω_2

$$\Delta \tau_g = \phi'(\omega_2) - \phi'(\omega_1) \cong \phi''(\omega_L) \times (\omega_2 - \omega_1)$$

. . . I

Broadening of the pulse (chirped): $\Delta \tau_d \cong |\phi''(\omega_L)| \Delta \omega_L$

$$\phi''(\omega_L)$$
: Group- Delay Dispersion (GDD) $\phi''(\omega_L) = l \frac{d^2 k}{d\omega^2} \Big|_{\omega_L}$
 $\frac{d^2 k}{d\omega^2} \Big|_{\omega_L}$: Group- Velocity Dispersion (GVD) $= \frac{d}{d\omega} \left(\frac{1}{v_g}\right) \Big|_{\omega_L}$

Phase velocity, Group Velocity, GDD, GVD

Broadening of the pulse: $\Delta \tau_d \cong |\phi''(\omega_L)| \Delta \omega_L$ $\phi''(\omega_L)$: Group- Delay Dispersion (GDD)

Gain bandwidth $\Delta v_0 = 100 THz$ $\Delta \tau_p \approx \frac{1}{\Delta v_0} \approx 10$ fs in an ideal non-dispersive medium

Limitation on Pulse Duration due to GDD: $\Delta \tau_p \cong \left(\frac{27.4}{g_0}\right) |\phi''| \Delta \nu_0 \approx 162 \text{ fs}$

Dispersion compensation with prism pairs (GDD<0) :

• Cavity Dumping:

Applicable to CW, Q-switched and mode-locked lasers

pulse-picking

Emptying out intracavity Power

R = R(t) R = 1 Laser rod R = 1 Outputbeam

Sudden increase of Loss into output coupling

Pockels cell, Acousto-optics grating

