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Abstract  

Optical parametric frequency conversion based on quasi phase matching (QPM) in 
nonlinear optical crystals is a powerful technique for generating coherent radiation in 
wavelength ranges spanning from the mid-infrared (mid-IR) to the blue, displaying 
low thermal load and high efficiency. 

This thesis shows how QPM in one- (1D) or two-dimensional (2D) lattices can 
be employed to engineer novel devices for parametric downconversion in the IR, af-
fording freedom in designing both spectral and angular properties of the parametric 
output. Experimental demonstrations of parametric devices are supported by theoreti-
cal modelling of the nonlinear conversion processes. 

In particular, broadband parametric downconversion has been investigated in 
1D QPM lattices, through degenerate downconversion close to the point of zero 
group-velocity dispersion. Ultra-broadband optical parametric generation (OPG) of 
185 THz bandwidth (at 10 dB), spanning more than one octave from 1.1 to 3.7 μm, 
has been achieved in periodically poled 1 mol% MgO-doped near-stoichiometric 
LiTaO3 (MgSLT) of 25 μm QPM period, pumped at 860 nm. Such broadband gain is 
of high interest for ultrashort optical pulse amplification, with applications in high 
harmonic generation, ultrafast spectroscopy and laser ablation. Furthermore, the det-
rimental impact of parasitic upconversion, creating dips in the OPG spectrum, has 
been investigated. By altering the pump pulse duration, energy can be backconverted 
to create peaks at the involved OPG wavelengths, offering a possible tool to enhance 
broadband parametric gain spectra. 

The engineering of the angular properties of a parametric output benefits 
greatly from 2D QPM, which is investigated in this thesis by the specific example of 
hexagonally poled MgSLT. It is demonstrated how two OPG processes, supported by 
a single 2D QPM device, can exhibit angularly and spectrally degenerate signals 
(idlers). This degeneracy results in a coherent coupling between the two OPG pro-
cesses and a spectrally degenerate twin-beam output in the mid-IR (near IR). 2D 
QPM devices exhibiting such coherently coupled downconversion processes can find 
applications as compact sources of entangled photon-pairs. This thesis further illus-
trates the design freedom of 2D QPM through the demonstration of a device support-
ing multiple parametric processes, thus generating multiple beams from the mid-IR to 
the blue spectral regions. 

 
Keywords: nonlinear optics, parametric processes, frequency downconver-

sion, quasi-phase matching, LiTaO3, broadband downconversion, quadratic cascading, 
nonlinear photonic crystals, twin-beam generation 
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Sammanfattning  

Denna doktorsavhandling beskriver forskning rörande ickelinjära optiska kristaller 
som används för att skapa skräddarsydda koherenta infraröda ljuskällor med låg vär-
meutveckling, drivna av lasrar vid standardvåglängder. Ljuskällorna baseras på s.k. 
kvasifasmatchning (QPM), där man genom att periodiskt strukturera den andra ord-
ningens ickelinjäritet i kristallen drastiskt kan öka konverteringsgraden till i stort sett 
vilken våglängd som helst där kristallen är transparent. 

Avhandlingen visar hur dessa strukturer, i en eller i två dimensioner, kan an-
vändas till infraröda ljuskällor, baserade på s.k. optisk parametrisk frekvenskonverte-
ring, för att ge frihet att designa det konverterade ljuset både spektralt och vinkel-
mässigt. Avhandlingen beskriver genomförda experiment inom parametrisk konverte-
ring samt hur dessa experiment förklaras och styrks genom teoretisk modellering. 

Specifikt beskriver avhandlingen hur endimensionella strukturer har använts 
till ultrabredbandig parametrisk nedkonvertering som genererade ett 185 Thz brett 
kontinuum, dvs. som sträcker sig från 1.1 till 3.7 μm våglängd; över mer än en optisk 
oktav. Detta genomfördes i endimensionellt strukturerade kristaller av stökiometrisk 
litiumtantalat dopade med 1 mol% magnesiumoxid (MgSLT), drivna av en laser vid 
860 nm. Sådant bredbandigt koherent ljus är användbart t.ex. till att förstärka ultra-
korta laserpulser, vilka kan användas inom attosekundsfysik, till spektroskopi av ult-
rasnabba (kemiska) förlopp eller för industriell bearbetning av material. Vidare pre-
senteras en studie i hur ogynnsamma intrinsiska uppkonverteringsprocesser påverkar 
spektrumet för detta kontinuum. Genom att ändra drivlaserns pulslängd kan deras 
inverkan förändras, vilket potentiellt erbjuder ett verktyg att förbättra den spektrala 
profilen hos bredbandiga parametriska ljuskällor. 

Tvådimensionella (2D) QPM-strukturer erbjuder särskilda möjligheter till att 
designa de vinkelmässiga aspekterna hos parametriskt genererat ljus. Detta behandlas 
specifikt i avhandlingen med en studie av hexagonala QPM-strukturer i MgSLT. Stu-
dien demonstrerar hur två simultana nedkonverteringsprocesser, upprätthållna av en 
och samma QPM-struktur, kan sammankopplas koherent. Detta medför att två sepa-
rata – men spektralt identiska – strålar av koherent ljus genereras, med tillämpningar 
inom exempelvis kvantoptik som kompakta ljuskällor av sammanflätade fotoner. Av-
handlingen diskuterar vidare hur 2D QPM erbjuder utökade friheter att designa para-
metriska ljuskällor, t.ex. genom att upprätthålla flera simultana parametriska konver-
teringsprocesser i en enda ickelinjär kristall. Specifikt presenteras en strålkälla där ett 
flertal upp- och nedkonverteringsprocesser, i samma 2D QPM-struktur, genererar åt-
skilliga strålar av koherent ljus med våglängder ända från infrarött till blått. 
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Chapter 1 

Introduction   

Coherent light sources find applications in numerous areas such as material pro-
cessing, telecommunication, spectroscopy, display technologies, optical storage, med-
ical treatments, microscopy and imaging. The coherent light can be generated in lasers 
[1], but in this case one is limited spectrally to the emission bands defined by the en-
ergy-level structure of the laser gain medium. 

By exploiting optical parametric frequency conversion in nonlinear crystals 
[2] the gaps between the different laser emission bands can be bridged. Parametric 
processes offer great flexibility for choosing the wavelengths to be generated. In con-
trast to light generation in laser gain media, the desired wavelength can be selected 
from an often broad continuous interval. 

1.1 Quasi-phase matched frequency conversion  

Optical parametric frequency conversion based on second and third order nonlineari-
ties is achieved by mixing coherent waves, e.g. light beams from lasers, in a nonlinear 
material. The strongest parametric processes, and consequently the first to be discov-
ered, are those generated in nonlinear materials possessing a non-zero second order 
nonlinearity. These processes are often referred to as quadratic frequency conversion 
processes. 

Quadratic processes are divided into frequency upconversion, generating light 
at shorter wavelengths, and downconversion, at longer wavelengths. Frequency up-
conversion can be achieved using a single wave incident on the nonlinear material, 
generating light at twice the incident frequency, through second harmonic generation 
(SHG) [3]. Alternatively, two incident waves can generate light through sum frequen-
cy generation (SFG) [4]. In this way a desired frequency, i.e. the sum, is obtained by 
choosing carefully the frequencies of the incident waves. 
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Frequency downconversion can be achieved by mixing two incident waves in 
difference frequency generation (DFG) [5], where the generated frequency is defined 
by the difference of the incident frequencies. Downconversion can also be achieved 
with a single incident wave (pump) through spontaneous downconversion (annihila-
tion) of its photons, triggered by vacuum fluctuations, and generation of photon pairs 
(signal and idler) at frequencies which add up to the frequency of the pump. This pro-
cess is referred to as optical parametric generation (OPG) [6]. The OPG process ex-
hibits increased spectral flexibility in that it is capable of generating numerous signal-
idler pairs at different frequencies. Furthermore, the process permits a simple experi-
mental geometry in that it requires only a single incident wave, although at the ex-
pense of device efficiency. 

Using parametric interactions in nonlinear crystals to provide gain for a par-
ticular spectral interval also results in much lower thermal load than employing laser 
gain media. This is due to the fact that there is no energy storage in nonlinear crystals, 
since parametric interactions do not involve excitation of atoms and consequently no 
relaxations by emission of phonons. 

Various methods to increase the conversion efficiency of parametric interac-
tions were suggested shortly after the first experimental demonstration of SHG [7]. 
Nowadays, the most commonly used is quasi-phase matching (QPM) since it allows 
for efficient conversion and at the same time is suitable for large scale fabrication [8, 
9]. In contrast to birefringent phase matching [10, 11], dominant in the early years of 
parametric conversion, QPM does not impose constraints on the polarisations of the 
involved waves. This allows the exploitation of the strongest component the materi-
al’s nonlinearity, resulting in higher conversion efficiencies. Furthermore, by using 
QPM the wavelengths to be generated can be selected from broader spectral intervals, 
encompassing larger portions of the transparency range of the nonlinear material. 

The central topic of the work presented in this thesis is investigations of OPG 
processes supported by QPM. In particular, I have examined two different configura-
tion of the process. The first configuration is broadband OPG in the near infrared (IR) 
to the mid-IR spectral regions supported by one-dimensional QPM structures. The 
second configuration consists of the combination of two OPG processes, supported by 
the same two-dimensional QPM structure, which experience a coherent exchange 
explained below. Adding to this I have, in both configurations, investigated SFG fol-
lowing the OPG, with both interactions being supported by the same QPM device. 

1.2 Broadband engineering using QPM 

Parametric downconversion can be configured in such a way that the generated waves 
exhibit very broad spectral bandwidths, and the two downconverted waves can even 
overlap in bandwidth. In the frame of this thesis I have investigated such a configura-
tion that provides ultrabroad parametric gain bands spanning from the near IR to the 
mid-IR regime. 

Broad parametric gain bands have attracted increasing interest in the field of 
ultrashort pulse amplification over the last decade [12], with applications in femto-
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second spectroscopy [13], high harmonic generation [14] and laser machining [15]. 
Broad gain bands are also appealing for tunable sources. In the mid-IR spectral re-
gion, in particular, where many molecules have vibrational absorption bands, such 
sources are important for spectroscopy [16]. Parametric broadband devices can be 
employed in frequency comb generation [17] and manipulation of wavelength divi-
sion multiplexing channels in optical telecommunications [18]. Broadband parametric 
generators have applications in quantum optics, e.g. for multichannel quantum com-
munication [19]. 

With, particularly, the application of ultrashort pulse amplification in mind, I 
demonstrate, in this thesis, ultrabroad parametric gain bands, accessible for pulse gen-
eration or amplification, through broadband OPG. The experiments were chosen to be 
performed in 1 mol% MgO-doped near-stoichiometric lithium tantalate (MgSLT) 
crystals [20], engineered for QPM through periodic poling [8], since the dispersion of 
MgSLT predicts extremely broad bandwidths that are accessible through QPM [21]. 
The broadness relied on working close to the point of zero group velocity dispersion 
of MgSLT and yielded OPG bandwidths exceeding one octave, from 1.1 to 3.7 μm 
(185 THz). With a coherent seed, the downconversion spectrum could theoretically 
support amplification of pulses down to 2.4 fs duration. 

I also investigated cascaded upconversion (SFG) processes following the ul-
tra-broadband OPG, demonstrating that their normally detrimental impact on the OPG 
gain spectra could be controlled by adjusting the pump pulse duration. This optical 
control can thus be used to achieve more uniform spectral gain profiles in broadband 
parametric devices. 

1.3 Spectral-angular engineering using 2D QPM 

Conventional QPM devices rely on a periodic modulation of the second order nonlin-
ear electric susceptibility in one dimension. Around fifteen years ago Berger proposed 
to introduce the QPM modulation in two dimensions, to form two-dimensional (2D) 
nonlinear photonic crystals (NPCs) [22]. The second dimensionality grants additional 
degrees of freedom for engineering the output of frequency conversion devices. In 
upconversion, this has allowed for achieving e.g. multi-beam SHG [23], beam shap-
ing [24] and multi-beam second, third and fourth harmonic generation [25]. 

Frequency downconversion in NPCs, on the other hand, had been very sparse-
ly investigated prior to this thesis. The work, presented in this thesis, that I have per-
formed on the topic of downconversion in 2D QPM structures constitutes the first 
experimental investigations of the coherent interplay of two simultaneous downcon-
version processes associated to two distinct QPM resonances, of comparable strength, 
in a NPC. This phenomenon is demonstrated in a proof of principle device of hexago-
nally poled [26] MgSLT, supporting two OPG processes. The device generates dual-
beam signal output, i.e. spectrally but not spatially degenerate, in addition to a spec-
trally and spatially degenerate idler beam, shared by the two OPG processes. I also 
analysed the tuning of the coherently locked output as a function of pump incidence 
angle and wavelength. 
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Furthermore, in the work presented herein I have investigated cascaded multi-
beam SFG in the same NPC device sustaining the two coupled OPG processes. The 
spectral and angular characteristics of the multi-wavelength, multi-beam optical out-
put can be controlled by spectral or angular tuning of the optical pump. The study 
reveals how coherent sources with complex spectral-angular output can be engineered 
using the many degrees of freedom offered by NPCs. 

The results presented in this thesis could find application in several fields, in 
particular in quantum optics, where they could provide novel compact sources of en-
tangled photons, and in optical manipulation of signals in telecommunication. Moreo-
ver, many applications remain to be discovered as the additional degrees of freedom 
offered by the, relatively young, field of 2D QPM continue to be explored. 

1.4 Outline of thesis 

This thesis is based on the original peer-reviewed publications labelled I to IV, repro-
duced at the end of the printed version of this thesis. These are preceded by six chap-
ters introducing and discussing the key results of my work. 

Chapters 2 and 3 provide an introduction to the concepts, mostly theoretical, 
relevant for the work presented in this thesis. In particular, chapter 2 treats second 
order nonlinear optical parametric interactions employed in the thesis work. Chapter 3 
discusses the concept of QPM and the properties of the nonlinear material used for the 
experiments, i.e. MgSLT. 

Chapters 4 and 5 describe the work performed in the frame of this thesis. The 
first section of chapter 4 is based on article I and treats broadband OPG in periodical-
ly poled MgSLT. The second section is based on article III and describes the investi-
gations of quadratic cascading of SFG in conjunction with a simultaneous broadband 
OPG in a pulsed temporal regime. Chapter 5 is based on articles II and IV, as well as 
(so far) unpublished work. It discusses coherently coupled OPG in 2D NPCs, as well 
as cascaded SFG processes sustained by the same NPC device. Finally, conclusions 
and outlook for the work described in the thesis are given in Chapter 6. 
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Chapter 2 

Basic principles of nonlinear optics  

In a classical picture, light interacts with matter in that the electric field of the light 
accelerates bound charges within the material, which will then act as oscillating di-
poles. The dipoles radiate light at their oscillation frequencies, which in linear regimes 
will correspond to the frequencies of the incident light. In nonlinear regimes the in-
duced dipoles will not only oscillate at the incident frequencies, but at other frequen-
cies as well, and thus generates light at these new frequencies. Interactions that gener-
ate these new frequencies, or amplify existing ones, are often referred to as parametric 
processes. 

2.1 Coupled wave equations 

Assuming no free charges and no free currents within the material, it is possible to 
describe the light-matter interactions by starting from Maxwell’s equations. The in-
volved fields are assumed to be monochromatic and are represented by their complex 
field components. As an example, the real electric field is obtained from the complex 
field by including the rapidly oscillating part of the field and the complex conjugate, 
𝐄�(𝐫, 𝑡) = [𝐄(𝑡) exp(−𝑖𝑖𝑡) + c. c. ] 2⁄ . Thus, in the frequency domain the equations 
can be written  

 

∇ ∙ 𝐃 = 0 
∇ ∙ 𝐁 = 0 
∇ × 𝐄 = −𝑖𝑖𝐁 
∇ × 𝐇 = 𝑖𝑖𝐃. 

(2.1) 

Bold text denotes a vector or tensor quantity. The vector-valued quantities in-
volved are electric and magnetic fields, 𝐄 and 𝐇, respectively, as well as the corre-
sponding electric displacement field and magnetic flux density, 𝐃 and 𝐁, respectively. 
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The displacement field is given by 𝐃 = 𝑖𝑖(𝜀0𝐄 + 𝐏), where 𝐏 is the polarisation in-
duced by the incident electric field, with frequency 𝑖. With no magnetisation 𝐌 in the 
material 𝐇 = 𝐁 𝜇0⁄ . Inserting the expressions for 𝐃 and 𝐇 into the fourth of the Eqs. 
(2.1) and using the relation from the third equation one obtains 

 ∇ × (∇ × 𝐄) = 𝑖2𝜇0𝜀0𝐄 + 𝑖2𝜇0𝐏. (2.2) 

For frequencies away from absorption resonances, the polarisation can be ex-
panded in a Taylor series of the incident electric field. In the expansion, the magnitude 
of each term decreases rapidly with increasing order. 

 𝐏 = 𝜀0𝛘(1)𝐄 + 𝐏NL = 𝜀0�𝛘(1)𝐄 + 𝛘(2)𝐄𝐄 + 𝛘(3)𝐄𝐄𝐄 + 𝑂(𝐄)4� (2.3) 

The rank 2 tensor, i.e. matrix, 𝛘(1) is the linear part of the (electric) suscepti-
bility 𝛘; thus the first term describes interactions in the linear regime. The susceptibil-
ity can be viewed as the extent to which an external electric field can displace the 
charges within the material, giving rise to the induced polarisation. If the higher order 
terms of the expansion are non-negligible they cause distortions to the otherwise si-
nusoidal induced polarisation and the response is said to be in the nonlinear regime. 
The nonlinear part of the susceptibility is described by tensors of rank 𝑁 + 1 , 
𝛘(𝑁) ∀𝑁 ∈ {2, 3, … }, and the nonlinear induced polarisation is often denoted 𝐏NL.  

In the case of negligible higher order terms, Eq. (2.2) becomes  

 ∇ × (∇ × 𝐄) = 𝑖2𝜇0𝜀0𝐄 + 𝑖2𝜇0𝜀0𝛘(1)𝐄 
= 𝑖2𝜇0𝜀0𝜀𝑟𝐄. 

(2.4) 

Assuming plane waves, 

 𝐄 = 𝐀(𝑖) exp(𝑖𝐤0 ∙ 𝐫) , (2.5) 

and using identities from vector calculus Eq. (2.4) is reformulated into the lin-
ear Helmholtz equation.  

 (∇2 + 𝑘2)𝐄 = 0 (2.6) 

We assume wave solutions to this equation that are of the form of Eq. (2.5). 
The parameter 𝑘2 = 𝑖2𝜇0𝜀0𝜀𝑟 = 𝑘02𝜀𝑟 is the absolute value squared of the wave vec-
tor within the material, where 𝑘0 is the absolute value of the wave vector in vacuum 
from the Eq. (2.5) ansatz. It is also possible to use the refractive index of the material, 
𝑛, to express 𝑘 = 𝑘0𝑛, since there is no magnetisation (i.e. 𝜇𝑟 = 1).  

In the case of a non-negligible nonlinear induced polarisation, 𝐏NL, Eq. (2.2) 
instead becomes  

 ∇ × (∇ × 𝐄) = 𝑖2𝜇0𝜀0𝐄 + 𝑖2𝜇0𝜀0𝛘(1)𝐄 + 𝑖2𝜇0𝐏NL 
= 𝑖2𝜇0𝜀0𝜀𝑟𝐄 + 𝑖2𝜇0𝐏NL 

(2.7) 

and the nonlinear Helmholtz equation is obtained. 
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 (∇2 + 𝑘2)𝐄 = −
𝑘02

𝜀0
𝐏NL (2.8) 

In Eq. (2.8) the nonlinear part of the interaction is isolated to the right hand 
side of the equation and 𝐏NL can be viewed as a source term for different frequencies. 
These frequencies, as mentioned above, do not necessarily need to be present in the 
incident electric field. 

Since this thesis discusses nonlinear interactions in crystals exclusively, it is 
convenient to introduce a coordinate system that is the same as the principle dielectric 
axes of a crystal. The incident field is assumed to travel along 𝑥 within the material. 
The vectorial nature of the electric fields, i.e. the polarisation of the light, is expressed 
by a unit vector 𝐞, letting the envelope 𝐀 be scalar valued: 𝐴. The waves considered 
in the thesis are all linearly polarised, so this is assumed henceforth. The spatial de-
pendence of the envelope, driven by the nonlinear perturbation of the Helmholtz 
equation (the right hand side of Eq. (2.8)), is accounted for only along the propagation 
direction since the plane wave approximation is applied, cf. Eq. (2.5). 

 𝐄 = 𝐸𝐞 = 𝐴(𝑖, 𝑥)𝐞 exp(𝑖𝑘𝑥) (2.9) 

The field of Eq. (2.9) is inserted into the nonlinear Helmholtz equation (2.8), 
followed by the application of the slowly varying envelope approximation (SVEA). 
Owing to the SVEA the second derivative term 𝑑2𝐴(𝑖, 𝑥) 𝑑𝑥2⁄ , created by the La-
place operator, can be neglected, as long as |𝑑2𝐴(𝑖, 𝑥) 𝑑𝑥2⁄ | ≪ |𝑘 𝑑𝐴(𝑖, 𝑥) 𝑑𝑥⁄ | i.e. 
the envelope 𝐴(𝑖, 𝑥) changes slowly in space. Eq. (2.8) thus becomes 

 
𝑑𝐴(𝑖, 𝑥)

𝑑𝑥
= 𝑖

𝑖
2𝜀0𝑛𝑛

exp(−𝑖𝑘𝑥)𝐏NL ∙ 𝐞. (2.10) 

The continuation of the derivation will treat the case of second order (also 
called quadratic or 𝜒(2)) parametric interactions in non-centrosymmetric materials, 
i.e. materials with non-zero 𝛘(2), since that is the focus of this thesis. These materials 
may have non-zero 𝛘(3) and higher order terms, but since the expansion of Eq. (2.3) 
goes to zero so rapidly with increasing order the 𝛘(2) term is the dominating nonlinear 
term. Thus the higher order terms can be neglected and the nonlinear polarisation 𝐏NL 
will henceforward be described by 𝐏(2) = 𝛘(2)𝐄𝐄.  

Each of the three Cartesian vector components of the nonlinear polarisation is 
treated separately. Eq. (2.11) depicts an example where the two incident electric field 
components 𝐸𝑘(𝑖2)  and 𝐸𝑙(𝑖3)  induce, through the susceptibility component 
χ𝑗𝑘𝑙

(2)(𝑖1 = 𝑖2 + 𝑖3;  𝑖2,𝑖3), a non-zero polarisation at the sum frequency 𝑖1, not 
present in the incident field:  

 
𝑃𝑗

(2)(𝑖1) = � � 𝜀0χ𝑗𝑘𝑙
(2)(𝑖1 = 𝑖2 + 𝑖3;  𝑖2,𝑖3)𝐸𝑘(𝑖2)𝐸𝑙(𝑖3)

𝜔2,𝜔3𝑘,𝑙

 

                                                   with  𝑗, 𝑘, 𝑙 ∈ {𝑥,𝑦, 𝑧} 
(2.11) 
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To obtain the total polarisation component 𝑗  at frequency 𝑖1 , the multiple 
summations of Eq. (2.11) must be performed. The first summation lets the Cartesian 
indices 𝑘 and 𝑙 vary over all possible vectorial components, i.e. possible directions for 
the polarisation of the incident light. The second summation lets 𝑖2 and 𝑖3 assume 
all values that add up to 𝑖1.  

Regardless of which frequency that is being generated, it is a general condition 
that the frequencies of the three waves in a quadratic interaction are fixed by energy 
conservation. 

 𝑖1 = 𝑖2 + 𝑖3 (2.12) 

When the involved frequencies are far from absorption resonances the nonlin-
ear susceptibility is real and its dispersion is negligible, thus full permutation sym-
metry applies. As a result the same value for χ𝑗𝑘𝑙

(2)  can be used for all involved fre-
quencies and the frequency arguments can be omitted. It is then convenient to use a 
different coefficient to denote the nonlinear susceptibility. 

 𝑑𝑗𝑘𝑙 =
1
2
χ𝑗𝑘𝑙

(2)  (2.13) 

The nonlinear coefficient 𝑑 can also be written in a more compact way, which 
for interactions where all involved polarisations and electric field components have 
polarisations aligned along 𝑧 becomes 𝑑33 ≡ 𝑑𝑧𝑧𝑧. (See Ref. [27] for more details on 
this notation.) In all experimental and numerical investigations presented in this thesis 
the polarisations of the involved fields lie along 𝑧. For simplicity, it is assumed for the 
rest of the derivation that all induced polarisations also are polarised along 𝑧. The 
Cartesian indices in Eq. (2.11) are then dropped and Eq. (2.10) can be written in sca-
lar form. 

 
𝑑𝐴
𝑑𝑥

= 𝑖
𝑖

2𝜀0𝑛𝑛
exp(−𝑖𝑘𝑥)𝑃NL (2.14) 

Since the Cartesian indices have been omitted a new notation 𝐴𝑚 ≡
𝐴(𝑖𝑚, 𝑥)  ∀𝑚 ∈ {1, 2, 3} can be introduced.  

For 𝑖 = 𝑖1 the induced polarisation described in Eq. (2.11) generates a field 
amplitude 𝐴1 . Inserting Eq. (2.11) into Eq. (2.14) and using the fact that 𝐸 =
𝐴(𝑖, 𝑥) exp(𝑖𝑘𝑥), the differential equation for the evolution of 𝐴1 when propagating 
through the material is obtained. 

 
𝑑𝐴1
𝑑𝑥

= 𝑖
𝑖1
𝑛1𝑛

exp(−𝑖𝑘1𝑥)𝑑33𝐴2𝐴3 exp(𝑖𝑥[𝑘2 + 𝑘3]) (2.15) 

Letting 𝑖 = 𝑖2, Eq. (2.14) can be applied also to the field amplitude 𝐴2. In 
the same way that the electric field oscillations at 𝑖2 and 𝑖3 can induce an oscillation 
at 𝑖1, the oscillations at 𝑖1 and 𝑖3 can modify the amplitude of the oscillation at 𝑖2. 
With all involved polarisations along 𝑧, the induced nonlinear polarisation at the dif-
ference frequency 𝑖2, is 
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 𝑃(2)(𝑖2) = � � 𝜀0χ
(2)(𝑖2 = 𝑖1 − 𝑖3;  𝑖1,−𝑖3)𝐸(𝑖1)[𝐸(𝑖3)]∗

𝜔1,𝜔3𝑘,𝑙

. (2.16) 

Note that the first summation, over all Cartesian indices, now becomes trivial 
since all involved polarisations lie along 𝑧. The complex conjugate in the expression 
originates from the fact that the negative frequency component (of the complex field 
representation) of the oscillation at 𝑖3 is required to create the difference frequency. 
Inserting Eq. (2.16) into Eq. (2.14), written for 𝑖2, one obtains the influence that the 
two oscillations at 𝑖1 and 𝑖3 exert on the field amplitude 𝐴2. Using the compact no-
tation the differential equation describing the evolution of 𝐴2 is 

 
𝑑𝐴2
𝑑𝑥

= 𝑖
𝑖2

𝑛2𝑛
exp(−𝑖𝑘2𝑥)𝑑33𝐴1𝐴3∗ exp(𝑖𝑥[𝑘1 − 𝑘3]) . (2.17) 

Letting 𝑖 = 𝑖3, Eq. (2.14) can be applied also to the field amplitude 𝐴3. The 
induced nonlinear polarisation at the difference frequency 𝑖3 is  

 𝑃(2)(𝑖3) = � � 𝜀0χ
(2)(𝑖3 = 𝑖1 − 𝑖2;  𝑖1,−𝑖2)𝐸(𝑖1)[𝐸(𝑖2)]∗

𝜔1,𝜔2𝑘,𝑙

 (2.18) 

and the evolution of 𝐴3, influenced by the oscillations at 𝑖1 and 𝑖2, is given 
by 

 
𝑑𝐴3
𝑑𝑥

= 𝑖
𝑖3

𝑛3𝑛
exp(−𝑖𝑘3𝑥)𝑑33𝐴1𝐴2∗ exp(𝑖𝑥[𝑘1 − 𝑘2]) . (2.19) 

The three differential equations (2.15), (2.17) and (2.19), constitute the cou-
pled wave equations. This system describes the evolution of the amplitudes of the 
three interacting electric field oscillations involved in the quadratic interaction, as the 
light propagates along 𝑥 within the nonlinear material. 

 

𝑑𝐴1
𝑑𝑥

= 𝑖
𝑖1
𝑛1𝑛

𝑑33𝐴2𝐴3 exp(−𝑖∆𝑘𝑥) 

𝑑𝐴2
𝑑𝑥

= 𝑖
𝑖2

𝑛2𝑛
𝑑33𝐴1𝐴3∗ exp(𝑖∆𝑘𝑥) 

𝑑𝐴3
𝑑𝑥

= 𝑖
𝑖3

𝑛3𝑛
𝑑33𝐴1𝐴2∗ exp(𝑖∆𝑘𝑥) 

(2.20) 

The parameter  

 ∆𝑘 = 𝑘1 − 𝑘2 − 𝑘3,      𝑘𝑚 = 𝑖𝑚𝑛𝑚  ∀𝑚 ∈ {1, 2, 3}, (2.21) 

is known as the wave vector mismatch or the phase mismatch. It depends on 
the frequencies of the involved field oscillations and the refractive index of the mate-
rial. ∆𝑘 determines the sign of the complex exponential function and thus decides 
which field amplitudes that increase and which that decrease. In this sense, the phase 
mismatch is a parameter critically affecting the light generation at the desired fre-
quency. Its role will be discussed more in depth in section 2.3.1. 
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The electric field oscillations can be seen as three distinct light waves, at dif-
ferent frequencies and thus of different colour. The oscillations influence each other’s 
strengths, in a process mediated by the nonlinear polarisation, which can be seen as 
energy exchange between the light waves. Since the process takes place far from any 
absorption resonances, it can be deduced that the generation or destruction of one 
photon at frequency 𝑖1 necessitates the destruction or generation of one photon at 𝑖2 
and one photon at 𝑖3. In other words, the total energy in the system is constant and a 
change in the intensity of any of the three light waves, 𝐼𝑚 = 1

2𝜀0𝑛𝑚𝑛|𝐸𝑚|2  ∀𝑚 ∈
{1, 2, 3}, is directly related to the others. These connections are described by the Man-
ley-Rowe relations. 

 
1
𝑖1

𝑑𝐼1
𝑑𝑥

= −
1
𝑖2

𝑑𝐼2
𝑑𝑥

= −
1
𝑖3

𝑑𝐼3
𝑑𝑥

 (2.22) 

 

2.2 Parametric frequency upconversion 

The solution of the coupled wave equations (2.20) will give the evolution of all the 
waves interacting in the parametric process as they propagate through the quadratic 
material. However, in order to solve the system of equations one needs input condi-
tions, or, in other words, decide what waves are input into the crystal and what is the 
desired output.  

 
Fig. 2.1 Possible upconversion processes for quadratic parametric interac-
tions. SHG = second harmonic generation, SFG = sum frequency generation 

An instructive example to start with is a special case of frequency upconver-
sion which represents the simplest kind of parametric interactions: second harmonic 
generation (SHG). A single wave, referred to as pump, is input into the material, often 
with the purpose of reaching a higher frequency regime. The wave, however, is treat-
ed as two input waves that are degenerate, which generate light at twice the input fre-
quency. From a particle point of view, two pump photons are converted into one pho-
ton at double frequency (second harmonic (SH)), 𝑖𝑆𝑆 = 𝑖𝑝 + 𝑖𝑝. The interaction is 
depicted in the upper part of Fig. 2.1. 

The coupled wave equations (2.20) reduce to a system of two differential 
equations. 

𝑖𝑝 𝑖𝑆𝑆
𝑖1 = 𝑖2 = 𝑖𝑝 → 2𝑖𝑝 = 𝑖𝑆𝑆 = 𝑖3

𝑖2 𝑖1

SHG

SFG 𝑖3
𝑖2 + 𝑖3 → 𝑖1



2.3 Parametric frequency downconversion  11 

  

 

𝑑𝐴𝑆𝑆
𝑑𝑥

= 𝑖
𝑖𝑆𝑆
𝑛𝑆𝑆𝑛

𝑑33
𝐴𝑝2

2
exp(−𝑖∆𝑘𝑥) 

𝑑𝐴𝑝
𝑑𝑥

= 𝑖
𝑖𝑝
𝑛𝑝𝑛

𝑑33𝐴𝑆𝑆𝐴𝑝∗ exp(𝑖∆𝑘𝑥) 
(2.23) 

The factor 1 2⁄  for the equation of the second harmonic wave reflects that the 
input is degenerate. In other words, there is only one field in the expression of the 
induced nonlinear polarisation, Eq. (2.11), thus after summation the polarisation has a 
factor 2 less than in non-degenerate cases.  

If the conversion efficiency of the interactions is low, which is the case in sev-
eral applications, only a fraction of the pump intensity is transferred to the second 
harmonic. The decrease in intensity of the pump can then be disregarded, which is 
referred to as the non-depleted pump approximation. In this case Eq. (2.23) is reduced 
further in that the differential equation for 𝐴𝑝 vanishes and the evolution of the sec-
ond harmonic intensity as a function of propagation coordinate is straightforward to 
find. 

 𝐼𝑆𝑆(𝑥) =
𝑖𝑆𝑆2

2𝜀0𝑛𝑝2𝑛𝑆𝑆𝑛3
𝑑332 𝐼𝑝2 𝑥2sinc2 �

∆𝑘𝑥
2
� (2.24) 

The result emphasises two key parameters of single-input parametric interac-
tions, namely the pump intensity and the phase mismatch. Both will be further cov-
ered in the next section. 

The input waves of the upconversion can also be non-degenerate, as is depict-
ed in the lower part of Fig. 2.1. This is the example first used in the derivation of the 
previous section, where two distinct input waves generate light at the sum frequency 
(SF) 𝑖1 = 𝑖2 + 𝑖3. The process is called sum frequency generation (SFG) and often 
serves the purpose of producing a specific frequency or reaching further towards the 
blue-UV side of the spectrum. 

Solving the full coupled wave equations (2.20) in the non-depleted pump ap-
proximation gives the evolution of the generated SF wave. 

 𝐼1(𝑥) =
2𝑖12

𝜀0𝑛1𝑛2𝑛3𝑛3
𝑑332 𝐼2𝐼3𝑥2 sinc2 �

∆𝑘𝑥
2
� (2.25) 

2.3 Parametric frequency downconversion 

This thesis focuses on parametric downconversion, where the parametric interactions 
generate frequencies lower than, at least one of, the input frequencies. Out of conven-
tion the indices for the waves, 1, 2 and 3, are often replaced by the terms pump (p), 
signal (s) and idler (i), sorted by descending frequency. The pump is almost always of 
significantly higher intensity than the two other waves. 

Depending on the characteristics of the incident waves and the desired output, 
downconversion is divided into three differently named processes. The first example, 
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shown by the top part of Fig. 2.2, is difference frequency generation (DFG). The pur-
pose of DFG is most frequently to reach a lower frequency spectral region. Two inci-
dent light waves, i.e. electric fields of different frequency, generate a third wave at the 
difference frequency. The pump is one of the input waves and the other is often the 
signal, as shown in Fig. 2.2, but can sometimes be the idler depending on the desired 
output.  

 
Fig. 2.2 Possible downconversion processes for quadratic parametric interac-
tions. DFG = difference frequency generation, OPA = optical parametric amplifi-
cation, OPG = optical parametric generation 

If one instead is interested is interested in amplifying the a wave at lower fre-
quency one discusses optical parametric amplification (OPA), shown by the middle 
part of Fig. 2.2. Again, the example shown here is the more frequent one using pump 
and signal input, although it is possible to use pump and idler as input. Energy is re-
moved from the pump and converted to amplify the signal input wave, and, as a side 
effect, an idler wave is also generated and amplified. Most downconversion experi-
ments with two input waves operate at intensity levels where the result is OPA, i.e. net 
amplification for both signal and idler waves. 

It is also possible to input only the pump wave into the material, for a third 
version of downconversion: optical parametric generation (OPG) or spontaneous 
parametric downconversion (SPDC). In this case the conversion process is seeded by 
photons originating from quantum vacuum fluctuations. Both the signal and the idler 
waves are generated in OPG. The aspects of downconversion that are described 
throughout the rest of this chapter apply to OPA, DFG and OPG alike. 

As described in the previous section by Eq. (2.12), the involved frequencies 
obey energy conservation, which is often written 𝑖𝑝 = 𝑖𝑠 + 𝑖𝑖 for downconversion. 
For the rest of this thesis, the indices 1, 2 and 3 are replaced by p, s and i whenever 
downconversion is treated. 

The characteristics of parametric interactions, and frequency downconversion 
in particular, are developed further by an example using the non-depleted pump ap-
proximation. The decrease of intensity of the pump is thus disregarded, which allows 

𝑖𝑝

DFG

OPA 𝑖𝑠
𝑖𝑝 → 𝑖𝑠 + 𝑖𝑖

OPG

𝑖𝑝 𝑖𝑖𝑖𝑠
𝑖𝑝 − 𝑖𝑠 → 𝑖𝑖

𝑖𝑠
𝑖𝑖

𝑖𝑝

𝑖𝑝 → 𝑖𝑠 + 𝑖𝑖

𝑖𝑠
𝑖𝑖

)(
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for easier calculations. A more general description was given early on by Armstrong 
et al. [7]. 

By assuming that the pump is undepleted, 𝑑𝐴𝑝 𝑑𝑥⁄ = 0, the coupled wave 
equations (2.20) reduce to a system of two coupled equations. Following the deriva-
tions of [28] the solution to the system is found to be 

𝐴𝑠(𝑧) = �𝐴𝑠(0) �cosh 𝑏𝑥 − 𝑖
∆𝑘
2𝑏

sinh 𝑏𝑥� +
𝜅𝑖𝐴𝑝
𝑏

𝐴𝑖∗(0) sinh 𝑏𝑥� exp �𝑖
∆𝑘𝑥

2
� 

𝐴𝑖 (𝑧) = �𝐴𝑖(0) �cosh 𝑏𝑥 − 𝑖
∆𝑘
2𝑏

sinh 𝑏𝑥� +
𝜅𝑠𝐴𝑝
𝑏

𝐴𝑠∗(0) sinh 𝑏𝑥� exp �𝑖
∆𝑘𝑥

2
� 

(2.26) 

with the following parameters. 

 

𝜅𝑚 = 𝑖
𝑖𝑚𝑑33
𝑛𝑚𝑛

    𝑚 ∈ {𝑠, 𝑖} 

𝑏 = �Γ2 − �
∆𝑘
2
�
2

 

Γ2 =
2𝑖𝑠𝑖𝑖

𝜀0𝑛𝑝𝑛𝑠𝑛𝑖𝑛3
𝑑332 𝐼𝑝 

(2.27) 

The gain experienced by an incident signal (in the case of pump and signal 
wave input, with no incident idler wave; 𝐴𝑖(0) = 0) after propagating through a ma-
terial of length 𝐿 is  

 

𝑔𝑠(𝐿) =
|𝐴𝑠(𝐿)|2

|𝐴𝑠(0)|2 − 1 

= Γ2
sinh2 �𝐿�Γ2 − �∆𝑘2 �

2
�

Γ2 − �∆𝑘2 �
2 . 

(2.28) 

In the limit of a weak pump wave, where Γ ≪ ∆𝑘 2⁄ , Eq. (2.28) reduces to  

 𝑔𝑠(𝐿)|Γ small = Γ2𝐿2 sinc2 �
∆𝑘𝐿

2
� . (2.29) 

If the phase mismatch, ∆𝑘, is small the signal intensity grows with approxi-
mately the square of the length of the nonlinear material. 

On the other hand, in the case of a very strong pump in relation to the phase 
mismatch, Γ ≫ ∆𝑘 2⁄ , ∆𝑘 is neglected and the signal grows approximately exponen-
tially with the length. 

 𝑔𝑠(𝐿)|Γ large =
1
4

exp(2Γ𝐿) (2.30) 

In order to achieve an efficient conversion to the signal frequency (the conver-
sion to the idler behaves similarly, owing to the Manley-Rowe relations (2.22)) in an 
experiment it is rewarding to be in the regime of Eq. (2.30). The gain grows rapidly 
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both with increasing length 𝐿 of the nonlinear material and with increasing pump in-
tensity. The latter influences the gain through Γ, as is seen in the third expression of 
(2.27). Since Eq. (2.30) requires ∆𝑘 to be small in order to be valid, the phase mis-
match is almost always the most important parameter in the experimental conditions 
when striving for an efficient conversion. To this end, the phase mismatch is discussed 
in detail below. 

2.3.1 Phase matching 

In light of Eqs. (2.24), (2.25) and (2.29) it is clear that for a non-zero ∆𝑘 the intensity 
generated through the conversion will oscillate between zero and a finite number as 
the waves propagates through the material. This can be easily seen in the example of 
SHG, by rewriting again the expression for the second harmonic intensity at a given 
coordinate in the material, Eq. (2.24). 

 𝐼𝑆𝑆(𝑥) =
𝑖𝑆𝑆2

2𝜀0𝑛𝑝2𝑛𝑆𝑆𝑛3
𝑑𝑒𝑒𝑒2 𝐼𝑝2

4
(∆𝑘)2 sin2 �

∆𝑘𝑥
2
� (2.31) 

 

 
Fig. 2.3 Phase matched (green) and non-phase matched (red) second harmon-
ic generation as function of position in the quadratic material, modelled by Eq. 
(2.31). Position expressed in coherence lengths 𝐿𝐶 of the non-phase matched in-
teraction. 

The evolution of the second harmonic intensity is plotted in Fig. 2.3. For the 
case of non-zero ∆𝑘 (red curve), the sine squared expression first increases monoton-
ically with 𝑥, then starts to decrease when |∆𝑘𝑥 2⁄ | = 𝜋 2⁄ . The distance travelled 
when the direction of the energy flow changes, 𝐿𝐶, is the coherence length of the non-
linear process. 

 𝐿𝐶 =
𝜋

|∆𝑘| (2.32) 
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When reaching one coherence length, the light generated earlier at 𝑖𝑆𝑆 will no 
longer be in phase with the polarisation wave at 𝑖𝑆𝑆, since the light at 𝑖𝑝, which in-
duced the polarisation, is travelling with a different phase velocity than the light at 
𝑖𝑆𝑆. The light generated at 𝑖𝑆𝑆 after one coherence length will thus interfere destruc-
tively, resulting in a downconversion, back to 𝑖𝑝, of the previously generated light. 
One coherence further into the material the light wave at 𝑖𝑆𝑆 is completely depleted 
and, subsequently, the induced polarisation at 𝑖𝑆𝑆  can once more generate light at 
𝑖𝑆𝑆. In this way, a portion of the intensity supplied by the pump wave will flow back 
and forth between the second harmonic and the pump during propagation throughout 
the material. To obtain instead a monotonic upconversion (green curve in Fig. 2.3) 
one must ensure that 𝐿𝐶 ≫ 𝐿  which is done by letting ∆𝑘 ≅ 0, i.e. achieve phase 
matching. 

A first possible method to accomplish phase matching is to use birefringence 
to compensate for the material’s dispersion, i.e. the refractive index as function of 
frequency, which is responsible for the phase difference acquired through propaga-
tion. The method is referred to as birefringent phase matching, first demonstrated in 
1962 [10, 11]. By choosing different (linear) polarisations for the fields of the inter-
acting waves they experience different refractive indices within the crystal. The dif-
ferent indices can thus balance the phase mismatch so that the wave vectors add up to 
zero and ∆𝑘 vanishes. 

Another method consists of introducing a periodic phase flip of π, e.g. after 
every coherence length, for either the generated light wave or the polarisation generat-
ing it. In this way one could avoid the destructive interference that would otherwise 
arise after every coherence length. The concept is referred to as quasi-phase matching 
(QPM), since the phase velocities of the interacting waves are not matched even 
though the destructive interference is minimised and the generated intensity grows 
monotonically. 

Armstrong et al. suggested [7] that QPM could be achieved by letting the in-
teracting waves propagate at an angle within a plane-parallel slab of nonlinear materi-
al, such as a nonlinear crystal, in such a way that they would undergo total internal 
reflection after having propagated a distance corresponding to an odd multiple of the 
coherence length. This phase matching scheme is referred to as Fresnel QPM and was 
first demonstrated in 1966 [29]. 

In the same report by Armstrong et al., another implementation of the phase 
flip is presented. If the orientation of the induced second order polarisation were to 
change by 180° this would effectively change its sign, which corresponds to a phase 
flip of π for the wave being generated. This can be achieved by changing the geome-
try of the nonlinear material periodically, so that after the distance of one (or an odd 
number of) coherence length(s) the material is repositioned upside down. The sign of 
the coefficient of the second order term of the nonlinear polarisation expansion (Eq. 
(2.3)), i.e. the second order susceptibility χ(2), will change periodically throughout the 
material, as will the sign of the second order polarisation. The magnitude of χ(2), 
however, remains unaltered, as do all the linear properties of the material. In the first 
experimental demonstrations of this version of QPM the interacting waves passed 
through several nonlinear crystals, thin in the 𝑥-dimension, where each crystal orient-



16 CHAPTER 2: BASIC PRINCIPLES OF NONLINEAR OPTICS 

ed upside down with respect to the previous. The thickness of the thin plates were one 
[30] or an odd number of [31] coherence length(s), to avoid the destructive interfer-
ence after every or after some propagated coherence lengths, thus achieving QPM. 
Nowadays, however, there are more efficient ways to achieve the change in geometry 
that permits QPM (in a single nonlinear crystal), as will be discussed in chapter 3. 

So far, for the sake of simplicity, all waves have been assumed to propagate 
collinearly, as illustrated by the wave vector diagram of a downconversion example in 
Fig. 2.4a. However, in the more general case it is possible for the waves to travel in 
non-collinear directions, as sketched for downconversion in Fig. 2.4b. In that case the 
phase mismatch is given by a vectorial relation,  

 ∆𝐤 = 𝐤1 − 𝐤2 − 𝐤3. (2.33) 

It should be noted that since the polarisation of the waves lies along 𝑧 they 
propagate in the 𝑥-𝑦-plane, i.e. the wave vectors have the form 𝐤𝑚 = 𝑘𝑚,𝑥𝒙� + 𝑘𝑚,𝑦𝒚�. 
Large propagation angles may limit the interaction length due to spatial walkoff, i.e. 
the waves move away from each other laterally along 𝑦. Consequently the overlap in 
space is diminished, reducing the conversion efficiency, until the waves no longer 
occupy the same space and the interaction stops. 

 
Fig. 2.4 a) Collinear and b) non-collinear interactions geometries exemplified 
for parametric downconversion. The non-collinear geometry displays two cases 
of slightly different signal and idler frequencies and propagation angles. 

In summary, the conditions that determine which frequencies that partake in a 
conversion process are momentum conservation, given by ∆𝐤 = 0 in Eq. (2.33), and 
energy conservation, through Eq. (2.12). By solving a system of these two equations 
one obtains the working points of most efficient conversion; the phase matched work-
ing points.  

For SHG, SFG, DFG and OPA the frequencies of the two input waves (being 
degenerate in the case of SHG) define a single solution for the system of Eqs. (2.12) 
and (2.33) with ∆𝐤 = 0. For OPG the situation is different: the system is underdeter-
mined, owing to the single input, and the frequencies and propagation directions of 
the signal and idler are not unique. A slight change in the propagation directions of 
the signal and idler waves changes somewhat the interaction geometry, see Fig. 2.4b, 
and thus permits slightly different wave vector lengths, i.e. different frequencies. For 
this reason, in OPG, frequencies close to the intended working point are always gen-
erated, though usually with lower efficiency, at neighbouring output angles. 

For parametric interactions, since Eq. (2.33) depends on the refractive index, 
the dispersion of the employed nonlinear material decides which frequencies that can 
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be generated from the incident frequencies, in a particular experimental configuration. 
In downconversion, the relation between incident and generated frequencies can be 
visualised by plotting the wavelengths of the signal and idler versus the wavelength of 
the pump. An example is shown in Fig. 2.5a, calculated for QPM in 1 mol% magnesi-
um-doped near-stoichiometric LiTaO3 (MgSLT) using Eqs. (2.12) and (2.21), along 
with the Sellmeier equations of Ref. [21]. The wavelengths indicated in Fig. 2.5a are 
calculated for ∆𝑘 = 0, however, neighbouring wavelengths can also be generated, 
albeit with a lower conversion efficiency. To then see the relative intensities of all 
wavelengths that are to be expected from a particular pump wavelength (and pump 
intensity) a plot such as Fig. 2.5b can be used. Fig. 2.5b depicts how the variation of 
∆𝑘  as function of the generated wavelengths is reflected in the gain (Eq. (2.28)), 
which in turn is proportional to the generated intensities. In such a figure it is also 
easier to gauge the bandwidth of the conversion process, which will be of interest in 
the next section. 

 
Fig. 2.5 a) Phase matched wavelengths for frequency downconversion in 
MgSLT as function of pump wavelength (blue curve). QPM was assumed, with a 
period of 32.48 μm. The red and green lines specify two example pump wave-
lengths. b) Relative intensities, in normalised logarithmic scale, of the wave-
lengths generated by the two pump wavelengths indicated in a). 

2.4 Broadband downconversion 

One field where parametric interactions prove remarkably useful is generating ex-
tremely broad continua of coherent light. The first challenge that arises when trying to 
achieve phase matching for a broad band of frequencies in downconversion is to 
overcome the group velocity mismatch between signal and idler waves. This section 
is devoted to explaining this challenge and suggesting how it can be handled. 

To be able to describe how the frequencies in the vicinity of a phase matched 
working point in downconversion behave, the phase mismatch 

 ∆𝑘 = 𝑘𝑝 − 𝑘𝑠 − 𝑘𝑖  (2.34) 

is expanded in a Taylor series with respect to the signal frequency, following 
[32]. Mathematically, 𝑖𝑠0 is then fixed at the working point (𝑖𝑠0,𝑖𝑖0) and the signal 
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frequency to be investigated is given by the variable 𝑖𝑠 = 𝑖𝑠0 + ∆𝑖, where ∆𝑖 is the 
deviation from the working point. 

 ∆𝑘(𝑖0 + ∆𝑖) = 𝑘𝑝 − 𝑘𝑠 − 𝑘𝑖 +
∂∆𝑘
∂𝑖𝑠

∆𝑖 +
1
2
∂2∆𝑘
∂𝑖𝑠2

(∆𝑖)2 + 𝑂(∆𝑖)3 (2.35) 

The coefficient of the first order term of the expansion is the derivative of the 
phase mismatch with respect to the signal frequency and is given by 

 
∂∆𝑘
∂𝑖𝑠

= −
∂𝑘𝑠
∂𝑖𝑠

−
∂𝑘𝑖
∂𝑖𝑠

. (2.36) 

The pump frequency is fixed, thus varying the signal frequency also alters the 
idler frequency. The relation between the two can be derived from 𝑖𝑖 = 𝑖𝑝 − 𝑖𝑠:  

 
∂
∂𝑖𝑠

=
∂
∂𝑖𝑖

∂𝑖𝑖

∂𝑖𝑠
= −

∂
∂𝑖𝑖

 (2.37) 

Inserting (2.37) into (2.36) the derivative ∂∆𝑘 ∂𝑖𝑠⁄  becomes  

 
∂∆𝑘
∂𝑖𝑠

= −
∂𝑘𝑠
∂𝑖𝑠

+
∂𝑘𝑖
∂𝑖𝑖

, (2.38) 

where one identifies the group velocities, 𝑣𝑔 = ∂𝑖 ∂𝑘⁄ , of signal and idler. 
The group velocities depend on the nonlinear material and the involved frequencies. 

The coefficient of the second order term, i.e. the second derivative of the 
phase mismatch is calculated analogously. 

 
∂2∆𝑘
∂𝑖𝑠2

= −
∂2𝑘𝑠
∂𝑖𝑠2

+
∂
∂𝑖𝑠

∂𝑘𝑖
∂𝑖𝑖

= −
∂2𝑘𝑠
∂𝑖𝑠2

−
∂2𝑘𝑖
∂𝑖𝑖

2  (2.39) 

The two terms found in the expression above are the group velocity dispersion 
(GVD), 𝛽2 = ∂2𝑘 ∂𝑖2⁄ , of signal and idler and depend on the nonlinear material and 
involved frequencies. Assuming that phase matching is achieved at the working point, 
the Taylor expansion can be written as follows. 

 ∆𝑘(𝑖0 + ∆𝑖) = �
1
𝑣𝑔𝑖

−
1
𝑣𝑔𝑠

� ∆𝑖 −
1
2

(𝛽2𝑠 + 𝛽2𝑖)(∆𝑖)2 + 𝑂(∆𝑖)3 (2.40) 

Even though continuous-wave broadband downconversion has been reported 
[33], broad bands are most often exploited for (ultra-)short pulse interactions. There 
can be various motivations behind this, but one prominent is the desire to obtain high 
peak powers. High peak powers can be achieved by shortening the pulse duration 
while keeping the pulse energy constant. However, short pulses can in some cases 
pose a problem for broadband phase matching. 

In the pulsed case temporal walkoff can arise, which is the loss of spatial over-
lap due to the differences in propagation speed, i.e. group velocity 𝑣𝑔, of the signal, 
idler and pump pulse. In particular, the group velocity mismatch between the pump 
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and the downconverted pulses dominates, to a first order, the temporal walkoff. It is 
thus useful to define a pulse-splitting length between the two: 

 𝑙𝑚𝑝 =
𝜏
δ𝑚𝑝

, (2.41) 

where 𝜏 is the pump pulse duration and 

 δ𝑚𝑝 =
1

1
𝑣𝑔𝑚

− 1
𝑣𝑔𝑝

, 𝑚 ∈ {𝑠, 𝑖}. (2.42) 

The challenge of temporal walkoff is more easily pictured in a time frame 
moving with the pump pulse. If the signal and idler pulses walk off in the same direc-
tion from the pump pulse, δ𝑠𝑝δ𝑖𝑝 > 0, the pulse-splitting lengths limit the interaction 
length within the nonlinear material. However, if signal and idler pulses walk off in 
different directions from the pump pulse, δ𝑠𝑝δ𝑖𝑝 < 0, the signal and idler group ve-
locities work in favour of concentrating newly generated photons close to the pump 
pulse. Thus spatial overlap with the pump can be sustained for lengths substantially 
exceeding the pulse-splitting lengths [12].  

2.4.1 Experimental methods for broadband downconversion 

The Taylor expansion of the phase mismatch around the phase matching point, 
∆𝑘(𝑖0 + ∆𝑖) Eq. (2.40), indicates that to achieve broadband phase matching one 
must cause the terms in the expansion to approach zero. The first instance is to realise 
group-velocity matching (GVM) for the signal and idler pulses, i.e. bring the first 
term in Eq. (2.40), �𝑣𝑔𝑖−1 − 𝑣𝑔𝑠−1�∆𝑖, to zero. 

One method, extensively used for phase matching broad bands in downcon-
version, exploits non-collinear geometry. The method was first realised in β-BaB2O4 
(BBO) in 1994 [34, 35] and since then bands up to ~190 THz have been realised [36]. 
Fig. 2.6a depicts the phase matching geometry. Even though Eq. (2.40) has been de-
rived for a scalar, i.e. collinear, case, it can still applicable for this method by separat-
ing the vectorial phase mismatch ∆𝐤 in scalar components parallel to and perpendicu-
lar to the signal wave vector. The two components of the phase mismatch are differen-
tiated with respect to signal (and thus idler) frequency and rearranging the result one 
finds the condition for GVM [12]:  

 𝑣𝑔𝑠 = 𝑣𝑔𝑖 cos(Ω) , (2.43) 

Ω is the angle between the signal and idler propagation directions as defined in 
Fig. 2.6. GVM is thus achieved by exploiting the in-plane degrees of freedom, so that 
the projection of the idler group velocity on the signal wave vector becomes equal to 
the signal group velocity, illustrated in Fig. 2.6b. Without ensuring the appropriate 
value for Ω the different group velocities of signal and idler cause temporal walkoff, 
as is exemplified by Fig. 2.6c (Ω = 0). Further details can be found in [37].  
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Fig. 2.6 Group-velocity matching (GVM) by non-collinear interaction geom-
etries to achieve broadband phase matching in frequency downconversion. a) 
The phase matching geometry. b) The elimination of temporal walkoff by ex-
ploiting the geometry illustrated in a). Green ellipse represents signal pulse and 
orange ellipse idler. c) The same interaction suffering temporal walkoff, i.e. due 
to group velocity mismatch, when utilising collinear interaction geometry. 

The method is often used for broadband generation in the shorter wavelength 
regime and BBO is the most often selected nonlinear material. This is because of 
BBO’s exceptional capability of achieving GVM using birefringence and of its high 
damage threshold in the visible. However, one limitation of the non-collinear GVM 
method is spatial walkoff, which ultimately limits the interaction length. The pulses 
are also generated with a pulse front tilt [38], which complicates their use in applica-
tions. 

 
Fig. 2.7 a) Phase matched wavelengths for frequency downconversion in 
MgSLT as function of pump wavelength (blue curve). QPM was assumed, with a 
period of 26 μm. The red and green lines show two example pump wavelengths. 
b) Relative intensities, in normalised logarithmic scale, of the wavelengths gen-
erated by the two pump wavelengths indicated in a). The curves are calculated in 
the same way as for Fig. 2.5. Note the difference in the scale for the signal/idler 
wavelengths, compared to Fig. 2.5. 

An alternative method, employed in this thesis, is to find a spectral working 
point where the dispersion of the material in itself evolves to satisfy the GVM for the 
signal and idler, in collinear geometries. The principle of the method is to select and 
phase match a working point close to the spectral point of zero GVD, as will be ex-
plained further on. In Fig. 2.7 an example of the bands of signal and idler wavelengths 
that can be phase matched in a QPM interaction in MgSLT with a Ti:sapphire pump is 
shown.  
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Employing QPM permits working points to be chosen from a greater part of 
the transparency region of the nonlinear material than when birefringent phase match-
ing is used, as is mentioned in chapter 3. Since the second method is collinear it also 
offers better spatial overlap permitting longer interaction lengths, ultimately increas-
ing the conversion efficiency.  

The OPG signal bandwidth can be derived from Eq. (2.40) and the gain ex-
pression of the downconversion, Eq. (2.28). As the signal frequency deviates from the 
phase matched working point, eventually the phase mismatch ∆𝑘 will grow large and, 
as is easily seen e.g. in Eq. (2.29), the gain will decrease. A first approximation of the 
signal bandwidth, ∆𝜐 full width at half maximum (FWHM), is given by its depend-
ence on the mismatch between the signal and idler group velocities, defined analo-
gously to Eq. (2.42). It was first derived in Ref. [39]. 

 ∆𝜐 ≅
2√ln 2
𝜋

�Γ
𝐿

1
|δ𝑠𝑖|

 (2.44) 

When GVM is achieved one instead needs to take into account the second or-
der term of the Taylor expansion Eq. (2.40) to express the FWHM bandwidth [39]. 

 ∆𝜐 ≅
2√ln 24

𝜋
�Γ
𝐿

4 1
�|𝛽2𝑠 + 𝛽2𝑖|

 (2.45) 

The most important parameter determining the bandwidth in Eq. (2.45) is the 
GVD at the signal and idler frequencies. Note that the bandwidth is given by the in-
verse of the sum of signal and idler GVDs, not the difference. In other words, the evo-
lution of the GVDs when moving further away from the phase-matched point must 
cancel each other. Thus, the way to achieve extremely broad bands is to choose a 
spectral working point of degenerate downconversion, i.e. ω𝑠 = ω𝑖, close to the point 
of zero GVD of the nonlinear material. In this way, owing to the dispersion of the 
material, the signal and idler GVDs cancel each other over a very wide range of fre-
quencies. 

Owing to the spectral flexibility of QPM, a working point close to the point of 
zero GVD can be readily achieved in collinear geometry (second broadband phase 
matching method mentioned above), thus increasing the signal bandwidth beyond 
what is possible with only GVM. Although a working close to the point of zero GVD 
restricts the choice of spectral region for the broadband downconversion, the method 
allows for extremely broad bands in combination with simple phase matching geome-
tries. In recent years the method has started to be investigated experimentally and 
bandwidths up to 150 THz have been demonstrated so far [40-43].  

There exists a third method to achieve phase matching for broadband 
downconversion. However, it doesn’t rely on matching the group velocities, but con-
sists of exploiting QPM with a QPM chirped period, i.e. the spatial period of the sign 
alterations of χ(2) changes monotonously (often linearly) along the propagation direc-
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tion of the waves.1 This grants the possibility to engineer the group delay spectrum, 
through different spectral components being generated at different points along the 
length of the QPM structure [44-46]. Choosing carefully the group delay as function 
of frequency, one can compensate for the non-matched group velocities and obtain 
broadband conversion. Nevertheless, the method reduces the efficiency of the conver-
sion, since for each spectral component only a part of the full length of the nonlinear 
material is used. 

2.5 Quadratic cascading 

As described in section 2.3.1, in the case of non-zero phase mismatch, ∆𝑘, energy 
supplied by the incident wave(s) will flow back and forth between the generated and 
the incident frequencies, as the waves propagate through the nonlinear material. It 
was noted already in 1967 that periodic energy exchange in a χ(2) conversion process 
leads to nonlinear phase shifts for the incident wave [47]. The nonlinear phase shifts 
are intensity dependent, thus similar to the ones induced by χ(3) interactions. Despite 
being treated theoretically early on, experimental limitations hindered any practical 
interest until the first measurements of the nonlinear phase shifts in 1989 and 1992 
[48, 49]. The process that induces these nonlinear phase shifts is called quadratic cas-
cading or 𝜒(2) cascading. 

The mechanism responsible for the nonlinear phase shifts can be illustrated us-
ing the simple case of SHG, in type I phase matching2. The interplay between the 
second harmonic and the fundamental is shown in Fig. 2.8, where Fig. 2.8a describes 
schematically the principle during one oscillation period. The functions describing the 
propagation of the second harmonic (SH) and the fundamental waves are found by 
solving numerically the coupled wave equations (2.23), with a non-zero ∆𝑘. The solu-
tions, i.e. the intensity evolution of the SH and fundamental waves and the phase evo-
lution of the fundamental wave, are shown Fig. 2.8b. 

As the SH wave grows the pump wave loses an equal amount of energy. After 
one coherence length, when the SH wave is subject to destructive interference, that 
energy is converted back to the pump frequency. However, since the SH wave has 
travelled with a phase velocity different than the one of the pump, 𝑣𝜑,𝑆𝑆 ≠ 𝑣𝜑,𝑝 in 
Fig. 2.8a, when the wave is backconverted to the pump frequency it has accumulated 
a phase shift, ∆𝜑, with respect to the wave at the pump frequency. The result after the 
backconversion is that the initial wave has acquired a phase shift. In this sense the 
quadratic cascading is similar to self-phase modulation based on χ(3) (SPM), but the 
process exploits the second order susceptibility χ(2) instead of the third order χ(3) . 
Quadratic cascading can be expected to be more efficient than SPM since the values 
of the χ(2) components are higher than those of the χ(3) components. 

                                                 
1 The concept of QPM period is further explained in chapter 3. 
2 Type I (birefringent) phase matching: the two incident waves at fundamental frequency have the same 
polarisation, thus being fully degenerate and indistinguishable. 



2.5 Quadratic cascading  23 

  

 
Fig. 2.8 a) Schematic figure of a single cycle of the energy transfer in quad-
ratic cascading of non-phase matched SHG. b) Generated SH intensity (dashed 
blue curve), fundamental intensity (solid blue curve) and nonlinear phase ac-
quired by the fundamental wave as function of propagated distance. The curves 
are found by solving numerically the coupled wave equations for SHG (2.23), 
with ∆𝑘 ≠ 0. 

The magnitude of the χ(2) cascading phase shift is dependent on the distance 
that the wave has travelled at the SH frequency. Consequently, it is dependent on the 
phase mismatch, since e.g. a smaller ∆𝑘 lets the light propagate longer at 𝑖𝑆𝑆 before 
being backconverted. Moreover, for a smaller ∆𝑘 more light has time to be upcon-
verted and backconverted. As a result, the total phase shift of the fundamental wave, 
corresponding to the accumulation of all the phase-shifted photons, increases with 
increasing pump intensity since for higher pump intensities the conversion efficiency 
is higher, see e.g. Eq. (2.28), and more photons are converted to 𝑖𝑆𝑆. 

Quadratic cascading can arise also at perfect phase matching, when two non-
degenerate, incident waves interact, e.g. type II SHG3 or SFG, and the incident inten-
sities (or more precisely the photon fluxes) are non-equal. Belostotsky et al. showed 
theoretically, by solving numerically the coupled wave equations for type II SHG 
(2.20), that the induced nonlinear phase shifts of the involved waves lead to periodic 
changes in intensity of all the waves for imbalanced inputs [50].  

                                                 
3 Type II (birefringent) phase matching: the two incident waves at fundamental frequency have differ-
ent polarisation, thus being non-degenerate and distinguishable. 

𝑣𝜑,𝑝 = 𝑖𝑝 𝑘𝑝⁄

𝑖𝑆𝑆:

𝑖𝑝:

𝑖𝑝 + 𝑖𝑝 → 𝑖𝑆𝑆

𝑣𝜑,𝑆𝑆 = 𝑖𝑆𝑆 𝑘𝑆𝑆⁄

𝑖𝑆𝑆 → 𝑖𝑝 +𝑖𝑝

∆𝜑
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The reason for the periodic changes in intensity, shown in Fig. 2.9a, can be 
explained using the coupled wave equations (2.20) and Fig. 2.9. For convenience, 
Eqs. (2.20) are repeated here as Eqs. (2.46). 

 

𝑑𝐴1
𝑑𝑥

= 𝑖
𝑖1
𝑛1𝑛

𝑑33𝐴2𝐴3 exp(−𝑖∆𝑘𝑥) 

𝑑𝐴2
𝑑𝑥

= 𝑖
𝑖2

𝑛2𝑛
𝑑33𝐴1𝐴3∗ exp(𝑖∆𝑘𝑥) 

𝑑𝐴3
𝑑𝑥

= 𝑖
𝑖3

𝑛3𝑛
𝑑33𝐴1𝐴2∗ exp(𝑖∆𝑘𝑥) 

(2.46) 

 
Fig. 2.9 a) Intensities of waves involved in type II, i.e. non-degenerate, SHG 
cascading due to non-equal input intensities, as function of propagated distance. 
b) Evolution of phases of the involved waves. The curves have been created by 
solving numerically the coupled wave equations (2.46), with ∆𝑘 = 0, 𝐼1(0) = 0 
and 𝐼3(0) = 𝐼2(0) 2⁄ . The numbering of the waves refers to Eqs. (2.46).  

Waves 2 and 3 are incident on the nonlinear material, with non-equal intensi-
ties I3 > I2. The intensities of the two waves are reduced and the intensity of wave 1 is 
increased, until the intensity of wave 2 is zero. Now the driving terms for waves 1 and 
3, i.e. the right hand side for the first and third equations of (2.46) are also zero. The 
only non-zero driving term is that of wave 2 and a wave at frequency 𝑖2 is thus gen-
erated, though with its phase shifted by π radians compared to the initial wave 2. The 
result is a destructive interference for wave 1, i.e. downconversion to waves 2 and 3. 
This downconversion continues until wave 1 has zero intensity and the two driving 
terms of waves 2 and 3, second and third equations of (2.46), become zero. The non-
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zero driving term for the first equation of (2.46) generates a wave at frequency 𝑖1, 
but with a phase shift of π with respect to wave 1 before its disappearance. As a result, 
the flow of energy in the conversion process changes back to upconversion. In this 
manner the entire course of events is repeated periodically. In conclusion, the imbal-
ance of the input intensities is crucial for obtaining χ(2) cascading at perfect phase 
matching, ∆𝑘 = 0. If this imbalance is not present, when wave 2 reaches zero intensi-
ty so does wave 3 and the conversion process terminates itself, with the result of full 
conversion to 𝑖1. A review of χ(2) cascading is given by [51]. 

In the work presented in this thesis, quadratic cascading has been investigated 
for SFG cascading with ∆𝑘 = 0, in connection with broadband downconversion. It is 
shown in chapter 4 that in the pulsed regime, SFG cascading can be initiated by tem-
poral walkoff.  

 
  



26 CHAPTER 2: BASIC PRINCIPLES OF NONLINEAR OPTICS 

 
  



3.1 Quasi-phase matching (QPM)  27 

  

 

Chapter 3 

Engineered quadratic materials   

As discussed in section 2.3.1, efficient parametric conversion, i.e. eliminating ∆𝑘, was 
first achieved using birefringent phase matching [10, 11]. Today’s maturity in growth 
processes and optical power handling capacity of certain birefringent nonlinear mate-
rials, such as β-BaB2O4, KDP and LiB3O5, render them a favoured alternative in high 
power applications. However, a limitation of birefringent phase matching lies in that 
the difference between the refractive indices of the nonlinear material must be large 
enough to accommodate for the index differences of the involved frequencies. This 
restricts the spectral range where phase matching can occur. Additionally, when ex-
ploiting birefringent crystals it is not uncommon that the phase matching geometry 
causes Poynting vector walkoff, which can lead to degradation of the spatial profile of 
a beam and limited effective interaction lengths. 

In contrast, since quasi-phase matching (QPM) does not directly rely on a ma-
terial property, the spectral working point can be chosen freely (as long as the perio-
dicity is achievable with present technology) within the transparency range of the 
nonlinear material. QPM can also be used for non-birefringent materials, such as 
GaAs, GaP and GaN, where birefringent phase matching is impossible. No re-
strictions are imposed on the polarisations the waves when using QPM, so the conver-
sion can exploit the largest component of the nonlinear susceptibility tensor. For the 
material of concern of this thesis, LiTaO3, this largest component corresponds to 𝑑33. 

3.1 Quasi-phase matching (QPM) 

As already mentioned, the first demonstration of quasi-phase matching employed 
Fresnel QPM [29] (cf. section 2.3.1) which had been suggested by Armstrong et al. 
[7]. However, this version of QPM suffers from difficulties in fabricating slabs of 
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very uniform thickness and low roughness, as well as ensuring the required input an-
gle.  

Instead the second approach suggested in the same report by Armstrong et al., 
i.e. to alternate the orientation of the material, and thus the sign of the second order 
susceptibility χ(2) (cf. Eq. (2.3)), every coherence length, attracted interest. One first 
approach of placing consecutive thin crystal plates of alternating orientation [30, 31] 
carries the disadvantages of the air gaps, which in almost all situations induce Fresnel 
losses, and of problems with producing plates with thicknesses equal to a single co-
herence length. Diffusion-bonding the plates helps to reduce the propagation losses 
and can allow large apertures [52, 53], but ensuring a constant periodicity across the 
aperture of the bonded crystal and along the propagation direction remains challeng-
ing. 

An alternative way to achieve QPM and avoid the inherent Fresnel losses is to 
implement the structure with domains of alternating sign of the second order suscep-
tibility χ(2) in a single nonlinear crystal. In this case the created structure is often re-
ferred to as a QPM grating or QPM lattice. One way to manufacture such a single-
crystal QPM lattice is to invert the sign of the second order susceptibility during 
growth of the material. Changing the conditions periodically during the growth can 
affect the growth so that one obtains crystals with alternating orientation [54]. How-
ever, the method is susceptible to fluctuations in the periodicity and accumulated er-
rors in the period along the QPM propagation direction. 

For materials that can be grown epitaxially, such as GaAs or GaP, the perio-
dicity of the QPM lattice created during growth can be much more reliable because it 
can be defined by a photolithographically patterned template. The domains of alter-
nating sign of the susceptibility are grown laterally, i.e. along the aperture of the crys-
tal, and, hence, in parallel rather than sequentially in time. The growth method con-
sists of first fabricating a thin layer of opposite orientation on top of the nonlinear 
crystal. Photoresist is deposited and patterned using photolithography, which defines 
the period, and according to this pattern selected parts of the layer of opposite orienta-
tion is removed by chemical etching. As a result the top surface of the crystal displays 
domains of alternating orientation and is used as template for molecular beam epitaxy, 
which conserves the pre-defined domains during growth. The method is called orien-
tation patterned (OP) crystal growth [55, 56]. To create larger crystal apertures, thick-
er crystals can be grown by adding a step of hydride vapour phase epitaxy (HVPE) 
[9].  

Single-crystal QPM lattices can also be created in as grown materials, thus 
making it possible to completely separate the process of creating the QPM lattice 
from the crystal growth process. This is the case for ferroelectric materials, such as 
LiNbO3, LiTaO3 or KTiOPO4 (KTP), where the polarity of a ferroelectric domain 
determines the sign of the second order susceptibility. By applying an electric field 
the polarity of a domain can be switched (the crystal orientation is flipped) and the 
sign of the susceptibility is changed. Periodic electrodes can be created on the top 
surface of the ferroelectric crystal, by patterning a deposited layer of photoresist using 
photolithography and subsequently evaporating metal on the top of the crystal. Apply-
ing the field through the electrodes creates periodic domains where the polarity, and 
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thus the sign of the susceptibility, is changed. Since the electrodes are lithographically 
defined, the method ensures good control of the periodicity of the QPM lattice. This 
method to switch or invert the domains ferroelectric materials is called electric-field 
poling and was first successfully demonstrated by Yamada et al. [8], quickly followed 
by several other groups [57, 58]. 

This thesis focuses on parametric interactions achieved with QPM relying on 
periodically (electric-field) poled ferroelectric crystals. All QPM lattices used in the 
experiments of this thesis have been created using electric-field poling. Periodic pol-
ing will be described in detail in section 3.3, though first the implications of using 
QPM to phase match χ(2) interactions will be discussed. 

3.1.1 The QPM principle 

In nonlinear material with an implemented QPM lattice the nonlinear coefficient 𝑑33 
is a spatially varying function 𝑑(𝑥), periodic in 𝑥. The coupled wave equations (2.20) 
are still valid for QPM, if 𝑑33 is replaced by 𝑑(𝑥) [59].  

 
Fig. 3.1 The definitions of the duty cycle 𝐷 = 𝑠 Λ⁄ , the period Λ and the pe-
riodic function 𝑓(𝑥) of the QPM lattice. 

The spatially varying function is written 𝑑(𝑥) = 𝑑33𝑓(𝑥), where 𝑓(𝑥) is a 
dimensionless function changing from −1 to 1 with periodicity Λ (outlined in Fig. 
3.1). 𝑑(𝑥) can be expanded in a Fourier series, yielding 

 𝑑(𝑥) = 𝑑33 � 𝐹𝑙 exp(𝑖𝐺𝑙𝑥)
∞

𝑙=−∞

. (3.1) 

The QPM lattice period, Λ, defines the spatial frequencies 𝐺𝑙 of the expansion 

 𝐺𝑙 =
2𝜋𝑙
Λ

 (3.2) 

and the Fourier coefficients are given by 

 𝐹𝑙 =
1
Λ
�𝑓(𝑥) exp(−𝑖𝐺𝑙𝑥)𝑑𝑥
Λ

0

. (3.3) 

𝑓 𝑥 0
1

-1

Λ 𝑠

𝑥
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The modification of ∆𝑘 that needs to be performed can be found by inserting 
Eq. (3.1) into the coupled wave equations (2.20). For instance, the first equation be-
comes 

 
𝑑𝐴1
𝑑𝑥

= 𝑖
𝑖1
𝑛1𝑛

𝐴2𝐴3𝑑33 � 𝐹𝑙 exp(−𝑖[∆𝑘 − 𝐺𝑙]𝑥)
∞

𝑙=−∞

. (3.4) 

For almost all values of 𝑙, the terms in the sum will be fast oscillating so that 
the integration along the propagation length throughout the crystal, averages out to 
zero. Only the term 𝑙 = 𝑙′, for which ∆𝑘 − 𝐺𝑙′ ≅ 0, will quickly dominate over the 
oscillating terms of the sum. In other words, the sum can be approximated with the 𝑙′ 
term. This case occurs when the lattice adds a spatial phase shift that matches the 
phase mismatch caused by the index differences of the frequencies involved in the 
parametric conversion. Since only one term dominates the sum, only its contribution 
needs to be taken into account in ∆𝑘, which then can be replaced as 

 ∆𝑘 → ∆𝑘 = 𝑘1 − 𝑘2 − 𝑘3 − 𝐺𝑙′  (3.5) 

and the nonlinear coefficient 𝑑33 needs to be replaced by a scalar 𝑑  

 𝑑33 → 𝑑 = 𝑑33𝐹𝑙′ . (3.6) 

𝐺𝑙′ is the magnitude of the reciprocal lattice vector (RLV) for 𝑙′th order QPM 
and the full description of the RLV is the vector valued parameter 𝐆𝑙′. In discussions 
where only one QPM vector is relevant, the index of the RLV is dropped and the RLV 
is denoted 𝐆.  

The most critical parameter for achieving phase matching is the period Λ, see 
Eqs (3.2) and (3.5), but the duty cycle 𝐷 = 𝑠 Λ⁄ , defined in Fig. 3.1, also affects the 
parametric interaction. It affects the magnitude of the nonlinear coefficient, and thus 
the conversion efficiency, which is seen by combining Eq. (3.6) and the following, 
explicit expression of the Fourier coefficients: 

 𝐹𝑙 =
2
𝜋𝑙

sin(𝜋𝑙𝐷) exp(−𝑖𝜋𝑙𝐷) (3.7) 

In order to maximise the conversion efficiency it is preferable to use low order 
QPM, since 𝐹𝑙 ∝ 1 𝑙⁄ . For first-order QPM, the duty cycle that maximises the conver-
sion efficiency is 𝐷 = 1 2⁄ , corresponding to a Fourier coefficient equal to 2 𝜋⁄ . De-
spite this reduction of the nonlinear coefficient (cf. Eq. (3.6)) the resulting effective 
nonlinear coefficient 𝑑 may still be much larger than in the case of birefringent phase 
matching, since the largest component of the susceptibility tensor can be chosen for 
QPM. 

3.1.2 Phase matching calculations 

For collinear QPM interactions the period Λ required to achieve phase matching is 
calculated using the scalar form of the phase mismatch, i.e. taking the magnitude of 
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the RLV into account. For perfect phase matching of a quadratic parametric process, 
i.e. ∆𝑘 = 0, the lattice vector must obey 

 𝐺 = 𝑘1 − 𝑘2 − 𝑘3. (3.8) 

Assuming first order interactions and combining Eqs. (2.32), (3.2) and (3.8) 
one obtains 

 Λ = 2𝐿𝐶 =
2𝜋

𝑘1 − 𝑘2 − 𝑘3
. (3.9) 

For non-collinear interactions the vectorial aspects of the phase mismatch 
must be taken into account and ∆𝐤, from Eq. (2.33), is replaced as 

 ∆𝐤 → ∆𝐤 = 𝐤1 − 𝐤2 − 𝐤3 − 𝐆. (3.10) 

Thus the phase mismatch must vanish along the two dimensions of ∆𝐤, i.e. 
one needs to solve a system of two equations in the 𝑥-𝑦-plane. This corresponds to 
closing a QPM vector diagram, such as the one in Fig. 3.2a. In practical terms, this 
means finding a suitable QPM period whose RLV 𝐆 can phase match the wavelengths 
and propagation directions of the involved waves.  

 
Fig. 3.2 Examples of a) collinear and b) non-collinear interactions geometries 
for parametric downconversion, phase matched by a QPM vector, also referred 
to as reciprocal lattice vector (RLV), 𝐆. The parallel vectors have been slightly 
displaced for reasons of visibility. 

For the design of QPM structures, in view of a specific conversion process, 
one is often interested in how the generated frequencies vary as functions of pump 
frequency, for a chosen QPM period. To illustrate this one can solve the system of 
equations given by the requirement of energy conservation  

 𝑖1 = 𝑖2 + 𝑖3 (3.11) 

and phase matching, also referred to as momentum conservation, 

 𝐆 = 𝐤1 − 𝐤2 − 𝐤3, (3.12) 

for a given QPM period, in other words a chosen RLV 𝐆. An example of this, 
in the context of downconversion was given in Fig. 2.5a. The pump dependence is 
displayed by a plot of the generated signal and idler wavelengths versus the pump 
wavelength. Analogously, one can compose a graph showing the influence of the 
QPM period by keeping the pump wavelength fixed. The prediction of the generated 
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wavelengths can be further refined by fixing both the QPM period and the pump 
wavelength and calculating how the variation of the magnitude of ∆𝐤, as given by Eq. 
(3.10), influences the generated intensities, described e.g. by Eq. (2.28), as a function 
of wavelength, as shown in Fig. 2.5b.  

3.2 Two-dimensional QPM 

The idea of using QPM with 2D lattices was first presented in 1998 by Berger [22]. 
2D QPM lattices are also called (2D) nonlinear photonic crystals (NPCs) due to the 
periodicity in the χ(2) part of the susceptibility but lack of modulation in the χ(1) (lin-
ear) part. The added second dimensionality grants new degrees of freedom in custom-
ising the response of nonlinear devices, albeit with the disadvantage of a reduced ef-
fective nonlinear coefficient 𝑑, as will be shown later in this section. Berger suggested 
the first examples of applications that are possible with the new degrees of freedom of 
NPCs: the possibility to phase match conversion processes in multiple directions, 
which could find application in ring cavities, and multiple wavelength SHG using a 
broadband source [22].  

Multi-beam generation with different propagation directions (using a narrow-
band source) was demonstrated in the first experimental realisation, in periodically 
poled LiNbO3 [23]. Two SHG beams ware generated symmetrically to the pump, each 
supported by a RLV, so called twin-beam SHG. At larger output angles signatures of 
third and fourth harmonics were noted. Upon changing the input angle of the pump a 
much richer response, in comparison to one-dimensional (1D) lattices, was observed 
owing to the many possible phase matching resonances (RLVs). 

Third and fourth harmonic generation through multistep SHG and SFG were 
further investigated, mapping both wavelength and temperature tuning bands [25]. 
The authors also reported broader acceptance bandwidths using 2D rather than 1D 
lattices, due to the non-collinear nature of the interactions.  

The possibility of efficient conversion at low pump intensities by combining 
2D lattices with planar waveguides was demonstrated with twin-beam SHG [60]. The 
angular tunability of the device was investigated, showing how the two SH beams 
were spectrally degenerate at zero degree pump angle and split symmetrically in the 
spectral domain when increasing the pump angle.  

The new degrees of freedom of 2D QPM also permit simultaneous conversion 
and beam shaping of various kinds. This has been experimentally demonstrated by 
creating e.g. flat-top [61], Bessel [62] and Airy beams [24].  

Especially interesting are the possibilities, granted by 2D QPM lattices, of 
making multiple χ(2) parametric processes to interact with each other. Such interplays 
of multiple nonlinear resonances unfold the prospects of spectral-angular responses 
lacking counterpart in 1D QPM geometries, with examples reported for SHG [60, 63].  
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3.2.1 2D QPM lattices 

For 2D QPM lattices the nonlinear coefficient 𝑑33 is replaced by a function varying 
periodically in two spatial dimensions, 𝑑(𝑥,𝑦) = 𝑑33𝑓(𝑥,𝑦), where, as in section 
3.1.1, 𝑓(𝑥,𝑦) is a dimensionless spatially varying function. To build the mathematical 
representation of the lattice one can follow Ref. [64] and define a base of two spatial 
vectors, of which linear combinations can span all the lattice points.  

The base of the two non-parallel vectors 𝐚1 = (𝑥1,𝑦1) and 𝐚2 = (𝑥2,𝑦2) can 
describe the coordinate vector to each point of a 2D QPM lattice by the vector 

 𝐫𝑙𝑚 = 𝑙𝐚1 + 𝑚𝐚2,         𝑙,𝑚 ∈ ℤ2. (3.13) 

All lattice points are then described by a sum of Dirac delta functions.  

 𝑞(𝐫) = �𝛿(𝐫 − 𝐫𝑙𝑚)
𝑙,𝑚

= �𝛿(𝐫 − 𝑙𝐚1 − 𝑚𝐚2)
𝑙,𝑚

 (3.14) 

There are thus two periods in a 2D QPM lattice, which are the distances be-
tween two lattice points along either of the base vectors, i.e. the lengths of the two 
base vectors. The sum is to be convolved with a motif function, describing the shape 
of the region, situated at each lattice point, with opposite sign of the nonlinear coeffi-
cient. This region can be referred to as the motif of the lattice, hence motif function.  

For a circular motif of radius 𝑅 the motif function becomes 

 𝑠(𝐫) = circ �
𝑟
𝑅
� ≡ �   1    𝑟 < 𝑅

−1    𝑟 > 𝑅 , 𝑟 = |𝐫| = �𝑥2 + 𝑦2. (3.15) 

The QPM lattice is bounded by its physical size, represented by an area func-
tion. In many situations the lattice is rectangular, with length 𝐿 and width 𝑊, which 
gives the area function 

 𝑎(𝐫) = rect �
𝑥
𝐿
� ∙ rect �

𝑦
𝑊
� , (3.16) 

where the rect function is defined by 

 rect(𝑥) ≡ �1    |𝑥| < 1 2⁄
0    |𝑥| > 1 2⁄ . (3.17) 

The complete mathematical expression for the spatially varying nonlinear co-
efficient becomes  

 𝑑(𝑥,𝑦) = 𝑑33 ∙ 𝑓(𝑥,𝑦) = 𝑑33 ∙ 𝑎(𝐫) ∙ [𝑞(𝐫) ⊗ 𝑠(𝐫)]. (3.18) 

where ⊗ is the convolution operator.  
In analogy with 1D QPM lattices (cf. section 3.1.1), using Fourier analysis one 

can find a representation for the 2D QPM lattice of a parametric interaction, in the 
reciprocal space: the reciprocal lattice. 

Similar to the real space lattice, two base RLVs are needed to span all lattice 
points in the reciprocal lattice, given by 
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 𝐆𝑙𝑚 = 𝑙𝐛1 + 𝑚𝐛2,      𝑙,𝑚 ∈ ℤ2. (3.19) 

The two base vectors are related to the real lattice base vectors by 

 𝐚𝑗 ∙ 𝐛𝑘 = 2𝜋𝛿𝑗𝑘 , 𝑗,𝑘 ∈ {1,2}, (3.20) 

where 𝛿𝑗𝑘 is the Kronecker delta. 
The function that describes the lattice points in the reciprocal space is the 2D 

Fourier transform of 𝑞(𝐫). 

 𝑄(𝐆) =
(2𝜋)2

𝐴𝑈𝐶
�𝛿(𝐆 − 𝐆𝑙𝑚)
𝑙,𝑚

=
(2𝜋)2

𝐴𝑈𝐶
�𝛿(𝐆 − 𝑙𝐛1 − 𝑚𝐛2)
𝑙,𝑚

 (3.21) 

𝐴𝑈𝐶 = |𝑥1𝑦2 − 𝑦1𝑥2| represents the area of the unit cell [65].  
Similarly, the motif and the area functions in reciprocal space are given by the 

Fourier transforms of 𝑠(𝐫) and 𝑎(𝐫), respectively. For some specific functions the 
transforms can be written analytically, for example for the circular motif function of 
Eq. (3.15) the transform is 

 𝑆(𝐆) =
4𝜋𝑅
𝐺

𝐽1(𝑅𝐺), G = |𝐆| = �𝐺𝑥2 + 𝐺𝑦2, (3.22) 

where 𝐽1 is a Bessel function of the first kind. For the rectangular area func-
tion, Eq. (3.16), the transform is 

 𝐴(𝐆) = 𝐿𝑊 sinc �
𝐿𝐺𝑥

2
� ∙ sinc �

𝑊𝐺𝑦
2

� . (3.23) 

The general description of the spatial modulation of the reciprocal lattice is 
then given by 𝐹(𝐆), which is the Fourier transform of the spatially varying part of the 
nonlinear coefficient 𝑓(𝑥,𝑦), cf. Eq. (3.18). 

 𝐹(𝐆) = 𝐴(𝐆) ⊗𝑄(𝐆) ∙ 𝑆(𝐆) (3.24) 

In the case of the length and width of the real lattice being much larger than 
the dimensions of the unit cell (𝑥1, 𝑥2 ≪ 𝐿 and 𝑦1,𝑦2 ≪ 𝑊), the function describing 
the spatial modulation of the nonlinear coefficient becomes the following sum, 

 𝑓(𝑥,𝑦) = �𝐹𝑙𝑚 exp(𝑖𝐆𝑙𝑚 ∙ 𝐫)
𝑙,𝑚

 (3.25) 

with the Fourier coefficients  

 𝐹𝑙𝑚 =
1
𝐴𝑈𝐶

𝑆 �
𝐆𝑙𝑚
2𝜋

� . (3.26) 

In analogy with the 1D QPM lattice, the spatial frequencies 𝐆𝑙𝑚 are given by 
the periods in the two dimensions, as defined by 𝐚1 and 𝐚2. Thus, the spatially vary-
ing nonlinear coefficient of this case is given by  
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 𝑑(𝑥,𝑦) = 𝑑33�𝐹𝑙𝑚 exp(𝑖𝐆𝑙𝑚 ∙ 𝐫)
𝑙,𝑚

 (3.27) 

The magnitude of the nonlinear coefficient is affected by the Fourier coeffi-
cients, as seen in Eq. (3.27). As a consequence, the modified nonlinear coefficient, 
and thus the conversion efficiency, depends on the geometry of the lattice (through the 
unit cell area), the motif (through the Fourier transform of the motif function) and the 
QPM orders 𝑙,𝑚. 

As with the 1D QPM lattice, the results of the periodic nonlinear coefficient 
can be included in the coupled wave equations by modifying the (vectorial) phase 
mismatch ∆𝐤 and the nonlinear coefficient 𝑑33 . It can be noted that the modified 
phase mismatch for 2D lattices is the same as that of 1D non-collinear interactions, 
Eq. (3.10), with the exception that also the RLVs can be (mutually) non-collinear. For 
interaction geometries with little variation in the transverse dimension, i.e. slightly 
non-collinear waves, the coupled wave equations derived in section 2.1 are sufficient 
to describe the parametric interaction.  

To demonstrate the modifications of the coupled wave equations needed for 
2D QPM, the modified version of the first of the coupled wave equations (2.20) is 
given below, as an example. 

 
𝑑𝐴1
𝑑𝑥

= 𝑖
𝑖1
𝑛1𝑛

𝐴2𝐴3𝑑33 � 𝐹𝑙𝑚 exp(−𝑖[∆𝐤 − 𝐆𝑙𝑚] ∙ 𝐫)
∞

𝑙=−∞

. (3.28) 

By the same argument as with the 1D lattice (cf. section 3.1.1), only the terms 
for which ∆𝐤 − 𝐆𝑙′𝑚′ ≅ 0 will dominate over the remaining, fast oscillating terms of 
the sum. The modifications to Eqs. (2.20) then result in the phase mismatch being 
replaced by 

 ∆𝐤 → ∆𝐤 = 𝐤1 − 𝐤2 − 𝐤3 − 𝐆𝑙′𝑚′  (3.29) 

and the nonlinear coefficient 𝑑33 by a scalar 𝑑  

 𝑑33 → 𝑑 = 𝑑33𝐹𝑙′𝑚′ . (3.30) 

In discussions of 2D QPM a RLV is spoken of in general terms, the index of 
the RLV is dropped and the RLV is denoted 𝐆. However, when referring to the two 
base RLVs of a 2D QPM lattices the notation 𝐆1 ≡ 𝐆10 and 𝐆2 ≡ 𝐆01is used. 

In conclusion, the ability of a lattice to sustain parametric interactions is cru-
cially dependent on its RLVs (and thus on the lattice geometry and period), since their 
orientation and magnitude govern which interactions and which frequencies that are 
phase matched, by influencing ∆𝐤 (cf. Eq. (3.29)). Using low-order RLVs (𝑙 and 𝑚 
small) increases conversion efficiencies, as seen from Eq. (3.26), Eq. (3.19) and e.g. 
Eq. (3.22). The motif of the lattice also affects the conversion efficiency, through the 
Fourier coefficients, as seen from Eq. (3.30) and Eq. (3.26). 

To end this section, the example of hexagonal lattice geometry will be high-
lighted.  
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A microscope photograph of a hexagonal lattice and an illustration of its recip-
rocal lattice are shown in Fig. 3.3. The lattice geometry is defined by the following 
base vectors (in real space), whose periods in the two dimensions are chosen to be 
equal, Λ. 

 
𝐚1 = Λ�

1
2

,
√3
2
� 

𝐚2 = Λ�
1
2

,−
√3
2
� 

(3.31) 

The unit cell area thus becomes 𝐴𝑈𝐶 = √3Λ2 2⁄ . For the reciprocal lattice the 
base RLVs for the hexagonal geometry are  

 
𝐛1 =

4𝜋
Λ√3

�
√3
2

,
1
2
� 

𝐛2 =
4𝜋
Λ√3

�
√3
2

,−
1
2
� . 

(3.32) 

 
Fig. 3.3 a) A detail of a hexagonal QPM lattices of period Λ = 22.8 μm, fab-
ricated in 0.5 mm thick MgSLT crystals, as revealed by a light etch in hydroflu-
oric acid. b) Reciprocal hexagonal lattice with the two base RLVs, situated sym-
metrically at an angle of 30° to the 𝑥 axis.  

A circular motif gives the following Fourier coefficients for the hexagonal lat-
tice [64]. As above, the parameters 𝑙 and 𝑚 determine the QPM orders. 

 𝐹𝑙𝑚 =
2𝑅

Λ√𝑙2 + 𝑚2 + 𝑙𝑚
𝐽1 �

4𝜋𝑅
Λ√3

�𝑙2 + 𝑚2 + 𝑙𝑚�  (3.33) 

Choosing 𝑅 Λ⁄ = 1 4⁄ , which would correspond to a 50% duty cycle in a 1D 
lattice, the Fourier coefficient of a (0,1) order interaction becomes 𝐹01 = 0.29. This 
gives a modified nonlinear coefficient of 0.29𝑑33, which can be compared with the 
modified nonlinear coefficient for a first order interaction in a 50% duty cycle 1D 
lattice, 2𝜋𝑑33 = 0.64𝑑33. Comparing with a 1D lattice QPM, this corresponds to an 
approximate reduction of the gain in 2D QPM lattices by a factor of 𝑑2𝐷2 𝑑1𝐷2⁄ =
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(0.29𝑑33)2 (0.64𝑑33)2⁄ ≈ 0.2 (cf. Eqs. (2.27) and (2.28)). Despite this, conversion 
efficiencies of 60% have been demonstrated experimentally in 2D QPM lattices [23]. 

Analytical expressions of other lattice geometries and motifs, and comparisons 
thereof, can be found in Ref. [66].  

3.2.2 Ewald sphere construction  

To take into account the multitude of RLVs of a 2D QPM lattice when determining 
the QPM period Λ, required to phase match a particular parametric interaction, Berger 
suggested to use a nonlinear version of a method already developed for crystallog-
raphy, Ewald construction [22]. 

To explain the method an example of SFG is considered, where two waves 
(labelled p and i) generate SF waves, phase matched by a hexagonal 2D QPM lattice 
is illustrated in Fig. 3.4. In the figure ki, kp, and kSF designate the wave vectors of the 
waves involved in the SFG. The method is based on a QPM vector diagram, i.e. ener-
gy conservation (e.g. Eq. (3.11)) and momentum conservation (e.g. Eq. (3.12)) pic-
tured in the reciprocal space. However, instead of using a single RLV, a grid repre-
senting the reciprocal lattice of Eq. (3.19) is employed. The grid is spanned by the 
base RLVs, 𝐆1 = 1𝒃1 + 0𝒃2 and 𝐆2 = 0𝒃1 + 1𝒃2, and thus represents all RLVs. The 
frequencies and propagation angles of the initial waves, p and i, are selected, which 
fixes the lengths and angles of their wave vectors. Energy conservation fixes the 
length of the SF wave vector, but its angle is unknown. The length of the SF wave 
vector then describes a circle, the Ewald sphere, and wherever it intersects any point 
of the RLV grid phase matching, i.e. momentum conservation, is achieved. Each in-
tersection defines the output angle of a SF wave, i.e. a possible SFG resonance. 

 
Fig. 3.4 Example of Ewald sphere construction, in a QPM vector diagram, to 
find phase matching for SFG, driven by the initial waves labelled p and i, in a 2D 
QPM lattice. 𝐆1 and 𝐆2 are the base RLVs spanning the grid representing the 
QPM lattice and ki, kp, and kSF are the wave vectors of the waves involved in the 
SFG. 

It is interesting to note that, for certain wavelengths and angles of the initial 
waves, several points of the grid can be located simultaneously on the Ewald sphere. 
In such a case of multiple resonances, several SF waves can be generated simultane-

kp
ki

G2

G1

|kSF|
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ously in different directions in the plane. This degree of freedom of 2D NPCs is a 
very promising attribute, due to the phase relations it can bestow upon the multiple 
generated waves. It is also important to point out that this is a general result; the sim-
ultaneous generation of multiple waves is possible for any type of parametric fre-
quency conversion process, not only SFG. 

3.3 QPM lattice fabrication 

As mentioned earlier, e.g. in section 3.1, QPM can be achieved by alternating the ori-
entation of the nonlinear material, and thus the sign of the second order susceptibility 
χ(2) (cf. Eq. (2.3)), every coherence length. This can be achieved using electric-field 
periodic poling [8, 57], and all QPM devices used in experiments described in this 
thesis were fabricated with this method. The method is applicable to ferroelectric 
crystals, such as KTP, LiNbO3 and LiTaO3. A partial volume of such a crystal, where 
the spontaneous polarisation is uniform is called a (ferroelectric) domain. The method 
is based on the fact that for ferroelectric crystals the spontaneous polarisation can be 
reversed locally by applying a local external electric field. A brief account of the 
method is given here. 

An insulating photoresist layer is spin-coated onto a single-domain ferroelec-
tric crystal. The photoresist is exposed by UV light through a photolithographic mask 
with a periodic pattern to match the coherence length of the intended parametric inter-
action (cf. sections 3.1.2 and 3.2.2). The exposed photoresist is removed and a layer 
of metal is evaporated onto the crystal, thus creating periodic contacts to the crystal 
surface where the photoresist was exposed. A high-voltage external electric field is 
applied, between the periodic electrodes and a uniform electrode on the crystal back-
side, in the form of millisecond long pulses. If the field is stronger than the coercive 
field EC of the ferroelectric crystal, the crystal’s spontaneous polarisation is reversed. 
In LiTaO3 this corresponds to rotating the crystal structure by 180 degrees around the 
𝑥 axis. Since the crystal orientation is defined by the crystal structure, the second or-
der susceptibility also changes sign. The effect is referred to as domain inversion and 
the ferroelectric domain is said to be switched or inverted. 

The domain inversion starts beneath the (edges of the) periodic electrodes and 
continues through the crystal (along the direction of the applied field, 𝑧) but it also 
extends towards the sides. As a result, the reversed volume grows in depth and lateral-
ly for the duration of the application of the external field. The duration is chosen so 
that the pattern of the periodic electrodes is reproduced throughout the crystal with the 
desired duty cycle. 

The growth speeds in different directions is not necessarily equal. Commonly, 
a larger growth speed in depth (along 𝑧) than laterally (along 𝑥 or 𝑦) permits the high 
aspect ratios demonstrated for periodic poling [67, 68]. Differences in growth speeds 
along different directions in the 𝑥-𝑦 plane, i.e. lateral broadening of the volumes of 
reversed susceptibility, can also occur. These differences depend on the symmetries of 
the crystal structure, in other words on which nonlinear material that is being poled 
[69]. 
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3.4 MgO-doped stoichiometric lithium tantalate 

The quadratic nonlinear crystal used in the studies of parametric interactions that are 
presented in this thesis is 1 mol% magnesium-doped near-stoichiometric LiTaO3 
(MgSLT). 

LiTaO3 is a member of the crystal family of LiNbO3, with the same perovskite 
crystal structure, and thus the two isomorphs have many similar qualities. The stand-
ard forms of these two crystals are congruent LiNbO3 (CLN) and congruent LiTaO3 
(CLT). 

The coercive fields for CLN and CLT are high, EC ~ 20 kV/mm, requiring 
high voltages to periodically pole thick samples and thus hindering the realisation of 
large aperture crystals. The congruent crystals also suffer from optical damage at 
shorter (visible) wavelengths, which is of even more concern for optical applications. 
The optical damage is mostly due to photorefractive sensitivity that gives rise to a 
wavefront distortion of a laser beam propagating through the material [70] and to 
green-induced infrared absorption (GRIIRA) [71]. 

New crystal growth techniques have been developed to produce LiNbO3 and 
LiTaO3 crystals of modified compositions (nearly stoichiometric and MgO-doped), in 
order to overcome the limitations for optical applications associated with the relative-
ly low optical damage thresholds and also the elevated poling fields of CLN and CLT. 
In particular, MgSLT has displayed an extraordinary resistance to photorefractive 
damage and GRIIRA [20]. There are also indications that MgSLT possesses a relative-
ly high damage threshold to blue-induced infrared absorption (BLIIRA) [72], even 
though further modification to the composition might be required. 

With the demonstrations of good power-handling capabilities even for room-
temperature operation, made possible by its reduced photorefraction and high thermal 
conductivity [73], and high second order nonlinearity MgSLT is a most promising 
crystal for frequency conversion. The low coercive field of MgSLT, which is some-
what below that of KTP and one order of magnitude lower than that of LiNbO3, also 
permits up-scaling of device apertures to millimetre sizes [74]. Still, this may require 
the growth process to mature further, to minimise compositional inhomogeneities that 
could disturb the periodic poling process. 

An important material parameter governing the conversion efficiency of sec-
ond order parametric interactions is the magnitude of the susceptibility. For QPM in 
periodically poled crystals it is the 𝑑33 nonlinear coefficient which is of particular 
interest, as seen e.g. in Eq. (2.28), since it has the largest magnitude of all the compo-
nents of the second order susceptibility. There are slight discrepancies among the val-
ues of 𝑑 coefficients reported in literature, because the obtained values depend also on 
the experimental conditions of the measurement. However, in the same experimental 
investigation 𝑑33  was measured for CLT, CLN, MgO-doped CLN and KTP using 
SHG pumped at 1064 nm [75]. The obtained values were 13.8 pm/V, 25.2 pm/V, 
25.0 pm/V and 14.6 pm/V, respectively. The value of 𝑑33 in MgSLT has later been 
measured to be slightly higher, 16 pm/V for SHG at 1064 nm [76]. 

The heat handling capacities of MgSLT are very promising. It exhibits a ther-
mal conductivity which is almost two times that of LiNbO3, 8.8 W/m/K [73] versus 
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4.6 W/m/K [73, 77]. Also compared to KTP, 3 W/m/K [77], MgSLT possesses a high 
thermal conductivity. 

The transparency range is particularly interesting for QPM crystals, since the 
choice of points phase matching can be much more freely chosen than for birefringent 
phase matching. For near-stoichiometric LiTaO3 and MgO-doped CLT the range is 
0.27 – 5.5 μm [78, 79], extending further than LiNbO3 on the UV edge (0.3 – 5.5 μm) 
and further than KTP on both UV and IR edge (0.36 – 4.3 μm) [78]. 

Owing to the positive properties mentioned here, periodically poled MgSLT is 
the nonlinear medium that was chosen for the parametric interactions investigated in 
the frame of this thesis. The next chapter and chapter 5 present my work on the topic 
of parametric frequency conversion.  
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Chapter 4 

Broadband 
optical parametric generation  

Parametric interactions are highly suitable for optical frequency conversion applica-
tions that require high coherence of the generated light. In this chapter I discuss how 
parametric interactions can provide broad frequency bands available for downconver-
sion. Section 4.1 is devoted to explain my work demonstrating ultrabroad parametric 
gain bands in the near to mid-IR. The section illustrates the details of broadband opti-
cal parametric generation (OPG) in (1D) periodically poled MgSLT (PPMgSLT), 
based on degenerate downconversion close to the point of zero group velocity disper-
sion, as discussed in section 2.4.1. An account of the sum frequency generation (SFG) 
processes, which create dips in the OPG gain spectrum, is also given. Section 4.2 de-
scribes an experimental and numerical investigation (numerical work performed by 
Matteo Conforti) of these SFG processes and how they can be involved in quadratic 
cascading. It is examined how the cascading can revert the flow of energy, from the 
SF wavelengths, and instead create peaks in the OPG spectrum. A method, based on 
pump pulse preshaping, is devised to control the cascading and thus whether dips or 
peaks appear, resulting in a possibility to obtain smoother gain spectra. 

4.1 Broadband parametric downconversion 

Broadband parametric gain in the near to mid-IR spectral regions is of interest to a 
number of applications such as frequency comb generation, spectroscopy and ultra-
short optical pulse amplification. Gain bands that can accommodate femtosecond 
pulses have become a hot topic in recent years. Pulses of this duration are crucial for 
ultrafast spectroscopy such as femtochemistry [80] and in high harmonic generation 
(HHG), which produces pulses of attosecond duration. The latter is a field that is now 
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turning from merely attosecond pulse generation to attosecond spectroscopy [81]. To 
create the femtosecond pulses, which subsequently pump the HHG, by employing 
frequency bands in the near IR and at longer wavelengths appears to be favourable 
because the highest photon energy attainable in the HHG increases with the square of 
the femtosecond pump wavelength [82, 83]. Another field that can reap benefits from 
ultrashort pulse amplification is laser ablation, where the use of ultrashort pulses re-
duces damage to surrounding material and thus increases precision, compared to 
longer pulses [84, 85]. For ultrashort pulse amplification, parametric conversion pro-
cesses offer large gain bands, which can yield extremely short pulse durations [37], 
while reducing the amount of excess heat deposited in the conversion medium com-
pared to laser amplifier media [12, 37, 86]. Access to broadband downconversion 
regimes is also interesting for frequency comb generation and permits conversion to 
peripheral wavelength regimes through e.g. difference frequency generation (DFG) 
[17]. 

A first possible method to achieve broadband generation in the near to mid-IR 
spectral regions is to employ a broadband laser [87, 88]. Co2+- and Cr2+-doped gain 
media offer efficient alternatives where pulses of only several optical cycles can be 
directly obtained from the laser resonator. However, the maximum gain bandwidth is 
limited to approximately 1 μm, and is situated between 1.6 and 3.5 μm (depending on 
dopant species and host material) thus corresponding to approximately 80 THz. 

A second method, with which extremely broad bands have been demonstrated, 
is supercontinuum generation based on a mix of χ(3) (cubic) parametric interactions 
such as cascaded stimulated Raman scattering and self-phase modulation, often per-
formed in fibre geometries [89]. Nevertheless, the method offers limited control over 
the spectral coherence. 

In contrast, parametric frequency downconversion in quadratic nonlinear ma-
terials provides a high-coherence approach, suitable for the generation and amplifica-
tion of extremely broad bandwidths of intense radiation. The reduced thermal load of 
parametric processes is also an advantage for upscaling to higher powers.  

By employing non-collinear conversion geometries to realise group-velocity 
matching (GVM) for the signal and idler pulses, as discussed in section 2.4.1, ex-
tremely broad bands have been generated. The broadest bands in the visible and near 
IR spectral regions, 187 THz 10-dB bandwidth centred at 990 nm and 180 THz at 650 
nm, were achieved in β-BaB2O4 (BBO) [36, 90]. However, since the method used in 
experiments employing BBO is based on non-collinear geometry to achieve GVM, it 
suffers limitations due to transverse walkoff, as described in the first part of section 
2.4.1. 

To access ultrabroad gain bands in the near IR to mid-IR one can instead ex-
ploit the point of zero GVD of the nonlinear material in a collinear conversion geome-
try to minimise the signal and idler GVDs and increase the bandwidth further, as dis-
cussed in section 2.4.1. The dispersion of BBO is such that it cannot offer as broad 
phase matching in the near IR to mid-IR regime as in the visible to near IR regions 
[37] and, in addition, BBO starts to absorb beyond 2.5 μm [39]. In a QPM material, 
one can also reap the benefit of exploiting the largest component of the susceptibility 
tensor.  
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The first demonstration of broadband downconversion close to the point of ze-
ro GVD in a QPM medium was achieved with orientation-patterned GaAs 
(OP-GaAs), which displayed a 20 dB OPG bandwidth of 39 THz around 6.6 μm when 
pumped with 3.1 – 3.3 μm [40]. Periodically poled KTiOPO4 (KTP), LiNbO3 and 
LiTaO3 can offer alternative QPM solutions, enabling operation with pump wave-
lengths instead in the near infrared. 10 dB bandwidths of ~150 THz centred at 2.3 μm 
and ~100 THz at 2.0 μm have been demonstrated for OPG in periodically poled KTP 
(PPKTP) and periodically poled LiNbO3 (PPLN), pumped at 830 and 930 nm, respec-
tively [41, 43]. Nevertheless, the KTP conversion bandwidths are limited to around 
3.5 μm on the long-wavelength side, due to the absorption edge of the material. Such 
a limitation does not apply to LiNbO3 and LiTaO3 substrates, given their broader 
transparency range, see section 3.4. On the other hand, these crystals can suffer from 
effects such as photorefraction and green-induced infrared absorption (GRIIRA) [71], 
which can compromise their performance at the high powers that are often desired in 
e.g. ultrashort pulse amplification. 

4.1.1 Experimental study of broadband OPG in PPMgSLT 

As discussed in section 3.4, MgO-doped near-stoichiometric LiTaO3 has displayed 
strong resistance against photorefractive effects, GRIIRA and blue-induced infrared 
absorption (BLIIRA) [20, 72]. This, the material’s heat-handling capacities [73] and 
the possibility for aperture scaling [74] make the material particularly promising for 
high power applications. Also, using the collinear method of broadband phase match-
ing in vicinity of the point of zero GVD, the dispersion of MgSLT grants large band-
widths. A numerical comparison of nonlinear materials capable of collinear group 
velocity matching in downconversion to the vicinity of the point of zero GVD is 
found in Ref. [32]. In particular, when pumping downconversion processes in MgSLT 
in the wavelengths of Ti:sapphire sources, degenerate downconversion brings the 
working point close to the point of zero GVD, estimated to lie at λs,i ~ 1820 nm using 
Sellmeier equations of Ref. [21]. Ti:sapphire systems are also suitable as pump 
sources for the investigation owing to their broad wavelength tunability range, permit-
ting a systematic mapping of the pump wavelength dependence, and their possibility 
to provide high peak intensity pulses. 

The samples used in the experiments were in-house periodically poled (the 
poling was performed by Katia Gallo), starting from commercially available 0.5 mm 
thick 𝑧-cut crystals of MgSLT. Three 1-cm-long QPM lattice periods, Λ = 25, 26 and 
27 μm, were implemented in order to systematically investigate the spectral location 
of the broadest OPG bands. The three different QPM structures were created side-by-
side in each crystal sample, as 2 mm wide strips, to be able to investigate all the dif-
ferent periods in the very same crystal sample. The OPG process was pumped by an 
amplified tunable picosecond Ti:sapphire system, fixed at 1 kHz repetition rate. The 
pulse duration was adjustable by varying the group delay introduced in the compres-
sor of the Ti:sapphire amplifier. As a result the pump pulse duration could be altered 
in the range of 1 – 70 ps. The pump wave was polarised along the 𝑧  axis of the 
MgSLT crystal, ensured by the pump intensity attenuation system consisting of a half 
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wave plate and a polarising beam splitter cube. Using pump wavelengths from 820 to 
900 nm the full spectral response of the three lattice structures was mapped. The opti-
cal output was focused into a fibre-coupled optical spectrum analyser (OSA, Ando 
AQ6315A), which was sensitive up to 1750 nm, to record the OPG signal contents. 
Owing to the fibre-coupling the OSA was the most flexible and thus most frequently 
used detector for spectra, though to extend the characterisation to the full OPG re-
sponse, up to the mid-IR wavelengths, a second detector arm was set up. In this, a 
free-space coupled scanning Horiba Jobin Yvon (iHR550) monochromator equipped 
with a PbSe detector head which, used with a lock-in amplifier, was sensitive up to 
4.8 μm. The collinear experimental configuration is shown in Fig. 4.1.  

 
Fig. 4.1 Sketch of the setup used for the OPG experiments. The OPG pump 
was a Ti:sapphire amplified laser system delivering Gaussian μJ-pulses, with du-
rations adjustable in the picosecond regime at 1 kHz. The input beam was loose-
ly focused by a 300 mm lens into the PPMgSLT crystal, heated to 80°C. The 
OPG output was fibre-coupled to an optical spectrum analyser. Spectral meas-
urements extending beyond 1.75 μm were performed with a free-space coupled 
spectrometer based on a Horiba Jobin Yvon (iHR550) scanning monochromator. 

Out of the three lattice structures, investigated for the pump wavelengths stat-
ed above, the broadest generated OPG spectra were achieved using the 25 and the 
26 μm lattice periods. The broadest spectrum measured 185 THz at 10 dB bandwidth, 
reaching from 1130 to 3730 nm, thus spanning more than one optical octave. The full 
spectral mapping of the OPG signal output, using the OSA, of 25 and 26 μm periods 
is presented in Fig. 4.2. In order make comparable measurements at the different 
pump wavelengths, the spectra were recorded with a pump intensity of 1.6 times the 
OPG threshold. The threshold was defined as the pump intensity for which the para-
metric generation could be observed on an IR detection card (Thorlabs VRC2, sensi-
tivity range: 800 – 1700 nm), corresponding to around ~0.5 μJ per generated pulse. 
This corresponded to pump peak intensities in the interval of 6 – 18 GW/cm2, depend-
ing on the pump wavelength. For the mapping of the OPG signal response across the 
full wavelength span of the pump, i.e. the data of Fig. 4.2, the pump pulses duration 
was kept constant at 1.5 ps and the beam radius at 230 μm (1/e2). 

A resolution for the mapping the pump spectral range of 5 nm was chosen, 
since a higher resolution would not bring much additional information on the wherea-
bouts of the working point giving the broadest bands, due to the slowly varying dis-
persion in the proximity of the zero-GVD point. Indeed, the broadest bands for each 
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QPM period could not be determined with a lower uncertainty than 5 - 10 nm in the 
pump wavelength. The broadest bands are generated at pump wavelengths shorter 
than the predicted pump wavelength for zero-GVD in MgSLT (λp = 910 nm, using 
Sellmeier equations of Ref. [21]). The experimental shift towards shorter wavelengths 
is consistent with similar observations in other materials [41]. Furthermore, one also 
notes that the Sellmeier equations predict phase matching at slightly shorter pump 
wavelengths than recorded experimentally. This is plausibly due to the predictions 
being more sensitive to errors in the Sellmeier equations when the GVD is close to 
zero. 

 
Fig. 4.2 Broadband optical parametric generation in 1D PPMgSLT pumped in 
the Ti:sapphire wavelength range (horizontal scale) using QPM of lattice periods 
a) 25 μm and b) 26 μm. The pump peak intensities were kept at 1.6 times above 
the OPG threshold (defined in the text), corresponding to an interval of 
6 - 18 GW/cm2. At the output of the crystal, the pump was attenuated by a di-
chroic mirror, but can still be distinguished as an oblique red line in the lower 
parts of the plots. The OPG signal wavelengths, recorded with an optical spec-
trum analyser, are denoted vertically, a logarithmic colour scale indicating the 
recorded intensities. Each OPG signal recording is normalised to the pump peak 
power. The dashed white curves are predictions for perfect phase matching, cal-
culated using Ref. [21]. 

The full OPG band at the point of broadest phase matching for Λ = 25 μm, 
recorded with the scanning monochromator and its PbSe detector, is displayed in Fig. 
4.3. A higher pump peak intensity (90 GW/cm2) was chosen to ensure that the entire 
OPG band, i.e. all signal and idler wavelengths, could be detected with minimal back-
ground noise. The pump beam was also focused more tightly, to 100 μm radius. The 
other experimental parameters that were altered, as compared to the OPG signal map-
ping, are stated in the caption of Fig. 4.3. The recorded OPG intensities (blue solid 
curve) have been corrected for absorption in the optical elements between the 
PPMgSLT crystal and the detector, before being plotted. 
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Fig. 4.3 OPG signal spectrum from 1D PPMgSLT, generated with 25 μm pe-
riod using a pump wave of 860 nm, 90 GW/cm2 peak intensity and 2.7 ps pulse 
duration focused to 100 μm beam radius. The dashed red curve represents a pre-
diction of the idler intensities, calculated from the detected signal intensities us-
ing the Manley-Rowe relations, Eq. (2.22). 

Fig. 4.3 also includes a prediction of the idler spectrum (red dashed curve), 
calculated from the signal intensities (λs < 2λp) by using the Manley-Rowe relations, 
Eq. (2.22). It is seen that the recorded OPG idler intensities deviate from this Manley-
Rowe prediction. As a result of continued investigations of the broadband OPG in 
PPMgSLT, it is concluded that the bulges at 2.4 μm and 2.8 μm were measurement 
artifacts, not related to vibrational resonances as originally thought. The bulge at 
2.4 μm was the second order (of the diffraction from the grating in the monochroma-
tor) of the signal peak at 1.2 μm. The bulge at 2.8 μm was associated with the second 
diffraction order of the small shoulder on the shorter wavelength side of the dip at 
1.5 μm. (The dip is marked in Fig. 4.3 and discussed in detail below, its position in 
the OPG spectrum referred to as λ2* = 1.5 μm.) The second diffraction order of this 
shoulder was amplified by the corrections that compensate for absorption of infrared 
wavelengths in the optical elements, thus creating the bulge at 2.8 μm. 

The discrepancy, between the recorded idler intensities (blue solid curve) and 
the Manley-Rowe prediction (red dashed curve), at the long wavelength edge of the 
OPG gain band was due to the responsivity of the PbSe detector falling significantly 
already at 1150 nm. Comparing with an OSA measurement (recorded with an InGaAs 
detector) at the same pump wavelength, displayed in Fig. 4.4, the shorter wavelength 
edge of the OPG spectrum extended to 1130 nm. In the Manley-Rowe prediction an 
edge at 1150 nm translates into a decrease in predicted intensities at 3.4 μm, seen in 
Fig. 4.3. The true decrease of the predictions, i.e. based on the edge of 1130 nm of the 
more accurate OSA measurements, should occur first at 3.6 μm, which correlates bet-
ter with the recorded intensities in Fig. 4.3. Accordingly, the broad and low bulge at 
3.6 μm in Fig. 4.3, initially speculated to be the overtone of a vibrational resonance 
(cf. article I), is in fact part of the OPG. The spectral extent of the OPG is thus well 
described by the spectral extent of the recorded intensities. Accordingly, the correct 
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bandwidth at 10 dB is 185 THz, i.e. more than octave-spanning and the broadest band 
achieved so far in collinear parametric downconversion. 

 
Fig. 4.4 OPG signals from 1D PPMgSLT, generated with 25 μm period using 
a pump at 860 nm, 6 GW/cm2 peak intensity and 1.5 ps pulse duration focused to 
230 μm beam radius. This spectrum corresponds to a vertical slice at 860 nm 
pump wavelength of the data in Fig. 4.2a.  

Given the octave-spanning band, the likelihood of the QPM lattice supporting 
a higher order QPM resonance, that phase matches a wavelength within the band for 
parasitic upconversion, is quite high. Indeed, in the spectra reported for broadband 
OPG in PPKTP and PPLN higher QPM order SFG processes, between pump and 
OPG wavelengths, carve significant dips in the frequency spectra [41, 43]. Also in the 
case of broadband OPG in PPMgSLT presesnted here, the impact of higher order 
QPM SFG processes is apparent e.g. in Fig. 4.3. 

The SFG occurs in cascade to the OPG. The OPG pump wave and a sig-
nal/idler wave at a particular wavelength λs,i generate light at the SF wavelength 
𝜆𝑆𝑆 = 𝜆𝑠,𝑖𝜆𝑝 �𝜆𝑠,𝑖 + 𝜆𝑝�⁄ . The effect on the OPG spectrum is a dip at λs,i. Additional-
ly, a dip also appears at the OPG conjugate wavelength 𝜆(𝑠,𝑖)∗ = 𝜆𝑠,𝑖𝜆𝑝 �𝜆𝑠,𝑖 − 𝜆𝑝�⁄ , 
due to a reduced seeding of the OPG at the SFG resonance λs,i. 

Specifically, in the PPMgSLT experiments, there were two SFG processes tak-
ing place subsequent to the OPG, marked by arrows in Fig. 4.3. The pump wave and a 
signal wave at λ1 = 1.4 μm generated SF light at 533 nm through 3rd order QPM, 
while the pump wave and an idler wave at λ2 = 2.0 μm generated SF light at 598 nm 
through 2nd order QPM. The latter SFG resonance can be seen in the OPG spectrum 
as a dip at the OPG conjugate λ2* = 1.5 μm. 

Included in the work presented in this thesis is also a study of the SFG features 
that arise in broadband OPG. The second part of this chapter is devoted to explaining 
the findings of this study. It is demonstrated that through the pump pulse duration one 
can control quadratic cascading effects of the SFG. Given that the broadband 
downconversion spectra are likely to be disturbed by one or several SFG processes, as 
seen above, it is desirable to reduce their impact. In the conclusion of the study pre-
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sented in the next section, a method to minimise the impact of the SFG processes and 
bring upconverted light, from the SF wavelengths, back to the broadband OPG spec-
trum is suggested. To appreciate the study, however, one first needs to review some 
basic principles of quadratic cascading in the pulsed regime. 

4.2 Quadratic cascading in the pulsed regime 

In the pulsed regime quadratic cascading can be initiated in spite of the chosen work-
ing point being situated at perfect phase matching, i.e. ∆𝑘 = 0. This can be explained 
by the fact that the optical pulses driving the parametric conversion process have non-
zero spectral bandwidth ∆𝑖 (quasi-monochromatic approximation), given their finite 
pulse duration. In other words, even though the carrier frequency 𝑖0 is situated at 
perfect phase matching, the bandwidth of the pulse may extend outside of the ac-
ceptance bandwidth of the phase matched working point. The case is exemplified by 
the dashed vertical line of Fig. 4.5a, where the green curve describes the acceptance 
bandwidth for the second harmonic generation (SHG) process calculated with Eq. 
(2.24). It is then possible for χ(2) cascading to be initiated owing to the frequencies at 
the edges of the pulse bandwidth, since they experience a non-zero phase mismatch, 
∆𝑘 ≠ 0, cf. section 2.5. 

 
Fig. 4.5 a) Tuning curve of SHG: Normalised SH intensity as function of fre-
quency deviation, calculated with Eq. (2.24). An example deviation of ∆ω 2⁄  is 
marked, corresponding to the extreme frequency of a bandwidth of ∆ω . b) 
Sketch of the temporal walkoff between the initial pulses (pump at λp and signal 
at λs) and the SF pulse at λSF. Local depletion of the signal pulse is marked. The 
vertical dimension represents a normalised intensity scale. 

To account for the bandwidth of the pulse the phase mismatch ∆𝑘 is expanded 
in a Taylor series around the working point (in a similar manner to approach taken for 
broadband OPG in section 2.4). In a (non-degenerate) three-wave mixing process the 
bandwidths of both initial waves must be taken into account, i.e. the phase mismatch 
must be expanded with respect to the frequencies of both the waves. Taking the ex-
ample of the signal-and-pump driven SFG following broadband OPG in PPMgSLT, 
discussed in section 4.1.1, the phase mismatch must be expanded with respect to the 
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pump frequency 𝑖𝑝 and the signal frequency 𝑖𝑠. By letting the pump frequency vary 
and keeping the signal frequency fixed the following dependence is obtained. 

 ∆𝑘�𝑖0,𝑝 + ∆𝑖𝑝� = 𝑘𝑆𝑆 − 𝑘𝑝 − 𝑘𝑠 + �
∂𝑘𝑆𝑆
∂𝑖𝑆𝑆

−
∂𝑘𝑝
∂𝑖𝑝

�∆𝑖𝑝 + 𝑂�∆𝑖𝑝�
2 (4.1) 

Analogously, the signal frequency is varied keeping the pump frequency fixed, 
giving: 

 ∆𝑘�𝑖0,𝑠 + ∆𝑖𝑠� = 𝑘𝑆𝑆 − 𝑘𝑝 − 𝑘𝑠 + �
∂𝑘𝑆𝑆
∂𝑖𝑆𝑆

−
∂𝑘𝑠
∂𝑖𝑠

� ∆𝑖𝑠 + 𝑂(∆𝑖𝑠)2 (4.2) 

The second order terms are neglected, since they become important only once 
the sum of the first order terms approach zero or if the bandwidth of the pulses are 
very large (which can be the case for e.g. femtosecond pulses, but not for the OPG 
experiments described here). Assuming that the working point, around which the ex-
pansion is made, is phase matched the zeroth order terms cancel. The derivatives in 
the first order terms can be expressed using the group velocities, 𝑣𝑔 = ∂𝑖 ∂𝑘⁄ , of the 
SF, pump and signal waves, giving  

 ∆𝑘�𝑖0,𝑝 + ∆𝑖𝑝� = �
1

𝑣𝑔𝑆𝑆
−

1
𝑣𝑔𝑝

�∆𝑖𝑝 + 𝑂�∆𝑖𝑝�
2 (4.3) 

for the pump frequency expansion and  

 ∆𝑘�𝑖0,𝑠 + ∆𝑖𝑠� = �
1

𝑣𝑔𝑆𝑆
−

1
𝑣𝑔𝑠

� ∆𝑖𝑠 + 𝑂(∆𝑖𝑠)2 (4.4) 

for the signal frequency expansion. 
It is seen that if ∆𝑖𝑝 ≠ 0 or ∆𝑖𝑠 ≠ 0, which is the case for pulsed inputs, the 

effective phase mismatch can still be non-zero, provided that there is a group velocity 
mismatch between the SF and the pump or signal waves. If the group velocity mis-
match of any of the waves is sufficiently large to extend beyond the acceptance 
bandwidth, there will be a part of the incident intensity that will drive a non-phase 
matched conversion. If the conversion is sustained long enough (cf. section 2.5), this 
will incur quadratic cascading. 

The characteristics of quadratic cascading in the pulsed regime can also be 
viewed from a temporal domain perspective. As pointed out in section 2.5, in order 
for quadratic cascading at perfect phase matching, ∆𝑘 = 0, to start there must be an 
imbalance in intensity (or more precisely in photon fluxes) among the two initial 
waves. However, it is sufficient for the imbalance to arise locally as is explained be-
low. 

In the signal-and-pump driven SFG process taken as example, there is group 
velocity mismatch between the three pulses involved, the signal pulse propagating 
with the highest velocity and the SF pulse at the lowest. If the pulses propagate long 
enough in the nonlinear material the spatial overlap will be significantly reduced and 
locally the signal pulse will be depleted, as indicated in Fig. 4.5b by the vertical 
dashed black line. Locally, the situation is qualitatively similar to the point of the plot 
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in Fig. 2.9a where the dashed red curve reaches zero intensity. As explained in section 
2.5, the only wave experiencing a non-zero driving term at this point is the wave 
which was just depleted. It is thus regenerated but with a phase shift of π radians 
compared to the light that had just been exhausted. The phase shift of π causes a 
change of direction of the energy flow, i.e. a part of the SF wave starts to be 
downconverted back to the two initial waves, thus completing a quadratic cascading 
up- and downconversion cycle. 

As was seen in section 2.5, altering the initial intensities of the signal and 
pump waves can control whether quadratic cascading occurs. However, in practice the 
initial intensities are difficult to adjust, since the SFG is a cascaded process and the 
intensities of the signal and pump waves are directly dependent on the preceding OPG 
process. The cascading can also be initiated, as explained above, by changing the 
group velocities of the involved waves or the length of the nonlinear material to con-
trol whether the conversion process is sustained long enough for the pulses to walk 
off and loose spatial overlap. These parameters, though, are often fixed in an experi-
ment. A more flexible approach to control the cascading would instead be through the 
pulse durations. If the involved pulses have a long duration the spatial overlap is 
maintained despite the group velocity mismatch, but if the pulses are short the spatial 
overlap is lost and χ(2) cascading is initiated. This was investigated, both experimen-
tally and numerically, by altering the pump pulse duration and studying the optical 
response of the broadband OPG and cascaded SFG processes, as described in the con-
tinuation of this section. 

The “intuitive” models in both the frequency and the temporal domains, dis-
cussed above, only give a qualitative understanding of which interaction parameters 
that can trigger cascading. For a full description of cascading in the pulsed regime the 
situation becomes much more complicated and a numerical approach is needed, e.g. 
by solving the equations for the explicit local evolution of the amplitudes and the 
phases of the involved waves [91].  

4.2.1 Experimental demonstration of temporally-initiated 
quadratic cascading 

Returning to the experimental case of the two SFG processes, driven by the pump 
wave and by the aforementioned (cf. section 4.1.1) signal (λ1 = 1.4 μm) and idler 
(λ2 = 2.0 μm) waves in the OPG broadband spectrum. The measurements performed 
in the condition of e.g. Fig. 4.3 are in the regime where energy is upconverted from 
the OPG wavelengths, hence the dips. The intention of the study of the SFG process-
es, which is explained in this section, was to investigate the control of quadratic cas-
cading through the pump pulse duration. The study was carried out by recording the 
full OPG spectrum for a range of pump pulse durations, while keeping the pump peak 
intensity constant in order to avoid any variation due to peak intensity changes of the 
pump (and signal) waves. Typical results, illustrating the conclusion of the study, are 
presented in Fig. 4.6. Besides my work, the investigations on SFG cascading subse-
quent to broadband OPG in PPMgSLT involved numerical simulations performed by 
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Matteo Conforti (Univ. of Brescia), used in a comparison/interpretation of the exper-
imental findings. . 

Fig. 4.6 shows the broadband OPG in PPMgSLT generated with moderate 
pump peak intensities, 6 GW/cm2, 100 μm pump beam radius, at two different pump 
pulse durations. The other experimental conditions were as described in Fig. 4.1. The 
red curve in Fig. 4.6 is the OPG spectrum generated with 6.1 ps pump. The SFG reso-
nance driven by the pump wave and the idler wave at λ2 = 2.0 μm, marked in the fig-
ure as λ2, is seen clearly as a dip in the recorded spectrum. It is accompanied by a dip 
at the signal wavelength λ2* = 1.5 μm, marked in the figure as λ2*, which is the OPG 
conjugate of the 2.0 μm idler wavelength (𝜆2∗ = 𝜆2𝜆𝑝 �𝜆2 − 𝜆𝑝�⁄ ). The other SFG 
resonance is driven by the pump wave and the signal wave at λ1 = 1.4 μm, affecting 
the OPG gain at λ1and at its idler conjugate λ1* = 2.2 μm, both exhibiting  gain dips, 
marked λ1 and λ1*, respectively, in Fig. 4.6. 

 
Fig. 4.6 Near IR part of broadband OPG bands generated in 1-cm-long 1D 
PPMgSLT of 25 μm QPM period using a pump beam of 860 nm, 6 GW/cm2 
peak intensity, focused to 100 μm radius. Each point of the spectra is an average 
of 900 pulses. The pump pulse durations were 6.1 ps (red curve) and 1.7 ps 
(black curve). 

Pumping with significantly shorter pulses, 1.7 ps, (black curve in Fig. 4.6) 
changes completely the characteristics of the very same SFG resonances in the OPG 
spectrum. A gain enhancement now appears at the spectral locations of the SFG reso-
nances. This is the signature of a change in the direction of energy flow in a first cycle 
of quadratic cascading, i.e. the sum frequency (SF) wave is backconverted to the OPG 
band. In other words, the process is now carried out in a pump regime initiating quad-
ratic cascading. 

To explain how the  χ(2) cascading arises, the SFG resonance involving the 
idler wave at λ2 = 2.0 μm is chosen as example. The course of events is completely 
analogous for the SFG resonance involving the signal wave at λ1 = 1.4 μm. 

After the idler wave has been generated, the higher order phase matched con-
version to the SF wavelength commences and the SF intensity grows. The SFG cre-
ates dips in the gain spectrum, as seen in the red curve of Fig. 4.6. The combination of 
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the broadband OPG and cascaded SFG is schematically illustrated in Fig. 4.7a, the red 
arrow indicating the SFG. 

In a first approximation the triggering of SFG cascading can be explained by 
the temporal walkoff between the idler and the pump and SF pulses, as discussed in 
the previous section. If the pulses were allowed to continue propagating through the 
nonlinear material after the SF wave has been generated, the temporal walkoff of the 
idler pulse would cause it to speed ahead of the other two pulses. Eventually the idler 
pulse would lose spatial overlap so that at a local point in space only the SF and the 
pump waves would have non-zero intensities. The situation in sketched in Fig. 4.7b 
and the local point in space is marked by a vertical, dashed black line. As explained in 
the previous section, at this point in space a backconversion of energy from the SF to 
the OPG band and to the pump is initiated, constituting the first cycle of a quadratic 
cascading process, building a peak on top of the OPG spectrum. In Fig. 4.7a, the (cas-
cading) backconversion is indicated by the black arrow. 

 
Fig. 4.7 a) Illustration of the SFG cascading subsequent to broadband OPG. 
The red arrow signifies upconversion through SFG and the black arrow the 
backconversion of the SF wave to the OPG band, which constitutes the first cy-
cle of a quadratic cascading. b) Sketch of the temporal walkoff of the idler (or 
signal) pulse with respect to the SF and pump pulses. The vertical dimension 
represents a normalised intensity scale.  

The temporal walkoff becomes more pronounced when shortening the pulse 
durations, since the pulses then more rapidly lose their spatial overlap. As a result, the 
backconversion of the SF wave can be seen in the spectrum recorded with the shorter 
pulse duration (black curve in Fig. 4.6), but not with the longer pulse duration (red 
curve). The spectrum recorded with longer pulse duration instead exhibits the SFG 
dips generally encountered in similar experiments, since the pulses are too long to 
lose overlap over the propagation length of the crystal. 
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In other words, it is shown that the pump pulse duration can determine wheth-
er quadratic cascading is initiated for the SFG processes. It also becomes evident that 
an intermediate pump pulse duration could be found, for which the impact of the SFG 
resonances, peak or dips, in the broadband OPG spectrum could be minimised, though 
plausibly not removed completely. Nevertheless, the pump pulse duration would pre-
sent a flexible method to improve the flatness of the generated spectrum, which is 
important e.g. for applications where the QPM device is operated as an optical para-
metric amplifier (OPA). 

Although the qualitative explanation of the triggering of quadratic cascading 
through e.g. local loss of spatial overlap, which is given above, is helpful to gain a 
physical insight in the phenomena, the description is a simplification. Quadratic cas-
cading in the pulsed domain depends on an intricate combination of local amplitude 
variations (at each point in time throughout the propagation), group velocity mis-
match and phase relationships between the involved waves. Quantitative simulations 
of the evolution of the pulses are required to take all parameters into account. The 
following section describes the systematic numerical analysis that has been performed 
to model theoretically both the broadband OPG and subsequent SFG. 

4.2.2 Numerical simulations of OPG and cascading effects 

A collaboration with researchers at the University of Brescia (Matteo Conforti and 
Fabio Baronio) who had developed a unique model capable of dealing with ultra-
broadband OPG in χ(2)  media, was initiated. The following numerical simulations 
have been performed by Matteo Conforti. 

When simulating second order parametric interactions the usual approach 
(used in chapter 2) is to write the coupled wave equations for spectrally separated 
waves at the wavelengths which are involved in the interactions, as in Eqs. (2.20) [7]. 
However, this approximation applies only to quasi-monochromatic waves. In the case 
of ultra-broadband interactions, e.g. when the spectral bands merge and overlap, the 
method is not well-suited to predict the full behaviour of the involved waves. Conforti 
et al. approached the issue and demonstrated in 2010 that ultra-broadband second or-
der parametric interactions can be described by a single-wave envelope equation [92].  

In contrast to applying the slowly varying envelope approximation (SVEA), 
care is taken when deriving the nonlinear propagation equation for the electric field, 
not to impose any requirement on the bandwidth of the pulses. This is handled both in 
the approximations applied to the nonlinear wave equation, explained further in Ref. 
[93], and in the definition of the complex envelope employed for the single wave 
[92]. In plane wave geometries, with no dependence in the transverse coordinates, the 
resulting single-wave envelope equation is the following. 

 
𝑑𝐴
𝑑𝑥

+ 𝑖𝐷𝐴 = −
𝑖χ(2)𝑖0

2

4𝛽0 𝑛2
�1 −

𝑖
𝑖0

𝜕
𝜕𝜏
� �𝐴2𝑒𝑖𝑖 + 2|𝐴|2𝑒−𝑖𝑖� (4.5) 

𝐴(𝑥, 𝜏) is the broadband complex electric field envelope at a reference fre-
quency 𝑖0 , 𝜙(𝑥, 𝜏) = 𝑖𝑖0𝜏 − 𝑖�𝛽0 − 𝑖0 𝑣𝑔⁄ �𝑥  and 𝛽0 = Re[𝑘(𝑖0)], where 𝑘(𝑖) =
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(𝑖 𝑛⁄ )�1 + χ(1)(𝑖)  is the propagation constant and 𝑣𝑔 is the group velocity at the 
reference frequency. The linear part of the susceptibility χ(1) varies as a function of 
frequency, while the second order susceptibility χ(2) is assumed to be constant, which 
is reasonable when working far from absorption as discussed in section 2.1. 𝐷 =
∑ 1

𝑚!𝑘𝑚�−𝑖
𝜕
𝜕𝑡�

𝑚∞
𝑚=2  is the dispersion operator, where 𝑘𝑚 = 𝜕𝑚𝑘

𝜕𝜔𝑚
(𝑖0) , and 𝜏 = 𝑡 −

𝑥 𝑣𝑔⁄  is the coordinate system moving with the reference group velocity. 
The single-wave envelope equation includes all possible second order para-

metric processes that could occur. Consequently, the method can capture the interplay 
during propagation of the broadband OPG and the cascaded SFG processes in the 
experiments described in this chapter, taking into account group velocity mismatch, 
phase relationships, etc. 

Numerical simulations of the broadband OPG response in PPMgSLT were 
performed for 25 μm QPM period with a pump beam of 860 nm, investigating the 
range of 0.5-30 ps pump pulse durations and 1-10 GW/cm2 peak intensities. The OPG 
response was statistically evaluated over an ensemble of multiple (typically 30) simu-
lations, performed with different random noise seeds. The key results of the simula-
tions are shown in Fig. 4.8, by displaying the OPG response at two different pulse 
durations. The upper plots of both a) and b) show the broadband OPG spectra for two 
different pump pulse durations at the output of the PPMgSLT crystal. The 2D colour 
maps illustrate the spectral evolution during the propagation along 𝑥 through the crys-
tal. 

 
Fig. 4.8 Simulated broadband OPG response of a 1cm-long PPMgSLT crystal 
in the presence of cascaded processes, using a Gaussian pump at 860 nm. Output 
OPG spectra (1D plots) and evolution inside the crystal of the generated 
intensities (2D colour maps) are shown in logarithmic scale. Pump pulse 
durations: a) 10 ps and b) 0.7 ps. Pump peak intensities: a) 7 GW/cm2 and 
b) 15 GW/cm2. Numerical solutions of Eq. (4.5), averaged over 30 realizations.  

The simulations confirm the experimental results and strengthen the intuitive 
explanation of walk-off-triggered quadratic cascading. The SFG resonances and their 
OPG conjugates at 1.4, 1.5, 2.0, and 2.2 μm, highlighted by arrows, manifest as dips 
in the gain spectrum in the case of the 10 ps pump, Fig. 4.8a. In contrast, when the 
pump pulse duration is decreased, the walk-off among the waves involved in the SFG 
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process (pump, signal/idler and SF) increases. Accordingly, as these components lose 
their overlap during propagation, the SF wave begins to backconvert to the pump and 
signal/idler waves, yielding a re-enhancement of the OPG output, seen as peaks in 
Fig. 4.8b. The backconversion is the signature of the onset of the SFG quadratic cas-
cading as discussed above. Comparing the numerical simulations of Fig. 4.8 with the 
experimental results, presented in Fig. 4.6, the same qualitative behaviour of the SFG 
features, dips and peaks, is identified in the OPG spectra. The two regimes of the SFG 
features display the same dependence on the pump pulse duration for both experi-
mental and numerical results, with the transition between the two regimes occurring at 
approximately the same values. Being able to predict the behaviour of the SFG reso-
nances in the OPG spectrum by using a model based on χ(2) parametric interactions 
strongly corroborates the intuitive explanation of χ(2) SFG cascading given before.  
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Chapter 5 

Coupled OPG in 2D QPM lattices  

Systematic experimental and numerical investigations on coupled OPG in 2D QPM 
lattices are the topics of this chapter. In general, downconversion in 2D QPM lattices, 
also referred to as 2D nonlinear photonic crystals (NPCs), is a relatively unexplored 
field. The greater part of the experiments performed using 2D QPM lattices has been 
focusing on upconversion, as described in section 3.2. In section 3.2, it was also pre-
sented how 2D NPCs, compared to 1D QPM structures, grant new degrees of freedom 
for engineering spectrally and spatially the response of a conversion process. In this 
chapter those degrees of freedom are investigated in downconversion. 

The first part of this chapter describes the work I performed, in the frame of 
the thesis, to demonstrate and investigate experimentally the behaviour of coupled 
OPG in hexagonal QPM lattices, complemented by numerical predictions of the en-
semble of QPM working points for coupled OPG in the NPC lattices. Both the spec-
tral and angular characteristics of the coupled OPG output have been documented, 
together with their dependence on the wavelength (section 5.1) and propagation angle 
(section 5.2) of the pump wave. 

The second part of this chapter (section 5.3) treats my investigation of cascad-
ed sum frequency generation (SFG) subsequent to the coupled OPG, and concerns 
both experiments and numerical modelling. The initial waves driving the SFG were 
the pump wave and either a signal or an idler wave, which is conceptually similar to 
the OPG and SFG processes in 1D periodically poled MgSLT described in chapter 4.  

5.1 Coupled optical parametric generation  

Coupled OPG, as defined in this thesis, necessitates two simultaneous OPG processes, 
phase matched by the same 2D QPM lattice but different RLVs (reciprocal lattice vec-
tors), whose signal (or idler, but this will be discussed somewhat later) waves are 
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spectrally and spatially degenerate. In other words, the signal waves are indistinguish-
able and thus become one wave, shared by both the two OPG processes. Consequent-
ly, the parametric processes experience a coherent exchange owing to this shared sig-
nal beam, which also gives rise to twin-beam idler waves that are spectrally degener-
ate but propagate at different angles. The twin-beam OPG output has no counterpart 
in 1D QPM, since the two twin-beams preserve their spectral degeneracy throughout a 
tuning of the pump input angle. The coherent coupling between the parametric pro-
cesses results in well-defined phase relations between the generated waves of two the 
processes and, in particular, entanglement of the twin-beam photons. 

The theoretical description of coupled OPG can be derived by starting from 
the general case of two separate OPG processes, each supported by one of the two 
base RLVs of a 2D QPM lattice, denoted by the indices 1 and 2. The conditions of 
momentum conservation (based on the non-collinear phase mismatch relation (3.29))  

 
𝐤𝑝 − 𝐆1 = 𝐤𝑠,1 + 𝐤𝑖,1 
𝐤𝑝 − 𝐆2 = 𝐤𝑠,2 + 𝐤𝑖,2 (5.1) 

and of energy conservation  

 
𝜆𝑝

−1 = 𝜆𝑠,1
−1 + 𝜆𝑖,1

−1 
𝜆𝑝

−1 = 𝜆𝑠,2
−1 + 𝜆𝑖,2

−1, 
(5.2) 

allow an infinite set of OPG solutions, for a given pump wavelength and input 
angle. For instance, if the wavelengths of the generated waves are slightly altered, the 
conversion can still be phase matched by adjusting the propagation angles of the 
waves. Fig. 5.1a illustrates a QPM vector diagram of two arbitrary OPG processes, 
describing the wave vectors involved in the conversion processes and the hexagonal 
lattice supporting the processes. The base RLVs that phase match the interaction are 
G1 and G2. Further details of the lattice geometry were presented in section 3.2.1. 

 
Fig. 5.1 QPM vector diagram of OPG processes with pump wave collinear to 
the symmetry axis 𝑥 of a hexagonal lattice, i.e. θp = 0°. kp, ks, and ki are the 
wave vectors of the pump wave, signal waves and idler waves, with added indi-
ces according to the RLVs used for QPM, G1 and G2. a) Two arbitrary OPG pro-
cesses. b) When the constraint of shared signal ks,1 = ks,2 is applied coupled OPG 
is obtained. ki,1 and ki,2 are the wave vectors of twin-beam idler waves.  

The coupled OPG arises in the special case where the solutions of Eqs. (5.1) 
and (5.2) satisfy the constraint of a shared signal wave 𝐤𝑠,1 = 𝐤𝑠,2. The case is re-
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ferred to as shared signal coupled OPG (SS-OPG). A direct consequence of the shared 
signal beam is the appearance of the twin-beam OPG conjugates, i.e. the twin-beam 
idler waves. These waves are spectrally degenerate, 𝜆𝑖 = 𝜆𝑠𝜆𝑝 �𝜆𝑠 − 𝜆𝑝�⁄ , but propa-
gate at different output angles.  

In a similar way, coupled OPG can also occur through a shared idler, accom-
panied by twin-beam signal waves. The constraint for the shared wave then becomes 
𝐤𝑖,1 = 𝐤𝑖,2 and the case is denoted shared idler coupled OPG (SI-OPG).  

An illustration of the SI-OPG special case of solutions of Eqs. (5.1) and (5.2) 
is given in Fig. 5.2. The figure shows the phase matching geometry of coupled OPG 
in a hexagonal QPM lattice in the form of a QPM vector diagram. The involved wave 
vectors and the base RLVs that phase match the interaction are included, as well as 
the pump input angle 𝜃𝑝 and the twin-beam signal angles 𝜃𝑠,1 and 𝜃𝑠,2. The QPM dia-
gram is given for an arbitrary pump angle 𝜃𝑝 ≠ 0°, to illustrate that coupled OPG can 
occur for a full interval of pump angles, as will be shown in section 5.2. 

 
Fig. 5.2 QPM vector diagram of coupled OPG. θp is the pump angle to the 
NPC symmetry axis 𝑥. kp, ki, ks,1, and ks,2 are the wave vectors of the pump 
beam, the shared idler beam, and the twin-beam signals, the two latter propagat-
ing at angles θs,1 and θs,2 to the pump. G1 and G2 are the RLVs used for QPM.  

The added dimensionality of 2D QPM lattices can also be exploited for sus-
taining simultaneous parametric processes. This has already been demonstrated in 
frequency upconversion, e.g. twin-beam second harmonic generation (SHG) [60]. In 
the symmetric case of twin-beam SHG, i.e. pump input angle 𝜃𝑝 = 0°, the generated 
SH beams are spectrally – but not spatially – degenerate. Coupled OPG behaves 
somewhat differently. The coupled OPG twin-beams are similarly, spectrally – but not 
spatially – degenerate, however, the shared beam, which coherently couples the two 
OPG processes, is fully degenerate. Accordingly, the SHG processes are not coupled 
in the sense defined in this thesis. In the non-symmetric pump case, i.e. pump input 
angle 𝜃𝑝 ≠ 0°, the spectral degeneracy of twin-beam SHG is lost and the two SH 
wavelengths deviate symmetrically from the degenerate wavelength at 𝜃𝑝 = 0°. 

In 1D QPM, there has been one reported experiment which supported an in-
terplay between two simultaneous optical parametric oscillation (OPO) processes, 
where a second dimensionality was introduced by a twin-beam pumping, i.e. using 
two non-collinear pump waves [94]. In the general case of the experiment, the gener-
ated signal waves were spatially degenerate, as a consequence of the OPO cavity, but 
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spectrally distinct. Only in the special case of symmetric pumping, the signal waves 
were spectrally and spatially degenerate, forcing the conversion processes to be cou-
pled. However, the coupling relies critically on the presence of a cavity to enforce the 
required geometry and, in addition, necessitates a complex double pump configura-
tion. In the investigations of coupled downconversion that are described in this thesis 
no cavity and only one pump beam are required to couple the two parametric process-
es, greatly facilitating the experimental arrangements. 

There has been one experimental report of downconversion in 2D QPM lattic-
es, prior to the work presented in this thesis. However, only a single RLV was used 
for the primary frequency conversion process and hence the lattice response was not 
substantially different from that of a 1D parametric interaction [95]. The experiments 
did not address coupled downconversion at all, as the 2D functionality consisted sole-
ly of higher order RLVs phase matching cascaded upconversion processes. 

5.1.1 Experimental demonstration of coupled OPG 

The configuration that has been investigated to demonstrate coupled OPG corre-
sponded to the case of shared idler at a non-zero pump input angle (treated in article 
II). The expected non-collinear twin-beam signal waves would offered a means to 
distinguish a coupled OPG process from conventional non-coupled OPG. The coupled 
OPG response was further investigated by mapping the signal wavelengths and output 
angles, as function of the pump wavelength. 

The NPCs used in the experiments were fabricated through 2D electric field 
poling [26] in 0.5 mm thick 𝑧-cut 1 mol% MgO-doped nearly stoichiometric LiTaO3 
(MgSLT) substrates by Katia Gallo. The material was chosen for its resilience to pho-
torefraction and GRIIRA/BLIIRA (details given in section 3.4). The 1-cm-long lattice 
was 4-mm-wide to accommodate non-collinear interactions. A QPM period of 
22.8 μm was chosen for the hexagonal lattice (see section 3.2.1 for further details) to 
permit coupled OPG by pumping in the Ti:sapphire spectral range. The choice of 
pump system was, as for the broadband OPG experiments, based on its spectral flexi-
bility and possibility to deliver high peak intensity pulses. Experimental investigations 
explored the pump wavelength dependence of the OPG. 

The coupled OPG response of the NPCs was investigated using 1.5 ps pulses 
at 1 kHz, tunable in the vicinity of 800 nm, generated by the amplified Ti:sapphire 
system described in chapter 4. The peak intensities of the pulses used in the experi-
ment were in the range of 2 – 20 GW/cm2 and polarised along the 𝑧  axis of the 
MgSLT crystal. 

The pump was loosely focused in the crystal to an elliptical cross-section, with 
1/e2-radii of 810 μm and 220 μm in the lateral (𝑦) and vertical (𝑧) directions, respec-
tively. The pump was input at an angle of 𝜃𝑝~0.6°. At the output of the crystal the 
pump was attenuated by a dichroic mirror, blocking radiation from 770 to 1050 nm 
(3 dB thresholds), and the signal OPG output was recorded by using a fibre-coupled 
optical spectrum analyser (OSA, Ando AQ6315A, sensitive from 350 to 1750 nm). 

The signal OPG output, i.e. the signal twin-beams, could be located and clear-
ly distinguished using an IR detection card (Thorlabs VRC2, sensitivity range: 800 –
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 1700 nm). Each twin-beam could then be selectively coupled into the OSA by setting 
up a spatial stop for the other output angles and focusing the remaining parametric 
output with a 50 mm spherical lens. 

 
Fig. 5.3  Spectral measurements of the twin-beam signal waves of coupled 
OPG, emitted at 𝜃𝑠,1 = 2.9° and 𝜃𝑠,2 = −0.5° (with respect to the pump beam), 
made for 𝜃𝑝~0.6°, λp = 805 nm and Ip = 4.6 GW/cm2 (twice the OPG threshold). 
Dotted red curve: spectrum for the signal at 𝜃𝑠,1. Dashed blue curve: spectrum at 
𝜃𝑠,2. Solid black curve: spectrum measured by coupling both signal beams into 
the optical spectrum analyser.  

The interaction geometry of the investigated SI-OPG configuration at off-axis 
pumping is given in Fig. 5.2. Typical spectral measurements of the signal twin-beams 
for λp ~ 795 – 810 nm are shown in Fig. 5.3. The figure displays the spectral distribu-
tions measured on each of the twin-beams, at 𝜃𝑠,1 = 1.35° (dotted red curve) and 
𝜃𝑠,2 = −0.22° (dashed blue curve), as well as on the total output (black solid curve), 
at λp = 805 nm. Despite the off-axis pumping (i.e. 𝜃𝑝 ≠ 0°), which breaks the sym-
metry in Eqs. (5.1) and (5.2), all three experimental curves exhibit the same spectral 
gain distribution, which could not be the case if the QPM resonances of Eqs. (5.1) and 
(5.2) were uncoupled. On the contrary, the spectral locking of the two signal outputs 
is the signature of a coupling between the two QPM resonances of the lattice achieved 
through a common idler, 𝐤𝑖,1 = 𝐤𝑖,2, as illustrated in Fig. 5.2. The common idler ena-
bles a coherent cross-seeding path resulting in a mutual enhancement of the two QPM 
processes, thus lowering the OPG threshold, and can justify the frequency-degenerate 
signal response consistently observed in the experiments. Theoretical calculations 
performed with Eqs. (5.1) and (5.2) and the constraint of a shared idler wave 𝐤𝑖,1 =
𝐤𝑖,2, yield parametric gain distributions as seen in the experiments. (A full description 
of the numerical method used to predict the coupled OPG is given in section 5.2.2.) 
For the specific example of Fig. 5.3 the calculations indeed predict a narrow OPG 
peak at 𝜆𝑠 = 1030 nm  and a broader bulge centred around 𝜆𝑠 = 1240 nm . The 
broadness is due to the retracing behaviour of the QPM curves of LiTaO3 in this spec-
tral region, see section 4.1.1 and Ref. [96]. 

Upon ascertaining the spectral degeneracy of the twin-beam signals, the re-
sponse of the NPC as function of pump wavelength was systematically recorded. The 
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entire parametric output was coupled to the OSA, thus the spectral properties of both 
OPG signal waves were examined. The results are displayed in Fig. 5.4a as a contour 
plot of the recorded signal powers, as function of pump and signal wavelengths. Over-
laid onto the contour plot in Fig. 5.4a are the QPM predictions (black curve) of Eqs. 
(5.1) and (5.2) with the shared idler constraint, calculated using the Sellmeier equa-
tions from Ref. [21]. The experiments match the predictions well, with the exception 
of a shift to longer wavelengths.  

 
Fig. 5.4 a) Contour plots of recorded signal powers, as function of pump 𝜆𝑝 
and signal 𝜆𝑠 wavelengths, generated in hexagonal NPCs of period 22.8 μm at 
𝜃𝑝~0.6° pump angle. b) Signal external angles 𝜃𝑠  as function of pump wave-
length 𝜆𝑝  for the same conversion processes. The experimentally measured 
propagation angles for the signal beams are shown as red dots, QPM predictions 
as black curves. N.b. The angles of the experimental results are defined by the 
propagation directions outside the crystal (in contrast to Fig. 5.2). 

The angular behaviour of the generated twin-beam signals for different pump 
wavelengths was measured by projecting the OPG signal output on a screen at a dis-
tance of 21 cm after the NPC. The measured signal angle values are displayed in Fig. 
5.4b. Note that for all experimental measurements in this chapter the external angles 
are presented. The twin-beams could be clearly distinguished by using the IR detec-
tion card, as mentioned above. The pump beam could be detected with the same setup 
and was used as a reference for all angle measurements. Fig. 5.4b also shows the 
QPM predictions (black curves), calculated with Eqs. (5.1) and (5.2) and including 
the shared idler constraint. 

In summary, this investigation constitutes the first experimental demonstration 
of coupled OPG in NPCs. The shared idler beam of the two simultaneous OPG pro-
cesses mediates a coherent coupling, unique to 2D lattices. In particular, it also results 
in twin-beam signal generation, where the spectral contents of the signal waves of the 
two OPG processes are identical. 
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5.2 Full angular exploration of coupled OPG 

In addition to the pump wavelength, the pump incidence angle presents a second pos-
sibility to control the spectral and angular properties of the coupled OPG response in 
NPCs. Having investigated coupled OPG through a shared idler in the previous sec-
tion, it was investigated whether the complementary situation, shared signal coupled 
OPG (SS-OPG), would be possible to achieve. By varying the pump input angle the 
occurrences of SS-OPG and SI-OPG were investigated both experimentally and nu-
merically. 

I conducted a systematic, experimental study for various pump angles, pre-
sented in section 5.2.1. The signal wavelengths and propagation angles were recorded 
simultaneously to be able to distinguish coupled OPG from conventional non-coupled 
OPG, as well as to identify contributions originating from shared signal and shared 
idler coupling. In this section I will show how one can change between situations of 
strong SS-OPG and situations where SI-OPG is also present. 

I developed a numerical framework that can model the rich, and significantly 
different, optical responses of coupled OPG at various pump incidence angles. The 
numerical model predicts both SS-OPG and SI-OPG as continuous functions of pump 
angle and is described in section 5.2.2. 

Besides the spectral-angular analysis, I also investigated the dependence of 
generated signal intensity on the pump angle, in view of comparing coupled OPG and 
non-coupled OPG processes. The experimental results are presented and discussed in 
section 5.2.3. 

5.2.1 Angular tuning experiments of coupled OPG 

To investigate the possibility of sustaining both SI-OPG and SS-OPG, the incidence 
angle of the pump driving the coupled OPG was varied, while monitoring the output 
signal wavelengths and propagation angles. The signal intensities were chosen to be 
examined because of the flexibility and ease of detection provided by the OSA. The 
angles of the twin-beam signals of SI-OPG and the shared signal beam of SS-OPG 
provide a means, along with spectral comparisons, to identify the SS-OPG and SI-
OPG contributions. 

The angular tuning investigations (treated in article IV) were performed at 
λp = 806 nm, using 1 – 1.5 ps pulses with peak intensities in the range of 6 –
 20 GW/cm2 , provided by the Ti:sapphire system described in chapter 4. The spectral 
and angular properties of the OPG signals were recorded for several pump angles in 
an interval of −0.3° < 𝜃𝑝 < 2.6°. 

The focusing conditions of the pump beam were chosen to illuminate as much 
of the width (along 𝑦) of the QPM lattice as possible, with beam radii of 2.0 mm 
(1/e2) at the entrance and 2.1 mm at the exit of the lattice, while focusing strongly in 
the vertical direction (along 𝑧), to a minimum beam radius of 80 μm. The reason for 
the large lateral width of the pump was in part to sustain a spatial overlap with the 
non-collinear OPG waves, but also to suppress any possible transverse interference 
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effects [97]. The focusing along the 𝑧 dimension was optimised to increase collection 
efficiency while maintaining a Rayleigh length that was comparable to the NPC 
length. At the output of the NPC device the pump was attenuated by a dichroic mirror 
blocking radiation from 770 to 1050 nm, as mentioned in section 5.1.1. The OPG sig-
nal output was recorded using the same fibre-coupled OSA as described in that same 
section. 

 
Fig. 5.5 Sketch of the Fourier plane detection setup used for the angular tun-
ing experiments with 2D QPM lattices of 22.8 μm period, hexMgSLT = hexago-
nally poled MgSLT. The pump source (omitted in the sketch) was a Ti:sapphire 
amplified laser system delivering Gaussian μJ-pulses of picosecond durations at 
1 kHz. The input beam was focused to radii of 80 μm in the vertical (𝑧) dimen-
sion and of 2 mm in the lateral (𝑦) dimension in order illuminate the entire QPM 
lattice of the crystal, which was kept constant at 85°C. The pump was attenuated 
by a dichroic mirror and the parametric output was imaged onto a Fourier plane 
along which the input fibre of an OSA could be translated.  

The optical coupling to the OSA was further refined as compared to the wave-
length tuning experiments discussed in section 5.1.1. The OSA was positioned at the 
Fourier plane of an imaging system consisting of two orthogonal cylindrical lenses of 
focal lengths 150 mm and 50 mm as described in Fig. 5.5. The former lens was posi-
tioned at focal distance from the crystal exit, thus defining the Fourier plane, while 
the latter focused the optical output to a line along which the fibre of the OSA could 
be translated. In this manner the spectral content of the NPC output at each propaga-
tion direction could be recorded, since each lateral position of the fibre corresponded 
to a propagation angle. The signal content of the NPC output at each angle 𝜃𝑠, meas-
ured with respect to the pump, was systematically explored for various values of the 
pump input angle (−0.3° < 𝜃𝑝 < 2.6°). The pump angle was selected by an in-plane 
(𝑥-𝑦) rotation of the NPC, with a precision of ∆𝜃𝑝~0.2°. Spectral-angular maps of the 
signal output were obtained for −4° ≤ 𝜃𝑠 ≤ 4° and 1 µm ≤ 𝜆𝑠 ≤ 1.75 µm. In addi-
tion, the outputs from higher order QPM upconversions to the visible, subsequent to 
the coupled OPG, were also recorded for a subset of pump input angles. 

An investigation of possible SS-OPG at symmetric pumping, i.e. 𝜃𝑝~0°, was 
performed. The interaction geometry and the QPM vector diagram for the possible 
SS-OPG interactions are illustrated in Fig. 5.6a. The result of the spectral-angular 
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mapping, i.e. signal powers recorded with the OSA over the angular interval men-
tioned above, is displayed in normalised logarithmic scale in Fig. 5.6b. The resolution 
of the spectral-angular mapping was 10 nm in the spectral 𝜆𝑠 dimension and 0.2° in 
the angular 𝜃𝑠 dimension. The pump beam propagation direction was used as refer-
ence for the output angles of the generated beams. However, due to the broad lateral 
extent of the pump beam there exists an uncertainty of ~0.2° in the measured output 
angles. The 2D colour map shows the recorded signal powers as function of their out-
put angle, overlaid with QPM predictions (white curves) of potential OPG signals as 
described by Eqs. (5.1) and (5.2), calculated with the Sellmeier equations of Ref. [21].  

 
Fig. 5.6 a) Interaction geometry and QPM vector diagram of coupled OPG 
through a shared signal, pumped with λp = 806 nm at propagation angle 𝜃𝑝~0° to 
the lattice symmetry axis 𝑥. G1 and G2 are the two RLVs used for QPM and kj 
are the wave vectors of the interacting beams (where j = “p”, “s”, “i,1” and 
“i,2”). b) 2D colour map of the measured powers of the OPG signal, in normal-
ised logarithmic scale, as function of wavelength (𝜆𝑠) and angle (𝜃𝑠) generated at 
𝜃𝑝~0° with a pump peak intensity of 19 GW/cm2. The white curves are predic-
tions of OPG signals according to Eqs. (5.1) and (5.2). Lower graph: signal spec-
trum at 𝜃𝑠 = 0.  

An artefact of the detection system, owing to the lateral translation of the fibre 
not being fully parallel to crystal’s lateral plane, resulted in decreasing collection effi-
ciency for increasing values of the signal angle. For this reason the distribution of the 
recorded signal powers 𝑃𝑠 as function of the signal output angle 𝜃𝑠 is skewed towards 
𝜃𝑠 < 0, as seen in the 2D colour map of Fig. 5.6b. Nevertheless, the recorded signal 
powers still display a maximum at 𝜃𝑠 = 0. This agrees well with the theoretical calcu-
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lations, which predict a spectral and spatial degeneracy of the signals of the OPG pro-
cesses, i.e. SS-OPG, phase matched by the base RLVs 𝐆1 and 𝐆2, at 𝜃𝑠 = 0. The pre-
dictions of SS-OPG are indicated by the crossing points of the QPM trajectories, 
white curves in Fig. 5.6b. The theoretical calculations predict two spectral locations 
for SS-OPG, 𝜆𝑠 = 1280 and 1030 nm, due to the retracing behaviour of the QPM 
curves of LiTaO3 in this spectral region [96]. (The model used for the predictions is 
further explained in section 5.2.2.) The predicted spectral locations match well the 
positions of the two local maxima observed in the experimental data recorded at 
𝜃𝑠 = 0, displayed in the graph showed in lower inset of Fig. 5.6b. The local signal 
maximum at ~1030 nm is strongly attenuated by the dichroic mirror, since its 3 dB 
thresholds was situated at 1050 nm. Despite the attenuation, one can discern recorded 
signal powers in the 2D colour map and in the lower graph of Fig. 5.6b. Accordingly, 
the experimental results indicate that for 𝜃𝑝~0° SS-OPG was the dominating process 
in the conversion. 

The comparison between the QPM curves and the experimental results indi-
cates also slight shifts in predicted wavelengths and angles. This could possibly be 
attributed to discrepancies between the Sellmeier equations of Ref. [21] and the actual 
dispersion of our Mg-doped LiTaO3 substrates in this wavelength range. The shift is 
consistent with the one recorded in the investigations of the broadband generation in 
1D PPMgSLT (cf. chapter 4). 

As mentioned above, the complementary situation to SS-OPG can also occur, 
in which the idlers of two OPG processes are spectrally and spatially degenerate, i.e. 
SI-OPG. One can control the coupled OPG output of the NPC device through the 
pump input angle. Specifically, moving away from the symmetric pumping can cause 
the response of the very same device to switch to a regime where SI-OPG is observa-
ble, in addition to SS-OPG. Fig. 5.7 exemplifies the case of SI-OPG at 𝜃𝑝~0.5°, with 
the corresponding QPM configuration illustrated in Fig. 5.7a. Fig. 5.7b shows exper-
imental and theoretical results obtained in a similar way as for Fig. 5.6b, this time for 
𝜃𝑝~0.5°. 

Similar to the spectral-angular map in Fig. 5.6b, Fig. 5.7b is skewed towards 
𝜃𝑠 < 0 due to the artefact of the detection system pointed out earlier. Despite the low-
er detection efficiency for 𝜃𝑠 > 0, one can distinguish local maxima, at 𝜆𝑠 = 1300 
and ~1050 nm, in the OPG response at 𝜃𝑠~2.5°. The power at 𝜃𝑠~2.5° is also dis-
tinctly observable on an IR detection card (Thorlabs VRC2, sensitivity range: 800 –
 1700 nm) as a separate beam. Comparing with the QPM curves calculated using Eqs. 
(5.1) and (5.2) (white curves in Fig. 5.7b), no SS-OPG is possible at that output angle. 

The local maxima must instead originate from the two (due to retracing) twin-
beam signals of SI-OPG, whose shared idlers are predicted at 𝜆𝑖 = 2.1 µm , 𝜃𝑖 =
−0.9°4 and at 𝜆𝑖 = 3.8 µm, 𝜃𝑖 = −2.0°. (Further details of the predictions are given 
in section 5.2.2.) The twin-beam signals of that SI-OPG working point are expected at 
𝜆𝑠 = 1300 nm with 𝜃𝑠 = 2.4° and 𝜃𝑠 = −1.3°, marked by dashed white ellipses in 
Fig. 5.7b. Indeed the experimental data show significant signal powers in these angu-
lar-spectral regions. By comparing the spectral content at 𝜃𝑠 = 2.4°, where the exper-
                                                 
4 Note the printing error of article IV in that the minus sign of the idler angle is missing. 
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imental local maximum can be clearly distinguished, and at 𝜃𝑠 = −1°, both displayed 
in the lower graph of Fig. 5.7b, one notes the spectral degeneracy, which implies a 
coherent coupling of the signals and consequently SI-OPG.  

 
Fig. 5.7 a) Interaction geometry and QPM vector diagram of coupled OPG 
through a shared idler, pumped with λp = 806 nm at propagation angle 𝜃𝑝~0.5°, 
labelled as in Fig. 5.6a. (b) Spectral-angular mapping of the signal powers, in 
normalised logarithmic scale, at 𝜃𝑝~0.5°; all other conditions as in Fig. 5.6b. 
The angles for twin-beam signal generation are highlighted by the yellow dashed 
horizontal lines, labelled 𝜃𝑠,1 and 𝜃𝑠,2, whose intersections with the QPM predic-
tions (white curves) give the locations for the twin-beam signals. The lower 
graph shows the corresponding spectra recorded for the twin-beam signals.  

On the other hand, the twin-beam signal at 𝜃𝑠~ − 1° arising from SI-OPG is 
not so neatly distinguishable as the one at 𝜃𝑠 = 2.4° in the 2D map of Fig. 5.7. This is 
due to both the proximity of a SS-OPG resonance, indicated by the crossing point of 
the QPM predictions (white curves) at 𝜆𝑠 = 1280 nm, and to the broadness of the 
involved resonances, both spectrally and angularly. The broadness is a result of both 
the spectral bandwidth ∆𝜆𝑝~2 nm of the pump source and of the low group velocity 
dispersion in this spectral region (cf. section 4.1.1), giving rise to retracing behaviours 
of the QPM curves. Accordingly, the broad emission observed for −1.7° < 𝜃𝑠 < 0.3° 
in Fig. 5.7b is attributed to the merging of the above mentioned SS-OPG and the twin-
beam signal of the SI-OPG resonance. 

As a consequence, the strongest indicators of the presence of SI-OPG in the 
data of Fig. 5.7 are the local maxima in signal power around 𝜃𝑠~2.5°. The non-
collinear signal beams, clearly distinguishable on an IR detection card, at the numeri-
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cally predicted locations of a SI-OPG process (see section 5.2.2) implies the presence 
of coupled OPG. 

Due to retracing of the QPM curves, SS-OPG and twin-beams from SI-OPG 
are also predicted at 1030 and 1020 nm (details given in section 5.2.2), respectively, 
in analogy with the case of Fig. 5.6. Signal powers have been recorded in this spectral 
range, however, the 3 dB edge of the dichroic mirror used to block the pump is situat-
ed at 1050 nm. Thus the powers seen in Fig. 5.7b are probably only the flanks of the 
SS-OPG shared beam and SI-OPG twin-beams preventing any more detailed compar-
isons. 

5.2.2 Tracking of coupled OPG  

To properly analyse and explain the experimental data of the angular tuning investiga-
tions, a theoretical framework for modelling coupled OPG was developed. The model 
predicts the pump incidence angle dependence of coupled OPG, both for shared signal 
and for shared idler. It should be pointed out that even though hexagonal geometry is 
treated here, the model can be modified to predict coupled OPG in other lattice geom-
etries,. In principle, the model affords predictions for any pump wavelength, but 
λp = 806 nm is chosen here to be able to describe the experimental results discussed 
above.  

As mentioned at the beginning of section 5.1, given the two RLVs G1 and G2 
of the 2D QPM lattice, the working points for which coupled OPG can be phase 
matched are described by the solutions of Eqs. (5.1) and (5.2) that satisfy either of the 
constraints 𝐤𝑠,1 = 𝐤𝑠,2 or 𝐤𝑖,1 = 𝐤𝑖,2. The former constraint corresponds to SS-OPG 
and the latter to SI-OPG. By combining the equations and a coupled OPG constraint 
one obtains a new set of equations for momentum and energy conservation. The new 
equations are rewritten using the indices shared and twin (with 1 or 2 added, to distin-
guish between G1 or G2 supporting the OPG) to denote the shared beam and the twin-
beams, respectively. This is to describe the possibility for coupled OPG either through 
a shared signal or a shared idler beam. The new equations thus become  

 
𝐤𝑝 − 𝐆1 = 𝐤𝑠ℎ𝑎𝑟𝑒𝑎 + 𝐤𝑡𝑡𝑖𝑡,1 
𝐤𝑝 − 𝐆2 = 𝐤𝑠ℎ𝑎𝑟𝑒𝑎 + 𝐤𝑡𝑡𝑖𝑡,2 (5.3) 

and  

 
1
𝜆𝑝

=
1

𝜆𝑠ℎ𝑎𝑟𝑒𝑎
+

1
𝜆𝑡𝑡𝑖𝑡

. (5.4) 

By fixing the pump input angle the system is no longer underdetermined and a 
finite number of solutions can be found, representing possible coupled OPG process 
that the 2D lattice can phase match. The system of Eqs. (5.3) and (5.4) was solved for 
a range of different QPM periods and pump wavelengths. 

To begin with, the case of SS-OPG is considered. The system of equations al-
lows two different such solutions for a given pump angle. As mentioned briefly in 
section 5.2.1, this is due to the retracing of the QPM curves of LiTaO3 in this spectral 
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region [96]. The concept of the retracing is illustrated by the QPM curves shown in 
Fig. 2.7. The red curve in Fig. 2.7b gives an example of how several local maxima of 
the generated intensity can arise. For the very same reason, two SS-OPG resonances, 
at different wavelengths, arise for each pump input angle. To the possible SS-OPG is 
added the possibility of phase matching SI-OPG, which results in a total of four pos-
sible coupled OPG solutions. In summary, for a fixed pump angle two SS-OPG reso-
nances and two SI-OPG resonances can be phase matched by the NPC. 

 
Fig. 5.8 Numerical predictions of shared signal coupled OPG for 22.8 μm 
QPM period and λp = 806 nm pump wavelength, obtained by solving the system 
of Eqs. (5.3) and (5.4). a) The blue-green curve describes the shared signal out-
put angles 𝜃𝑠 and the orange-black the output angles of the twin-beam idlers 𝜃𝑖, 
as functions of pump angle 𝜃𝑝. The colours of the curves vary with the phase 
matched wavelengths, according to the respective colour bars. b) Signal and idler 
wavelengths (𝜆𝑠 and 𝜆𝑖) as functions of pump angle. c) Sketch of beam propaga-
tion directions of the beams involved in the two SS-OPG processes at 𝜃𝑝 = 0°.  
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For a fixed pair of QPM period and pump wavelength, one set of simulations 
is made by letting the pump input angle assume every value for which phase matching 
of coupled OPG was possible, which included pumping parallel to the symmetry axis 
of the lattice 𝑥, 𝜃𝑝 = 0°. 

The simulations for 22.8 μm QPM period and λp = 806 nm pump wavelength, 
performed using the Sellmeier equations of Ref. [21], are given in Fig. 5.8 and Fig. 
5.9. For practical reasons the simulation results are divided into the two cases of SS-
OPG (Fig. 5.8) and SI-OPG (Fig. 5.9).  

In Fig. 5.8a, presenting the predictions for SS-OPG, the green-blue curve rep-
resents the output angles 𝜃𝑠 of the shared signal beam as function of the pump input 
angle 𝜃𝑝. The colouring of the curve corresponds to the wavelengths of the signal 
beam 𝜆𝑠, according to the colour bar on the right. The orange-black curves describe 
the twin-beam idler output angles 𝜃𝑖 as function of the pump input angle 𝜃𝑝. Analo-
gously, the colouring of the curves corresponds to the wavelengths of the idler beams 
𝜆𝑖, according to the left colour bar. The signal and idler wavelengths are illustrated 
more quantitatively by Fig. 5.8b, where the black curve gives the two (due to retrac-
ing) pairs of signal and idler wavelength for each pump input angle 𝜃𝑝. 

The prediction for the working point of the experiments of Fig. 5.6, 𝜃𝑝 = 0°, 
is marked in Fig. 5.8a by the dashed red line. The sketch in Fig. 5.8c illustrates the 
two triplets of signal and idler beams, i.e. the two different solutions that the system 
of Eqs. of (5.3) and (5.4) allows for a given pump angle. The theoretical predictions 
mentioned in the discussion of Fig. 5.6 can be recognised: 𝜃𝑠 = 0° and 𝜆𝑠 = 1280 
and 1030 nm. The corresponding wavelengths and output angles for the two pairs of 
twin-beam idler beams of the two SS-OPG processes are: 𝜆𝑖 = 2.2  and 3.7 µm ; 
𝜃𝑖 = ±3.1 and ±5.3°, respectively. 

Fig. 5.9a shows the predictions for SI-OPG. The orange-black curve shows the 
output angles 𝜃𝑖 of the shared idler beam and the green-blue curves the angles 𝜃𝑠 of 
the twin-beam signals, as functions of the pump input angle 𝜃𝑝. The idler and signal 
wavelengths, 𝜆𝑖 and 𝜆𝑠 respectively, are described by the colouring of the curves and 
by the graph of Fig. 5.9b, in the same way as in Fig. 5.8. The sketch in Fig. 5.9c illus-
trates the two triplets of signal and idler beams. 

All wavelength and angle predictions for the beams involved in the SI-OPG 
configuration of Fig. 5.7b can be found at 𝜃𝑝 = 0.5° in Fig. 5.9a, marked by the 
dashed red line. The loci of the twin-beam signals, that were marked by dashed ellip-
ses in Fig. 5.7b, are given by the crossing points of the dashed red line and the blue 
parts of the signal curves in Fig. 5.9a: 𝜆𝑠 = 1300 nm with 𝜃𝑠 = 2.4° and 𝜃𝑠 = −1.3°. 
The crossing point of the dashed red line and orange part of the idler curve gives the 
wavelength and angle of the corresponding shared idler beam: 𝜆𝑖 = 2.1 µm  and 
𝜃𝑖 = −0.9°. Furthermore, the dashed red line at 𝜃𝑝 = 0.5° reveals the second SI-OPG 
resonance, at 𝜆𝑖 = 3.8 µm  and 𝜃𝑖 = −2.0° , with its twin-beams signals at 𝜆𝑠 =
1020 nm and 𝜃𝑠 = 2.0° and 𝜃𝑠 = −1.0°. As was described in section 5.2.1, also SS-
OPG is obtained in the same experimental configuration. The theoretical predictions 
for the SS-OPG are given by a similar vertical slice at 𝜃𝑝 = 0.5° in Fig. 5.8a. The loci 



5.2 Full angular exploration of coupled OPG  71 

  

of the two shared signals, originating from the two SS-OPG processes, are found to be 
at: 𝜃𝑠 = −0.3°, 𝜆𝑠 = 1280 nm and 𝜃𝑠 = −0.2°, 𝜆𝑠 = 1030 nm. 

 
Fig. 5.9 Numerical predictions of shared idler coupled OPG for 22.8 μm 
QPM period and λp = 806 nm pump wavelength, obtained by solving the system 
of Eqs. (5.3) and (5.4). The orange-black curve describes the shared idler output 
angles 𝜃𝑖 and the blue-green the output angles of the twin-beam signals 𝜃𝑠, as 
functions of pump angle 𝜃𝑝 . The colours of the curves vary with the phase 
matched wavelengths, according to the respective colour bars. b) Signal and idler 
wavelengths (𝜆𝑠 and 𝜆𝑖) as functions of pump angle. c) Sketch of beam propaga-
tion directions of the beams involved in the two SI-OPG processes at 𝜃𝑝 = 0.5°. 

 

5.2.3 Signal intensity dependence on pump angle  

It has been suggested that the coherent coupling of multiple RLVs should lead to en-
hanced OPG gain [98]. The coupling of several downconversion processes, contrib-
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uting to the same signal wave, can be expected to increase the gain. However, so far 
no experimental demonstration of this gain enhancement has been made.  

To achieve a high gain one needs to minimise any non-collinear propagation 
angles, which can be done by minimising the angle between the pump propagation 
direction and the RLVs exploited for the QPM. Using a hexagonal lattice this angle 
becomes 30°, however when using a rectangular it instead becomes 45° [98]. For this 
reason it is favourable to employ a hexagonal lattice geometry and it is consequently 
the geometry used in our experiments. 

In the experiments of coupled OPG presented in Fig. 5.6 and Fig. 5.7, the fact 
that there is appreciable signal intensity only at the locations corresponding to the 
coupled OPG processes, provides already a good indication for the gain of the latter to 
be higher than that of the competing non-coupled OPG processes. An investigation 
that could bring clarity to the issue would be to compare, in a working point such as 
those described in Fig. 5.6 or Fig. 5.7, phase-matching points of coupled OPG and of 
non-coupled OPG. Unfortunately, the spectral and angular broadness of the resonanc-
es makes this approach very difficult.  

Instead, to gain further insights, the overall OPG signal generation as function 
of the pump propagation angle 𝜃𝑝 was investigated. The entire parametric output, i.e. 
integrated over all propagation angles, was focused onto a germanium photodetector 
(Newport 918D-IR-OD3, 850 – 1750 nm sensitivity range). 

 
Fig. 5.10 Recorded total OPG average signal powers Ps as function of the 
pump input angle 𝜃𝑝, generated with a pump peak intensity of 19 GW/cm2 (cor-
responding to 96 mW average power). All other experimental parameters were 
kept constant at the values used for the investigations mapping the optical re-
sponse in angular tuning, cf. Fig. 5.5. Error bars denote ±1 standard deviation. 
The OPG peak signal intensity corresponding to Ps at 𝜃𝑝~0° was 0.3 GW/cm2. 
The inset shows the spectral-angular variation of the recorded signal powers (in 
normalised logarithmic scale) and the corresponding QPM predictions (white 
curves), for 𝜃𝑝 = 1.6° (cf. Fig. 5.6 or Fig. 5.7 for details). 
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With this detection system, the generated average signal powers Ps, integrated 
over all signal wavelengths, were recorded. Measurements were performed over a 
wide interval of pump propagation angles, as shown in the main graph of Fig. 5.10. 
Using spectral-angular maps, such as those of Fig. 5.6b and Fig. 5.7b, recorded for 
different pump angles 𝜃𝑝 the underlying OPG resonances could be identified for each 
𝜃𝑝 of the curve of Fig. 5.10. As previously discussed, for 𝜃𝑝~0° OPG was mainly 
ascribed to SS-OPG (Fig. 5.6), while for 𝜃𝑝~0.5°, in addition to SS-OPG, an increas-
ing contribution from SI-OPG was apparent (Fig. 5.7). In contrast, for 𝜃𝑝 > 1° (i.e., 
on the low-efficiency sidelobe of the angular tuning curve of Fig. 5.10), coherently 
coupled processes were no longer dominating the OPG response. This is illustrated by 
the inset of Fig. 5.10, which shows the spectral-angular mapping recorded for 
𝜃𝑝~1.6° alongside the theoretical predictions of Eqs. (5.1) and (5.2) (white curves). 
There are stronger components in the measured OPG output coming at spectral-
angular locations that correspond to non-coupled OPG processes, i.e. following the 
curves. The local intensity maxima, recorded at the spectral-angular loci of SS-OPG, 
are also less well-confined (spectrally and angularly) than in Fig. 5.6b and Fig. 5.7b. 
These features, typical also for the other data points at 𝜃𝑝 > 1°, indicate that shared 
wave OPG was no longer dominating over non-coupled OPG. 

In other words, compared to the interval of pump angles where coupled pro-
cesses dominate the OPG signal output a significantly lower total OPG signal power 
was recorded at pump angles 𝜃𝑝 > 1°, where coupled OPG was no longer dominating 
over non-coupled OPG. A potential reason for the lower power could be the increas-
ing output angles for the shared beam for increasing pump angles, seen in the numeri-
cal predictions, cf. Fig. 5.8 and Fig. 5.9. The larger output angles result in reduced 
spatial overlap between the shared beam and the pump beam, which could promote 
collinear, but non-coupled, OPG processes. 

5.3 Cascaded upconversion and coupled OPG 

The arrays of higher order RLVs in a NPC offer a wealth of possibilities to support 
parametric conversion processes. Consequently, cascaded conversion processes, i.e. 
frequency conversions driven by one or more waves generated in a previous paramet-
ric process in the same lattice, are more likely to be phase matched in 2D QPM lattic-
es than in 1D QPM lattices. There exist experimental demonstrations of 2D NPCs 
supporting cascaded upconversion processes, both combinations of SHG and SFG 
[25, 99] as well as SHG following OPO [95]. 

This section describes the demonstration, correlated with theoretical predic-
tions, of cascaded upconversion following a primary conversion that involves coher-
ently coupled parametric processes. In particular, in the frame of this thesis I investi-
gated cascaded SFG following coupled OPG, where multiple SFG processes were 
driven by the pump wave and either a signal or idler wave originating from the cou-
pled OPG. The multiple SFG processes were thus supported by several different high-
er-order RLVs of the same hexagonal 2D lattice, whose base RLVs phase matched the 
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coupled OPG. The combination of SFG and coupled OPG reveals how NPCs can 
provide even further wavelength flexibility and possibilities of multi-beam genera-
tion.  

5.3.1 Experimental demonstration of SFG following coupled 
OPG in MgSLT NPCs 

In the experiments of coupled OPG the parametric output was accompanied by a rich, 
spectrally and angularly, output in the visible, resulting from multi-beam SFG follow-
ing OPG. Photographs illustrating typical responses of the NPCs in the visible are 
displayed in Fig. 5.11.  

The photographs were taken at two different pump angles, 𝜃𝑝~0.6°  (Fig. 
5.11a) and 𝜃𝑝~1.2° (Fig. 5.11b), at a pump wavelength of 𝜆𝑝 = 806 nm. The pump 
pulses were of 1.5 ps duration and their peak intensity 2.7 GW/cm2. The pump was 
loosely focused in the crystal to an elliptical cross-section, with 1/e2-radii of 810 μm 
and 220 μm in the lateral (𝑦) and vertical (𝑧) directions, respectively. The parametric 
output was projected on a white screen positioned 21 cm after the NPC. The rest of 
the experimental parameters were as described in section 5.2.1. 

 
Fig. 5.11 Photographs of the far field output of NPCs of 22.8 μm period when 
pumped at λp = 806 nm, showing multi-beam, multi-wavelength generation by 
up-conversion via higher order RLVs of the 2D lattice. The pump input angle 
was a) 𝜃𝑝~0.6° and b) 𝜃𝑝~1.2°. 

The colours in the photographs are as follows. Blue is the SHG of the pump 
wave, at 𝜆𝑆𝑆 = 403 nm. The SHG output consisted of distinct lobes of twin-beam 
SHG resonances, as explained in Refs. [23, 60], and a weaker horizontal line. The 
latter was generated over a continuum of output angles, none of which were phase 
matched by the lattice. However, due to the high intensity of the pump wave and the 
high nonlinear coefficient of MgSLT the SHG still reached appreciable output pow-
ers. 
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The green, seen as clear vertical lines in Fig. 5.11b and as faint lines at output 
angles slightly larger than the SHG lobes in Fig. 5.11a, was due to SFG at 𝜆𝑆𝑆 =
515 nm . The SFG was generated by the pump wave and a signal wave at 𝜆𝑠 =
1.43 µm. 

The red-pink, seen as vertical lines in Fig. 5.11a, were in reality yellow-orange 
(the CCD camera that was used distorted the colouring). These lines originated from 
another cascaded SFG at 𝜆𝑆𝑆 = 575 nm, driven by the pump wave and an idler wave 
at 𝜆𝑖 = 2.01 µm. 

One can control the parametric output of the NPC device through the pump 
input angle. Changing the pump propagation angle by merely 0.6° completely altered 
which SF wavelengths that were generated and at which angles the SF lines appeared. 

For each generated SF wavelength one notes several vertical lines of (approx-
imately) the same wavelength. Each line corresponds to one SFG process, phase 
matched by a given RLV of the 2D QPM lattice, as described in section 3.2.2. Each 
line corresponds to a SF beam at a specific propagation angle, generated by QPM via 
a specific RLV. To explain more in detail of this multi-resonance behaviour of the 
NPC, the generation of a particular SF wavelength 𝜆𝑆𝑆 = 575 nm is treated below. 

The photographs of Fig. 5.11 only describe the experimental results of the cas-
caded SFG qualitatively. For quantitative measurements the Fourier plane detection 
system of Fig. 5.5 was instead employed. A recorded spectral-angular map of the SF 
wavelengths in the vicinity of 575 nm is displayed in Fig. 5.12a, powers given in 
normalised logarithmic scale. The pump wavelength was 𝜆𝑝 = 806 nm and the pump 
beam was input at 𝜃𝑝~0.6°. The resolution in the spectral 𝜆𝑆𝑆  and angular Φ𝑆𝑆  di-
mensions were increased to 1 nm and 0.1°, respectively, as compared to the coupled 
OPG measurements described in section 5.2.1. In Fig. 5.12a, one can distinguish four 
local maxima of the SF intensities at Φ𝑆𝑆  ~ 3°, 1.5°, −0.3° and −2°. The output an-
gles correspond to those of the four central red-pink lines, i.e. the SF beams, in Fig. 
5.11a. 

Assuming that the pump is one of the two waves driving the SFG, the (approx-
imate) wavelength of the other can be calculated from the experimental value of the 
SFG wavelength of 575 nm. This gives the wavelength of 𝜆𝑖 = 2.01 µm, i.e. an idler 
wave was driving the SFG together with the pump wave. The presence of this idler 
wavelength was verified, using the near to mid-IR scanning monochromator described 
in section 4.1.1. Knowing the idler and pump wavelengths and the pump input angle, 
the idler propagation angle can be calculated using the numerical model presented in 
section 5.2.2. 

Using these four parameters, a Ewald sphere construction is employed to find 
out which RLVs that could possibly phase match the four SFG processes, correspond-
ing to each of the four SF beam. The momentum conservation equation describing a 
phase-matched SFG process is  

 𝐆𝑙,𝑚 + 𝐤𝑖 + 𝐤𝑝 = 𝐤𝑆𝑆 . (5.5) 

𝐆𝑙,𝑚 is the RLV that phase matches the particular SFG process in question and 
ki, kp, and kSF are the wave vectors involved in the conversion.  
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The Ewald sphere construction is presented in Fig. 5.12b, as a plot in the re-
ciprocal space made in the same manner as Fig. 3.4. The grid points describe the re-
ciprocal lattice of the NPC. The resulting vector of 𝐤𝑖 + 𝐤𝑝 is positioned so that it has 
its end point on a grid point marked in red. From this reciprocal lattice point the coor-
dinate numbering in the (𝐆1 ≡ 𝐆10, 𝐆2 ≡ 𝐆01) base emanates. The Ewald sphere is 
drawn with its centre on the opposite end point of the vector 𝐤𝑖 + 𝐤𝑝 (not shown in 
Fig. 5.12b because the vector is too long). The Ewald sphere of the 575 nm SFG (pur-
ple curve) is close to intersecting four grid points in the reciprocal space, meaning that 
SFG in the vicinity of this wavelength can potentially be phase matched by the RLVs 
corresponding to the four grid points. The four RLVs suggested by this single-
wavelength modelling are inserted, one by one, into Eq. (5.5). The equation is solved 
numerically for each RLV, to give the exact SF wavelength and propagation angle for 
the SF beam that is supported by the RLV in question. 

 
Fig. 5.12 a) 2D colour map of the recorded powers of the cascaded SFG, in 
MgSLT NPCs of 22.8 μm QPM period, driven by a pump wave at λp = 806 nm 
and an idler wave at λi ≈ 2.01 μm originating from coupled OPG. The pump in-
put angle was 𝜃𝑝~0.6°. The SF powers are displayed in normalised logarithmic 
scale, as function of wavelength (𝜆𝑆𝑆) and output angle (Φ𝑆𝑆). b) Numerical re-
sults from Ewald sphere predictions. The tip of the pump wave vector (blue) and 
the Ewald sphere of a λSF = 575 nm SF wave vector (purple) are shown, cf. Fig. 
3.4. The number pairs denote the lattice coordinates in the (𝐆1 ≡ 𝐆10, 𝐆2 ≡ 𝐆01) 
base. The lattice coordinates can be translated into reciprocal coordinates, i.e. 
μm-1 units, using Eqs. (3.32) and Λ = 22.8 μm.  

The predicted propagation angles and the wavelengths of the four SF beams 
are: Φ𝑆𝑆 = 3.0° , 1.4° , −0.3° , −2.0°  and 𝜆𝑆𝑆 = 573.6 nm , 574.7 nm , 574.6 nm , 
573.4 nm. The predicted output angle values for the SF beams match well the exper-
imentally recorded values. By examining Fig. 5.12a more closely, one can note that 
the tendency for SF beams at larger propagation angles to display shorter wavelength 
is found also in the experimental results. In other words, both the predicted wave-
length and angle values are consistent with experiments.  
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To summarize this section, it has been showed that coupled OPG in 2D lattic-
es, in cascade with SFG, grants access to a broad spectral range in which waves can 
be generated, from the IR to the blue edge of the visible spectrum. This spectral flexi-
bility, in combination with the possibility to generate numerous discrete beams, 
demonstrates that by properly designing the 2D lattice complex sources of coherent 
light can be created. In addition, it has been shown by the examples in Fig. 5.11 that 
by simply changing the pump propagation direction, the spatial and spectral proper-
ties of the parametric output can be altered. 
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Chapter 6 

Conclusions and outlook  

 

6.1 Broadband optical parametric generation 

Ultra-broadband parametric gain has been demonstrated in periodically poled MgSLT 
(PPMgSLT), pumped with picosecond pulses through downconversion to the vicinity 
of the zero GVD point of the material, as described in section 4.1. OPG bandwidths as 
broad as 185 THz (at 10 dB), spanning the full spectrum from 1.1 to 3.7 μm, were 
achieved with a pump at 860 nm in PPMgSLT with 25 μm QPM lattice period. This is 
so far the broadest band generated in parametric downconversion in the near to mid-
IR spectral range. There are two previously demonstrated cases of broadband para-
metric gain of comparable width centred at 650 nm and 990 nm [36, 90], but none in 
the spectral region of the results reported here. Comparing the results in PPMgSLT to 
previous demonstrations of broadband band gain in the same spectral region, using 
PPLN or PPKTP, the OPG in PPMgSLT displayed a more spectrally flat response.  

A natural development of this work would be to use the ultra-broadband gain 
for coherent amplification of ultrashort pulses. Using a coherent seed source of broad 
bandwidth, e.g. the self-phase modulation when focusing an ultrashort pulse into a 
sapphire crystal [100], ultra-broadband amplification and subsequent compression can 
be achieved. In the investigated case of broadband generation in PPMgSLT the gain 
band can theoretically support transform-limited pulses down to 2.4 fs duration, if 
exploiting both signal and idler wavelengths. 

A second application that could be envisioned involves the creation of a 
source that can generate selected wavelength(s) from the entire super-octave-spanning 
interval of the OPG process. The PPMgSLT crystal would then be used as an OPG 
device after which a system for spectral selection is placed. A further improvement of 
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the source could be to use a second PPMgSLT crystal as a parametric amplifier, seed-
ed by the output from the spectral selection system. 

The OPG experiments were performed with a Ti:sapphire system as pump 
source, since its wide tunability permitted a large interval of pump wavelengths to be 
investigated. Having identified the optimal pump wavelengths for ultra-broadband 
gain, around 860 nm, a different pump source can be selected from e.g. a power per-
spective. For instance one could instead choose a Cr3+:LiSrAlF6 laser [101], which 
would improve pump efficiency, something that both of the above applications could 
benefit from. 

In general MgSLT is a promising material with respect to increasing the gen-
erated powers, through pump power upscaling. The material has displayed good pow-
er-handling capabilities at high pump powers [73] and its low coercive field offers the 
possibility to pole thicker crystals thus creating periodically poled devices with larger 
apertures. 

Moreover, the range of wavelengths that can be generated could be afforded 
through super-structured QPM lattice designs [102], albeit at the cost of a reduction in 
efficiency and an increase in fabrication complexity. 

6.2 Quadratic cascading in broadband parametric 
generation 

Experimental investigations and numerical simulations have shown it possible to re-
verse the energy flow of SFG processes, subsequent to broadband OPG, by reducing 
the pump pulse duration, as described in section 4.2. In so doing the temporal walk-
off initiates downconversion of the SF wave back to the OPG band, turning the gain 
dips, typically observed in broadband OPG using QPM materials, into peaks. 

Having identified the link between pump pulse duration and the shape of the 
SFG resonances in the spectral profile of the broadband OPG, it is possible to find an 
optimal pump pulse duration to minimise the impact of the parasitic SFG resonances. 
This is particularly interesting for systems that focus on delivering tunable optical 
power over a broad spectral range, since in that context it is important to supply a 
constant output power across all wavelengths. 

The reduction of the impact of the parasitic SFG resonances is also appealing 
for ultrashort pulse amplification systems. A flat gain spectrum is desirable to balance 
the contribution from the different spectral components when amplifying ultrashort 
pulses, in order to sustain a temporal profile that is as close as possible to transform 
limited. 

The proof-of-principle demonstration of the cascading control of the SFG res-
onances has been performed in a uniform QPM lattice. To complement such optical 
tuning capabilities, one could exploit also QPM engineering to suppress parasitic up-
conversion processes. Nevertheless, this would still be a permanent feature altering 
the device response, not adjustable after fabrication, but it could well be used in con-
junction with the adaptable method of reducing the impact of SFG through pump 
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pulse duration. In this way the finer modifications to the SFG features could be opti-
cally controlled through the pump beam properties. Such optical control of conversion 
processes, offered by NPCs, is of great appeal since it provides flexibility and the 
possibly of fast manipulation of the conversion. 

6.3 Coupled optical parametric generation in 
2D QPM lattices 

Coherent cross-seeding between two OPG processes in a nonlinear photonic crystal 
(NPC) has been experimentally demonstrated, as described in sections 5.1 and 5.2. 
The OPG response has been investigated as function of the pump wavelength and 
input angle, by mapping the spectral and angular characteristics of the generated sig-
nals and coupling it with a theoretical framework. It has been shown that the OPG 
waves exhibit spectral and angular qualities lacking counterpart in 1D QPM geome-
tries. The spectral locking of the waves involved in the two OPG processes, owing to 
the shared beam, exemplify the engineering capabilities offered by 2D NPCs in fre-
quency downconversion and holds promise for novel applications. 

The identical spectral contents of the simultaneously generated twin-beams 
could, for instance, be exploited to copy the information carried by a seed beam by 
creating a replica in the form of a second beam. The NPC could then serve as a com-
pact device for e.g. routing optical signals [103, 104], with the added advantage com-
pared to the compact devices in e.g. Ref. [105] of providing amplification for both the 
seed wave and its copy. Cascading several NPCs could extend the idea to multiport 
parametric devices. 

Both shared signal and shared idler coupled OPG configurations have been 
examined. By adjusting the pump input angle it is possible to alter significantly the 
spectral and angular properties of the output, as seen in section 5.2. For instance, the 
twin-beam generation can be achieved either in the mid-IR or near IR spectral re-
gions. The spectral and angular properties of the shared beam and twin-beams can 
also be finely tuned, as predicted by the developed theoretical framework. 

Further prospects are the realisation of dual-frequency optical parametric os-
cillators and investigating sources based on the multi-photon entanglement of the 
coupled OPG. Very recently, sources of two-photon entanglement have been proposed 
and demonstrated for degenerate downconversion based on the same coupled OPG 
interaction scheme presented in this thesis, with a translation to a spectral range more 
convenient for single-photon experiments [106, 107]. The reports were rapidly fol-
lowed by a comprehensive experimental demonstration of sources of single-photon 
and two-photon entangled states in hexagonally poled LiTaO3 crystals [108], also 
based on the coupled OPG interaction scheme. This proves the potential of coupled 
OPG in NPCs to develop compact sources for pioneering quantum mechanical inves-
tigations based on multi-mode entangled states [108]. 

The current interest in 2D NPCs is substantiated by other groups investigating 
coupled downconversion processes, in both LiNbO3 and LiTaO3. Two reports have 
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been published where several minor coupled downconversion processes were ob-
served as a side-effect to the demonstration of compact Q-switched intracavity con-
version devices which was the key result of the reports [109, 110]. Only higher order 
RLVs phase matched the SS-OPG and SI-OPG processes, consequently limiting in-
trinsically the maximum possible conversion efficiency. A third report focusing solely 
on SI-OPG in rectangular lattices has been published very recently [111], reproducing 
the experiments in the symmetric pumping configuration described in Fig. 5.6. 

A broad range of wavelengths, from the mid-IR to the blue edge of the visible 
spectrum, was demonstrated through the combination of coupled OPG and cascaded 
SFG in the same lattice, as described in section 5.3. The wealth of higher order recip-
rocal lattice vectors of the NPC offers many possibilities to phase match multiple pro-
cesses, which can generate multiple coherent beams at multiple wavelengths in a sin-
gle compact device. 

Lastly, SFG is intrinsically dependent on the coherence of the involved light 
waves. Thanks to this, the SFG could provide a means to investigate the coherence 
properties of the waves generated by the coherently coupled downconversion pro-
cesses [112]. However, the complexity of such a method would plausibly render it 
less appealing than investigating directly the waves of the coupled downconversion 
by other means. 
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