

Nonlinear optics

Fredrik Laurell

Laser Physics Group Department of Applied Physics, KTH

Our research profile

Lasers Nonlinear optics Optical materials and novel components

Investigate fundamental optical and material physics problems Build efficient diode-pumped lasers and light sources Use them in applications

Start-ups and industrial collaboration

Outline

- Introduction to nonlinear optics
- Wave treatment
- Second order effects
- Phasematching and quasi-phase-matching
- Second harmonic generation, visible generation
- Material limitations and damage
- Applications
- Summary

Why nonlinear optics?

- Second order effects gives a natural extension of lasers
 - Reach the UV and the mid-IR + THz
 - Facilitates tuning
 - Many applications
- Efficient amplifiers low thermal load and high gain
- Third order nonlinear phenomena
 - Kerr lensing, Self-phase modulation
 - Cascading effects

Motivation - upconversion

Laser display

Bio-analysis

Confocal Microscopy

- Needs for visible and UV lasers
- Technology
- Material issues

Wafer inspection

The birth of nonlinear optics

FIG. 1. A direct reproduction of the first plate in which there was an indication of second harmonic. The wavelength scale is in units of 100 A. The arrow at 3472 A indicates the small but dense image produced by the second harmonic. The image of the primary beam at 6943 A is very large due to halation.

Nonlinear polarisation

Field induces a polarisation Driver for a new wave

2nd order effects in noncentrosymmetric materials – three wave mixing

 $2\omega_1 = \omega_3$ $2\omega_2 = \omega_3$ $\omega_1 \pm \omega_2 = \omega_3$ $\omega_1 = \omega_2 + \omega_3$

The second order nonlinear processes

 $P^{(2\omega)} \propto \varepsilon_0 \chi^{(2)} E_1 E_2$

- second harmonic generation
- sum-frequency generation
- difference-frequency generation
- optical rectification
- optical parametric generation
- optical parametric amplification
- optical parametric oscillation

Frequency conversion

$$P = \varepsilon_0 \chi^L E + 2\varepsilon_0 d_{eff} EE \qquad d_{il} \equiv \frac{1}{2} \chi^{(2)}_{ijk}$$

Maxwell's equations

=>

Nonlinear wave equation

=>

Three coupled equations

 $\frac{dE_s}{dx} = -\alpha_s E_s + \frac{i\omega_s^2}{k_s c^2} K d_{eff} E_p E_i^* \exp(i\Delta kx)$ $\frac{dE_i}{dx} = -\alpha_i E_i + \frac{i\omega_i^2}{k_i c^2} K d_{eff} E_p E_s^* \exp(i\Delta kx)$ $\frac{dE_p}{dx} = -\alpha_p E_p + \frac{i\omega_p^2}{k_p c^2} K d_{eff} E_s E_i \exp(-i\Delta kx)$

Solution to the coupled wave equation

Example: Sum-frequency generation

$$\frac{\partial E_1}{\partial z} = i \frac{\omega_1 d_{eff}}{cn_1} E_2 E_3 \exp(i\Delta kz))$$
$$\frac{\partial E_2}{\partial z} = i \frac{\omega_2 d_{eff}}{cn_2} E_1 E_3^* \exp(-i\Delta kz))$$
$$\frac{\partial E_3}{\partial z} = i \frac{\omega_3 d_{eff}}{cn_3} E_1 E_2^* \exp(-i\Delta kz))$$

plane-waves and lossless media

$$\omega_1 = \omega_2 + \omega_3$$

$$\Delta k = k_1 - k_2 - k_3$$

In small conversion efficiency limit: $\frac{\partial E_2}{\partial z} = 0$, $\frac{\partial E_3}{\partial z} = 0$.

$$I_1(L) = \frac{2\omega_1^2 d_{eff}^2}{\varepsilon_0 c^3 n_1 n_2 n_3} I_2 I_3 L^2 \operatorname{sinc}^2(\Delta k L / 2)$$

General solution to the coupled wave equation

- can be solved analytically
- Solutions only valid for plane-waves and lossless media

<u>General solutions in the case of $\Delta k=0$ </u>

<u>SHG</u>

$$I_{2\omega}(L) = I_{\omega}(0) \tanh^{2}(\Gamma L)$$
$$I_{\omega}(L) = I_{\omega}(0) \operatorname{sech}^{2}(\Gamma L)$$

where
$$\Gamma = \frac{4\pi d_{eff}\sqrt{I_{\omega}(0)}}{\sqrt{2cn_{\omega}^2n_{2\omega}\varepsilon_0\lambda_{\omega}^2}}$$

Conversion efficiency is defined as:

$$\eta(L) = I_{2\omega}(L) / I_{\omega}(0) = \tanh^2(\Gamma L)$$

Physical constraints

• Energy conservation

 $\omega_1 + \omega_2 = \omega_3$

Momentum conservation $\Delta k = k_3 - k_2 - k_1 =$ $= 1/c \times [n_3 \omega_3 - n_2 \omega_2 - n_1 \omega_1]$

 \boldsymbol{n}_i is the refractive index

Coherence length:
$$L_c = \left| \frac{\pi}{\Delta k} \right|$$

Phasematching

Momentum conservation

$$\Delta \mathbf{k} = \mathbf{k}_3 - \mathbf{k}_2 - \mathbf{k}_1$$

Modulation of the nonlinearity

Birefringent phasematching

- need birefringent crystal
- $\chi^{(2)}$ must couple orthogonal polarizations
- · temperature constraints
- cannot use full transparency range

Limited phasematching range Walk-off – short interaction length Low nonlinearity

Quasi-phase matching (QPM)

Periodic inversion of domains in ferroelectrics

Modulation of the nonlinear susceptibility to compensate the phase mismatch

Arbitrary wavelength within transparency
Walk-off free interaction – long lengths
Highest nonlinearity accessible

The main advantages of QPM

- Phasematching at any wavelength within transparency
- Free choice of polarization of interacting waves
- Largest nonlinear coefficient accesible, d₃₃
- Noncritical phasematching, walk-off free interaction
- Enigineering of the phasematching condition

Implementations of QPM

Stacked plates with
 alternating layers rotated.
 [Bloembergen 1962]

 In ferroelectric materials, sign of d_{eff} is reversed with reversal of domain polarity.

Monolithic crystal with grating structure

• Electric-field poling with lithographic electrodes can achieve near-ideal structure for QPM.

FIG. 1. Schematic of applying voltage for periodically domain inversion.

Types of phasematching

Type 0 SHG two photons having <u>extraordinary polarization</u> will combine to form a single photon with double the frequency/energy and <u>extraordinary polarization</u>.

In **Type I SHG** two photons having <u>ordinary polarization</u> will combine to form one photon with double the frequency and <u>extraordinary polarization</u>.

In **Type II SHG**, two photons having <u>orthogonal polarizations</u> will combine to form one photon with double the frequency and <u>extraordinary polarization</u>

In moat cases <u>Quasi-phase-matching</u> is used with a **Type O** interaction

Quasi-phase matching (QPM)

First efficient demonstration with LiNbO₃ waveguides

Domain structure fabricated by diffusion techniques

Blue light generated with AlGaAs diode laser

J Webjorn, F. Laurell, and G. Arvidsson, IEEE Photon. Technol. Lett., 1, 316, 1989

Electric field poling of bulk crystals

- LiNbO₃
 - LiTaO₃
 - KTiOPO₄

Bandwidth tailored for specific interaction Damage resistant and efficient material

LiNbO₃, the first QPM material

- Periodically poled in 1993*
- Available in large, homogeneous and inexpensive wafers
- High nonlinearity
- "Straight forward" poling
- •High coercive field (congruent crystal ~21 kV/mm)
 - → Limited thickness (~0.5 mm)
 - Hexagonal domains -severe broadening
 - difficult to fabricate dense gratings (< 10 μ m)
- •Optical damage (Photorefraction, light-induced absorption)
 - →Limited power handling, life time issues

Trigonal 3m

Solution MgO-doped Lithium niobate – optical damage "resistant" suitable for waveguide fabrication commercially available

*M. Yamada, Appl. Phys. Lett. 62, 435 (1993).

Flux grown KTiOPO₄

Domain morphology

High nonlinearity High resistance to optical damage Low coercieve field (2 kV/mm) dense gratings, "thick" samples (3mm)

Difficult to grow – 1 inch wafers Non-stoichiometric - inhomogeneous – highly varying conductivity Expensive

Requirement for NLO materials for frequency conversion

- Phasematching -- limits useful interactions & applicability
- Transmission -- interacting waves not absorbed or scattered
- Nonlinearity -- non-centrosymmetric materials for $\chi^{(2)}$
- Homogeneity -- uniformity 1 part in 10-5
- Damage -- absolute & relative to operating point
- Mechanical properties -- growing, polishing, coating
- Thermal properties -- dn/dT, thermal conductivity
- · Lifetime -- chemical stability, hygroscopic, aging in use
- Lack of "weirdness" -- photorefractive, gray tracking
- Availability -- size, cost, uniformity of properties
 - All requirements must be simultaneously satisfied!

KTiOPO₄ Transparency

 $LiNbO_3$ Transparency 0.35 - 5.4 µm

Figure of merit for nonlinear materials

 Value of d_{eff} depends on angles of propagation & polarization and on wavelengths

Units of $d_{eff} \sim pm/V$

Figure of Merit =
$$\frac{d_{eff}^2}{n^3}$$

- Commercially used materials have lower nonlinear coefficients
- High nonlinear coefficient does not necessarily make material useful

KTH VETENSKAP OCH KONST

 n_{ω_1}

Comparison of PP crystals

- •KTiOPO₄ family (KTiOPO₄, RbTiOPO₄, KTiOAsO₄, RbTiOAsO₄)
- LiNbO₃ family

stoichiometric LiTaO₃ (SLT)

- 1-5 mol% MgO doped stoichiometric LiTaO₃ (MgO:SLT)
- 1-5 mol% MgO doped stoichiometric LiNbO₃ (MgO:SLN)
- KNbO₃

Low coercive field (<5 kV/mm) Higher optical damage threshold

Figure of merit for SHG of 1064 nm

d^2		LN	KN	KTP	LT
$\cdot n_{\omega_2} \cdot n_{\omega_3}$	FOM	61.1	38.8	33.7	18.8

Second-harmonic generation

Energy conservation:

 $\omega_3 = 2\omega_1 = 2\omega_2$

• Momentum conservation:

 $\Delta k = k_{\rm SH} - 2k_{\rm F}$

• SH power for Gaussian beam:

$$P_{SH} = \left(\frac{2\omega_F^2 d_{eff}^2 k_F P_F^2}{\pi n_F^2 n_{SH} \varepsilon_0 c^3}\right) Lh(B,\xi) \operatorname{sinc}^2(\Delta kL/2)$$

• Phasematching:

$$\Delta k \begin{cases} = 0 : \text{ Perfect phase matching} \\ \neq 0 : \text{ SH} \leftrightarrow \text{Fundamental after a distance, } \text{Lc} = \pi / \Delta k \end{cases}$$

$$d_{eff}^{the} = \frac{2d_{il}}{m\pi}$$

Maker fringe method

Useful method to characterize a nonlinear material

For given polarisation, measure the SHG as function of angle. Determine the nonlinear coefficients and coherence length

 $\Delta t_{\text{theory}} = 13.9\mu$

Phasematching bandwidth

The mismatch Δk depends on λ , T and polarization of waves

• Wavelength acceptance bandwidth

$$\Delta \lambda_{FWHM} = \frac{0.4429 \lambda}{L} \left| \frac{n_{SH} - n_F}{\lambda} + \frac{\partial n_F}{\partial \lambda} - \frac{1}{2} \frac{\partial n_{SH}}{\partial \lambda} \right|^{-1}$$

Temperature acceptance bandwidth

$$\Delta T_{FWHM} = \frac{0.4429\lambda_F}{L} \left| \frac{\partial n_{SH}}{\partial T} \right|_{T_0} - \frac{\partial n_F}{\partial T} \right|_{T_0} + \alpha \left(n_{SH} - n_F \right)^{-1}$$

Tuning characteristics

Quality of a PP structure:
$$L_{eff} \propto 1/\Delta T_{FWHM}$$
 or $L_{eff} \propto 1/\Delta \lambda_{FWHM}$

Temperature tuning

λ = 1064 nmType-I SHG @ 532 nm PPKTP: Λ = 9.01 μ m, L_{physical} = 8 mm

Wavelength tuning

λ = 797.6 nm Type-II SHG @ 398.8 nm PPKTP: Λ = 9.01μ m, L_{physical} = 8.5mm

Effective QPM nonlinear coefficient

• Theoretical value of effective nonlinear coefficient:

$$d_{eff}^{the} = \frac{2d_{il}}{m\pi}$$
 KTP @ 1064 nm:
d₃₃= 16.9 pm/V; d₂₄ = 3.64 pm/V

• Experimental value of effective nonlinear coefficient:

$$d_{eff}^{exp} = \sqrt{\frac{\pi n_F^2 n_{SH} \varepsilon_0 c^3}{2\omega_F^2 k_F L h(B,\xi)}} \times \frac{P_{SH}}{P_F^2}$$

• Useful technique to screen quality of PP crystals

CW SHG

low power regime

Single-pass SHG set-up

Power and conversion efficiency

$$P_{SH} \propto P_F^2 \qquad \eta = \frac{P_{SH}}{P_F}$$

Normalized conversion efficiency

$$\eta_{norm} = \frac{P_{SH}}{P_F^2 L}$$

CW SHG high power regime

Single-pass SHG set-up

conversion efficiency

 $\eta(L) = I_{2\omega}(L) / I_{\omega}(0) = \tanh^{2}(\Gamma L)$

$$\Gamma = \frac{4\pi d_{eff} \sqrt{I_{\omega}(0)}}{\sqrt{2cn_{\omega}^2 n_{2\omega}\varepsilon_0 \lambda_{\omega}^2}}$$

SHG in KDP crystal

From Yariv: Quantum Electronics

Intra-cavity frequency doubling

- Much higher power available in the cavity
- Often associated with instabilities, the so called "green problem"
- 946 nm → 473 nm

> 500 mW

The laser pointer

A diode-pumped IC frequency doubled solid-state laser

Typical Green DPSS Laser Pointer Using MCA

IC SHG and SFG lasers with PPKTP

Mixing of two laser lines combined with SHG and SFG

Lasers for biotech, display and graphics

Pico- and nano-second SHG

- high peak power take pump depletion under consideration
- Absorption of SH light can limit the efficiency

Mode-locked Nd:YAG

 τ = 100 ps, f = 100 MHz Type-I SHG @ 532 nm PPKTP: Λ =9.01 μ m

<u>Q-switched</u> Nd:YAG

 τ = 5 ns, f = 20 Hz Type-I SHG @ 532 nm PPKTP: Λ =9.01 μ m

Ultrashort pulse SHG

- Group-velocity mismatch limits the effective interaction length
- SH pulse spreading
- SH spectral broadening due to GVM
- Intensity-dependent SH spectral broadening

τ = 100 fs, f = 80 MHzType-I SHG @ 390 nm PPKTP: $Λ = 2.95 \mu \text{ m}, L = 9 \text{ mm}$ $L_{eff} = 5.6 \text{ mm}$ $L_W = 57 \mu \text{ m}$ $τ_{SH} = 10 \text{ ps}$

10 W CW 532 nm SHG in VTE PPSLT

Stoichiometry control in PPSLT by VTE increased photoconductivity reduced photorefraction eliminated GRIIRA visible absorption ~ 0.1 %/cm

Estimate ~100 W of CW SHG before material problem

42

High energy conversion - tilted PP-samples

Damage threshold ~ 1 J/cm² @ 10 ns in LT \Rightarrow scaling to large fluence requires large apertures

Large wafers commercial (100 mm) \Rightarrow scalable pulse energy (100 mm wafer ~ 100 J @ 10 ns)

Rotated Y-cut SAW lithium tantalate

Surface period = 41 μ m thickness = 180 μ m (after polishing) 4th order 4 periods total PSH = 14.5 μ W PFH = 6.2W (100kHz, 150ns)

Nonlinear photonic crystals

Periodic variation in $\chi^{(2)}$ but no variation in $\chi^{(1)}$

- + Multiple wavelengths
- + Simultaneous phase matching processes
- + Broader bandwidth in non-collinear SHG
- Low efficiency for non-collinear SHG

2D SH generator

Real lattice

Reciprocal lattice Grating vector $\mathbf{b}_1 = \frac{2\pi}{a_1} \mathbf{\hat{x}}$ $\mathbf{b}_2 = \frac{2\pi}{a_2} \mathbf{\hat{y}}$ $\mathbf{b}_1 = \frac{2\pi}{a_2} \mathbf{\hat{y}}$ $\mathbf{b}_2 = \frac{2\pi}{a_2} \mathbf{\hat{y}}$

[m,n]

Phase-matching condition:

$$\vec{K}_{mn} - \vec{k}_{2\omega} + 2\vec{k}_{\omega} = 0$$
$$\vec{K}_{mn} = mb_1 + nb_2$$

Walk-off angle 20 between fundamental and second harmonic:

$$\frac{\lambda_{2\omega}}{n_{2\omega}} = \frac{2\pi}{|\mathbf{K}_{mn}|} \sqrt{\left(1 - \frac{n_{\omega}}{n_{2\omega}}\right)^2 + 4\frac{n_{\omega}}{n_{2\omega}}\sin^2\theta}$$

CW SHG in 2D PPKTP

6.09 x 6 µm²

Patterned area: 8x4 mm² Domain depth: 400µm

Spectral Tailoring

spatially modifying the grating

Fourier synthesis used to get the frequency response

Each spectral component is phasematched in a different section of the grating

Summary – part one

- Second order nonlinear optics extends the possibilities for lasers – from the UV to the mid-IR and the THz region
- Quasi-phase matching adds flexibility to nonlinear optics Spectral, spatial, temporal shaping of light
- The material aspects have to be considered