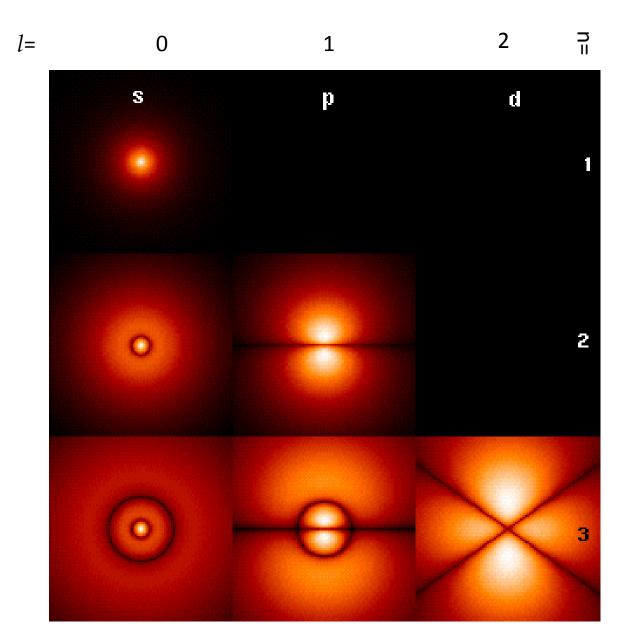
Scope of the Lecture

- 1. Stimulated transition rates, x-sections, line-shapes
- 2. Nonradiative decay
- 3. Resonant energy transfer
- 4. Strongly coupled levels
- 5. Gain and absorption saturation
- 6. Spectral and spatial hole-burning
- 7. Amplified spontaneous emission

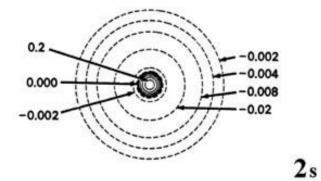
Reading: Ch 2.6, 2.7, 2.8, 2.9*

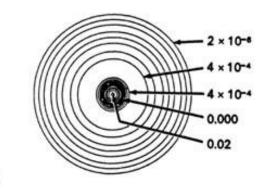
Electronic configurations

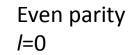

1A																	8A
1																	2
H 1s ¹	2A											3A	4A	5A	6A	7A	He 1 <i>s</i> ²
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
2s ¹	$2s^2$											$2s^22p^1$	$2s^22p^2$	$2s^22p^3$	$2s^22p^4$	$2s^22p^5$	$2s^22p^6$
11	12											13	14	15	16	17	18
Na	Mg	12/27	35	0.255								Al	Si	Р	s	CI	Ar
351	352	3B	4 B	5B	6B	7B		- 8B -		1B	2B	$3s^23p^1$	$3s^23p^2$	$3s^23p^3$	$3s^23p^4$	$3s^23p^5$	$3s^23p^6$
19 K 4s ¹	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
4s ¹	$4s^2$	$3d^{1}4s^{2}$	$3d^24s^2$	$3d^{3}4s^{2}$	$3d^{5}4s^{1}$	$3d^{5}4s^{2}$	$3d^{6}4s^{2}$	$3d^{7}4s^{2}$	$3d^{8}4s^{2}$	$3d^{10}4s^{1}$	$3d^{10}4s^2$	$4s^24p^1$	$4s^24p^2$	$4s^24p^3$	$4s^24p^4$	$4s^{2}4p^{5}$	$4s^{2}4p^{6}$
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
551	$5s^{2}$	$4d^{1}5s^{2}$	$4d^{2}5s^{2}$	$4d^{4}5s^{1}$	$4d^{5}5s^{1}$	$4d^{5}5s^{2}$	$4d^{7}5s^{1}$	$4d^{8}5s^{1}$	$4d^{10}$	$4d^{10}5s^{1}$	$4d^{10}5s^2$	$5s^25p^1$	$5s^{2}5p^{2}$	$5s^{2}5p^{3}$	$5s^25p^4$	$5s^25p^5$	$5s^{2}5p^{6}$
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	81 Tl	Pb	Bi	Po	At	Rn
6s ¹	$6s^2$	$5d^{1}6s^{2}$	$5d^26s^2$	$5d^{3}6s^{2}$	$5d^46s^2$	$5d^{5}6s^{2}$	$5d^{6}6s^{2}$	$5d^{7}6s^{2}$	$5d^{9}6s^{1}$	$5d^{10}6s^{1}$	$5d^{10}6s^2$	$6s^26p^1$	$6s^{2}6p^{2}$	$6s^{2}6p^{3}$	$6s^{2}6p^{4}$	$6s^{2}6p^{5}$	6s ² 6p ⁶
87	88	89	104	105	106	107	108	109	110	111	112		114		**116		⁺⁺ 118
Fr	Ra	†Ac	Rf	Db	$\frac{Sg}{6d^47s^2}$	Bh	Hs	Mt				Unknown		Unknown		Unknown	
7 <i>s</i> ¹	7 <i>s</i> ²	$6d^{1}7s^{2}$	$6d^27s^2$	$6d^{3}7s^{2}$	$6d^47s^2$												

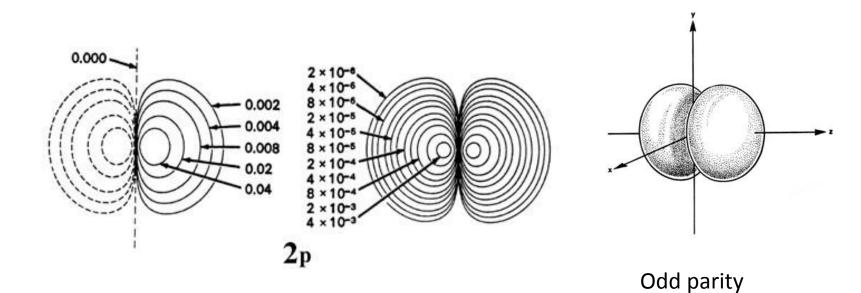
*	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Но	Er	Tm	Yb	Lu
	$4f^26s^2$	$4f^{3}6s^{2}$	$4f^46s^2$	$4f^{5}6s^{2}$	$4f^{6}6s^{2}$	$4f^{7}6s^{2}$	$\frac{\mathbf{G}\mathbf{d}}{4f^75d^16s^2}$	$4f^{9}6s^{2}$	$4f^{10}6s^2$	$4f^{11}6s^2$	$4f^{12}6s^2$	$4f^{13}6s^2$	$4f^{14}6s^2$	$4f^{14}5d^{1}6s^{2}$
î	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	$6d^27s^2$	$5f^26d^17s^2$	$5f^{3}6d^{1}7s^{2}$	$5f^{4}6d^{1}7s^{2}$	$5f^{6}7s^{2}$	$5f^{7}7s^{2}$	$5f^{7}6d^{1}7s^{2}$	$5f^{9}7s^{2}$	$5f^{10}7s^2$	$5f^{11}7s^2$	5f127s2	5f137s2	5f147s2	$5f^{14}6d^{1}7s^{2}$

Lecture 2

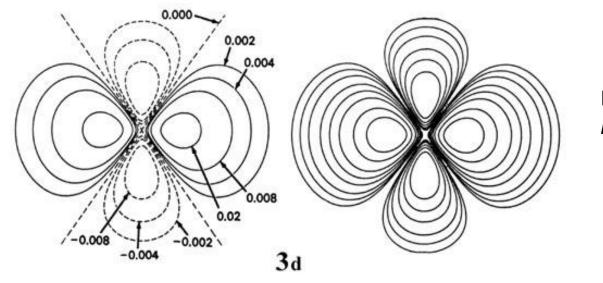

Atomic Orbitals

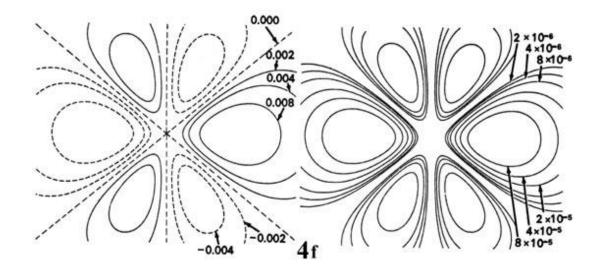

Lecture 2




Wavefunction: $\psi_n(r)$

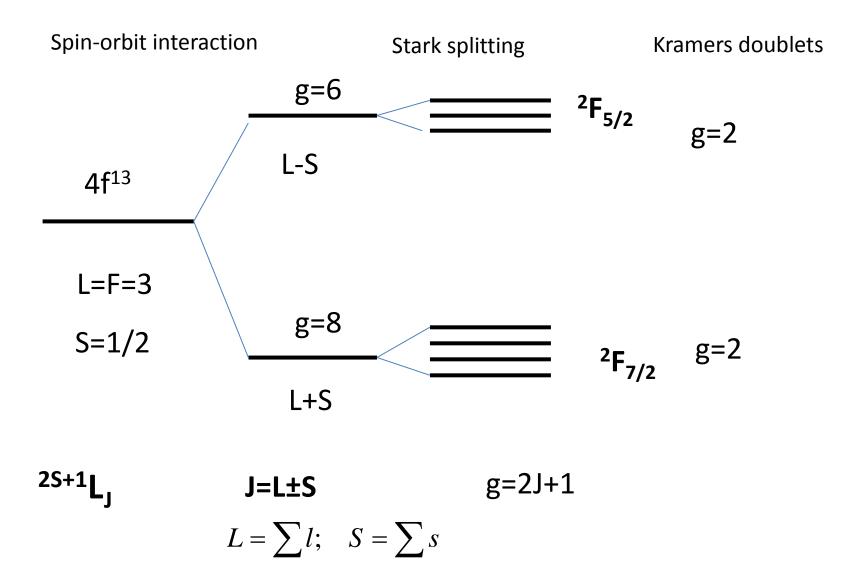
Charge density: $\int \psi_n^*(r) \psi_n(r) dr$




/=1

Wavefunction: $\psi_n(r)$

Charge density: $\int \psi_n^*(r) \psi_n(r) dr$



Even parity *I*=2

Odd parity *I*=3

Yb³⁺ active ion

Stark splitting of degenerate states in crystals

Nd³⁺: 4f³

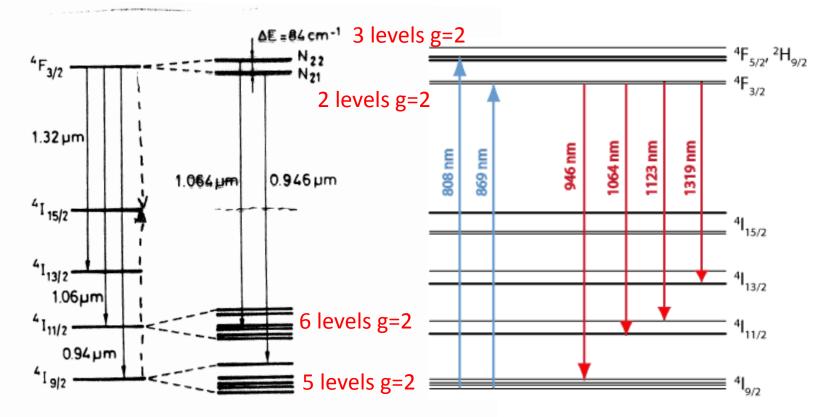
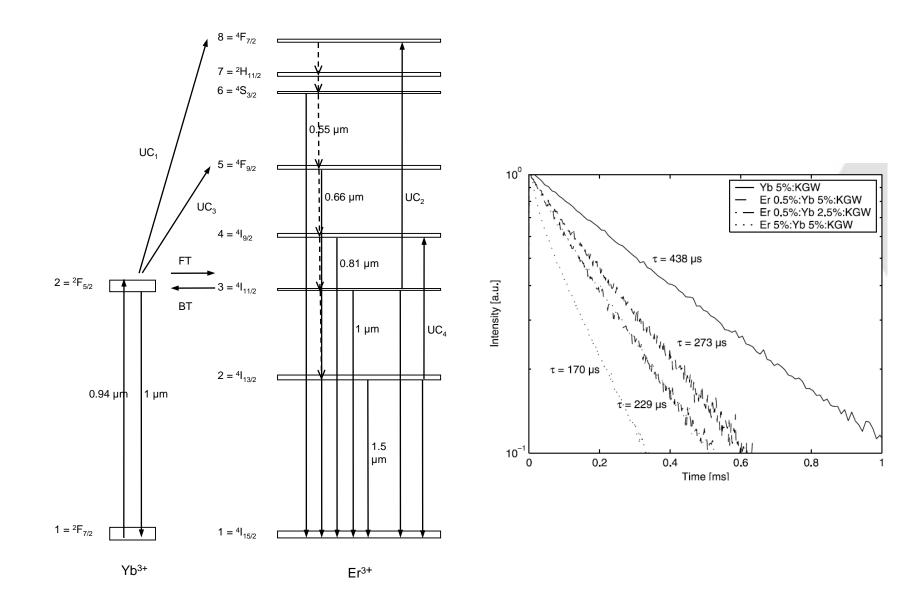
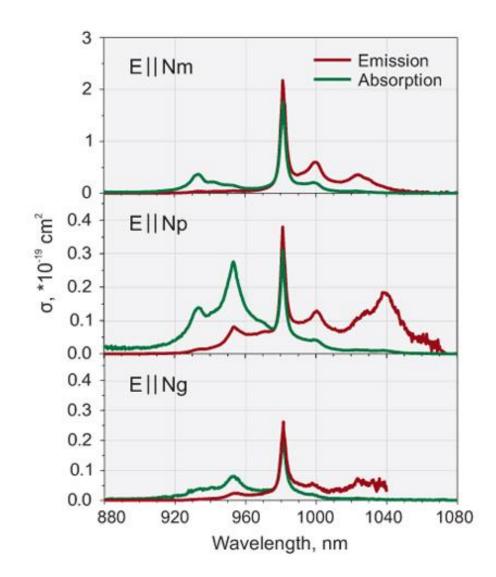



FIG. 2.15. Relevant energy levels for the $\lambda = 1.064$ -µm laser transition of Nd:YAG laser.

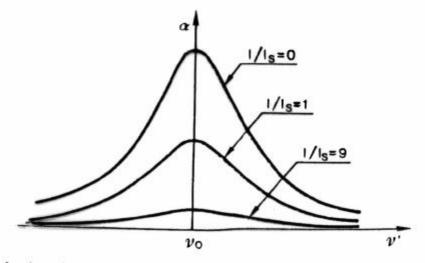
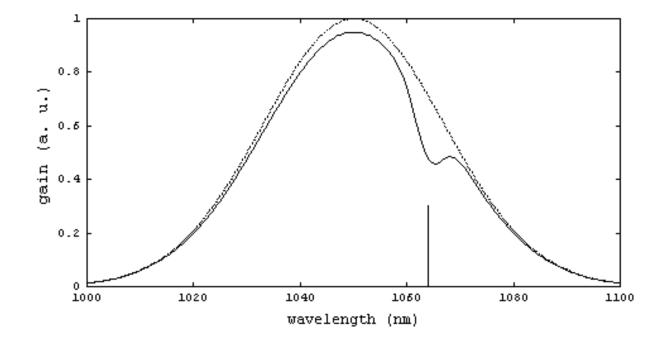

l configurations: $F_{3/2}$: $\downarrow \downarrow \uparrow$ $I_{9/2}$: $\downarrow \downarrow \frown$ $M_{15/2}$: $\downarrow \downarrow \downarrow$ L=3 L=6 L=9

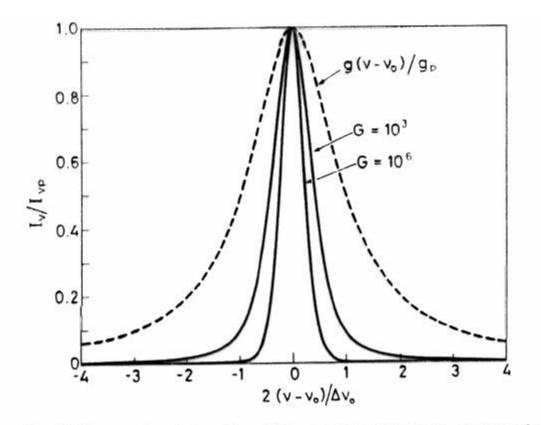
Er:Yb system: resonant excitation transfer

Lecture 2

Absorption and emission in closely coupled level systems

Saturation of homogeneously broadened line


FIG. 2.19. Saturation behavior of the absorption coefficient α versus frequency ν' for increasing values of intensity I of the saturating beam (homogeneous line).

Gain saturation in nonhomogeneous media

Spectral hole-burning

ASE Spectral narrowing

111: 2.24. Normalized ASE spectral emission at two different values of the peak, unsaturated, single-pass gain.

Main Keywords

Collisional and multiphonon relaxation Elastic and inelastic collisions Cross-relaxation, upconversion, excitation migration and trapping Degeneracy of electronic levels Thermalisation of strongly coupled levels Saturation intensity, saturation fluence Spectral hole-burning

Lecture 2

Problems

2.5, 2.6, 2.8, 2.13, 2.14, 3.2, 3.3,3.4 Examples: 2.10, 3.1