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Abstract

Material and structure engineering are increasingly employed in active optical me-
dia, in this context defined as media capable of providing laser or/and optical
parametric gain. For laser materials, the main aim of the engineering is to tailor
the absorption and emission cross sections in order to optimise the laser perfor-
mance. At the same time, the engineering also results in a collateral modification
of the material’s nonlinear response. In the first part of this work, the nonlinear
index of refraction is characterised for two crystallographic forms of laser-ion doped
and undoped double-tungstate crystals. These laser crystals have broad gain band-
widths, in particular when doped with Yb3+. As shown in this work, the crystals
also have large Kerr nonlinearities, where the values vary significantly for different
chemical compositions of the crystals. The combination of a broad gain bandwidth
and a high Kerr nonlinearity makes the laser-ion doped double tungstates excel-
lent candidates to employ for the generation of ultrashort laser pulses by Kerr-lens
modelocking.

The second part of the work relates to the applications of engineered second-
order nonlinear media, which here in particular are periodically-poled KTiOPO4

crystals. Periodic structure engineering of second-order nonlinear crystals on a sub-
micrometre scale opens up for the realisation of novel nonlinear devices. By the
use of quasi-phase matching in these structures, it is possible to efficiently down-
convert a pump wave into two counterpropagating parametric waves, which leads
to a device called a mirrorless optical parametric oscillator. The nonlinear response
in these engineered submicrometre structures is such that the parametric wave that
propagates in the opposite direction of the pump automatically has a narrow band-
width, whereas the parametric wave that propagates with the pump essentially is
a frequency-shifted replica of the pump wave. The unusual spectral properties and
the tunabilities of mirrorless optical parametric oscillators are investigated.

Keywords: nonlinear optics, nonlinear index of refraction, double tungstates, pe-
riodic poling, KTiOPO4, quasi-phase matching, parametric down-conversion, mir-
rorless optical parametric oscillators
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Sammanfattning

I den här doktorsavhandlingen studeras optiska ickelinjäriteter i material som kan
manipuleras för att förändra deras optiska egenskaper. Materialen som avses är
antingen laserkristaller, som används för direkt framställning av laserljus, eller kri-
staller med en andra ordningens ickelinjäritet, som används för frekvenskonvertering
av befintliga laserstrålar.

Laserkristallerna som behandlas i den här avhandlingen är dubbelvolframat, och
även något dubbelmolybdat, med kemisk beteckning MT(XO4)2. M är här natrium
eller kalium, T är en trevärd katjon och X är antingen volfram eller molybden.
Dessa kristaller har de senaste åren fått en ökad användning som värdmaterial
för laserjoner, såsom Yb3+, Nd3+ och Tm3+. I avhandlingen visas att det icke-
linjära brytningsindexet, n2, i dessa kristaller är relativt högt och också har en
relativt stor variation mellan olika kemiska och kristallografiska sammansättning-
ar. De uppmätta värdena på n2 är mellan 13 · 10−16 cm2/W och 68 · 10−16 cm2/W.
Ickelinjäriteten är tillräckligt stor för att kunna användas för att modlåsa lasrarna
enbart med hjälp av den optiska Kerr-effekten i laserkristallerna, vilket innebär
att det ickelinjära brytningsindexet ger upphov till att kristallerna fungerar som
ickelinjära linser. När de dubbelvolframaten dopas med Yb3+ är emissionstvärsnit-
tet tillräckligt brett för att kunna generera pulser som är betydligt kortare än 100
femtosekunder. Värdena på n2 för dubbelvolframaten är betydligt högre än det för
safir, 3.1 · 10−16 cm2/W, som dopat med titan är den lasertyp som idag främst
använder den optiska Kerr-effekten för modlåsning.

I den andra delen av avhandlingen behandlas den ferroelektriska kristallen
KTiOPO4. Med hjälp av polning av kristallen är det möjligt att lokalt byta tecken
på kristallens andra ordnigens ickelinjäritet. När det här görs periodiskt i kristal-
len så ändras de ickelinjära egenskaperna och kristallen kan användas för effektiv
frekvenskonvertering av laserljus genom kvasifasanpassade processer. Med dagens
teknologi kan perioderna göras under en mikrometer, vilket gör det möjligt att para-
metriskt nedkonvertera pumpljus till två parametriska vågor som färdas i motsatta
riktningar. Tillskillnad från det normala fallet när båda parametriska vågorna fär-
das i samma riktning som pumpljuset, så leder de motpropagerande parametriska
vågorna till optisk parametrisk oscillation utan behov av speglar för återkoppling.
Istället sker återkopplingen automatiskt mellan de motpropagerande parametriska
vågorna. I avhandlingen visas att den här typen av ljuskälla har unika spektrala
egenskaper som automatiskt leder till att det genererade ljuset är spektralt smal-
bandigt, vilket inte sker i det normala fallet då båda parametriska vågorna färdas
med pumpljuset. Våglängden på det parametriska ljuset som färdas i motsatt rikt-
ning mot pumpljuset är starkt kopplat till periodiciteten av modulationen av den
ickelinjära koefficienten och kan bara ändras marginellt genom att byta våglängd på
pumpljuset. Den parametriska vågen som färdas i samma riktining som pumpljuset
får i det närmaste pumpljusets spektrala egenskaper.
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Chapter 1

Introduction

1.1 Background

Sources of coherent electromagnetic radiation at optical frequencies have applica-
tions in many areas, such as material processing, telecommunication, optical stor-
age, spectroscopy and laser surgery. These sources are either lasers or laser-pumped
devices based on nonlinear optics. A laser consists of a gain medium, in which the
laser light is amplified, and a cavity, in which the laser light is resonant. The
amplification can only occur when the gain medium is pumped, which means that
energy somehow has to be externally supplied. This could be done e.g. electrically,
as for diode lasers, or optically, as for solid-state lasers. The energy supplied to
the gain medium can be released in the form of laser light, as well as in the form
of unwanted heat. Since the first laser action in ruby in 1960 [1], lasing has been
achieved in many different media. These include gases, like the HeNe laser [2],
rare-earth ions, like Nd3+ [3] and Yb3+ [4] in solid-state hosts, semiconductors [5]
and liquids, like organic dyes [6]. For the control of the laser output in the time
domain, Q-switching [7] and modelocking [8] can be applied to generate pulses with
length of around nanoseconds and down to femtoseconds, respectively.

The frequency of the emitted laser light is determined by the energy-level struc-
ture of the gain medium. Solid-state lasers cover a large part of the near-infrared
spectral region with Nd3+ and Yb3+ emitting around 1 µm, Er3+ around 1.5 µm
and Ho3+ and Tm3+ around 2 µm. The laser light can by the use of nonlinear optics
be converted in the frequency domain in order to fill the gaps between the different
emission lines. Through interactions with a nonlinear polarisation, in particular a
second-order nonlinear polarisation, light at twice the frequency of the incoming
laser light can be generated through second-harmonic generation (SHG), which was
demonstrated in 1961 [9] shortly after the invention of the laser. Similarly, the mix-
ing of two laser beams with distinct frequencies in a nonlinear medium may lead
to sum-frequency generation (SFG) [10] or difference-frequency generation (DFG)

3



4 CHAPTER 1. INTRODUCTION

[11]. By placing a nonlinear medium inside a resonant cavity, an optical parametric
oscillator (OPO) [12] is formed, which can be used to generate new frequencies.
OPOs normally have a large tuning range and can be used to generate coherent
radiation in spectral regions where no suitable laser transitions are found. All these
nonlinear processes require rather high intensities and therefore need lasers.

1.2 Engineering of laser media

The energy levels for laser ions in solid-state host materials are affected by the crys-
tal potential at the lattice sites where the laser ions are situated. The host material
thereby modifies the magnitude and the spectrum of absorption and emission cross
sections in the laser ion, which to some extent can be tailored by the synthesisation
of suitable host materials. Apart from leading to host materials with the desired
emission and absorption properties, the laser-material engineering may also lead to
a collateral modification of the nonlinear response.

The double tungstates constitute a group of crystals to recently gain prominence
as host materials for laser ions. These crystals are characterised by large spectro-
scopic cross sections and are very suitable for spectral engineering. The crystals
are polystructural and crystallise in monoclinic or tetragonal forms. In the tetrago-
nal form, the crystals are disordered, meaning that two different ions are randomly
distributed on the same lattice sites, which leads to inhomogeneously-broadened
cross sections for Yb3+ with spectral widths that can support the generation of
pulses with a temporal length well below 100 fs. Together with the broad cross
sections, the double tungstates have, as determined in this work, rather high Kerr
nonlinearities. The combination of broad cross sections and a high Kerr nonlinear-
ity makes these crystals excellent candidates for the generation of ultrashort laser
pulses by Kerr-lens modelocking [13]. It is then important to know the values of the
Kerr coefficients in order to properly design the laser cavities. It is shown here that
there is a rather large variation in the Kerr nonlinearity between different chemical
compositions, which can be exploited for future material-design approaches.

1.3 Engineering of second-order nonlinear media

Unlike in laser media, where the nonlinear response is collaterally modified when
the cross sections are engineered, modification of the nonlinear response is the main
aim of engineering of second-order nonlinear media. The engineering of second-
order media in this thesis is structure engineering in ferroelectric crystals. By
locally varying the sign of the second-order nonlinear coefficient, typically in a
periodic manner, the spectral properties of the nonlinear processes in the medium
are modified as a result of quasi-phase matching (QPM) [14]. The ferroelectric
medium that is used here is KTiOPO4 (KTP), both in its pure form and also
doped with a small concentration of rubidium. The small amount of Rb+ replacing
K+ only has minor effects on the nonlinear response of KTP, but it modifies the
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properties of ferroelectric-domain switching in the material and makes the crystals
easier to work with.

Periodic switching of ferroelectric domains on a submicrometre scale leads to the
possibility to construct new types of nonlinear devices. One example is a mirror-
less optical parametric oscillator (MOPO). Unlike a conventional OPO, which relies
on feedback from a resonant cavity, a MOPO is based on a distributed-feedback
mechanism that is automatically established between two counterpropagating para-
metric waves. This concept was proposed in 1966 [15], but was not experimentally
realised until 2007 [16]. The reason for this 41-year delay between the idea and
the realisation is the difficulty to construct a domain grating with submicrometre
periodicity that is uniform on the length scale of millimetres in one spatial direction
and hundreds of micrometres in the other two directions. The nonlinear response
in the engineered crystal with submicrometre periodicity has the useful property
that it automatically leads to the generation of spectrally-narrow parametric waves.
This is normally not the case in conventional OPOs, where the output spectra are
wide, unless narrowed down by e.g. etalons [17, 18], surface gratings [18] or volume
Bragg gratings [19].

1.4 Object of this thesis

The object of this thesis is first to study the nonlinear response in two types of
double-tungstate laser crystals that are promising candidates as gain media for the
generation of ultrashort pulses. The other part of the thesis deals with the structur-
ing technology of KTiOPO4, which leads to the realisation of a mirrorless optical
parametric oscillator in periodically-poled KTiOPO4 with a submicrometre peri-
odicity. The spectral properties and the tunability of this device are investigated.

1.5 Outline of this thesis

This thesis is based on the original peer-reviewed publications paper I to paper VI,
which are reproduced in Part II. In Part I, Chapter 2 gives an introduction to
nonlinear optics, with the focus on quasi-phase-matched second-order nonlinear
processes, optical parametric oscillators and the effects of a nonlinear index of
refraction. Chapter 3 is based on paper I and paper II and deals with the measure-
ment of the nonlinear index of refraction in different double-tungstate laser crystals.
Domain engineering in KTiOPO4 for frequency conversion of optical beams is de-
scribed in Chapter 4, together with the findings in paper III. Chapter 5 deals with
mirrorless optical parametric oscillators realised in periodically-poled KTiOPO4

with a submicrometre periodicity. The focus is on the spectral properties and on
the tunabilities, which are based on the findings in paper IV, paper V, and paper VI.
A conclusion of the work is given in Chapter 6.





Chapter 2

Light-matter interactions

A classical picture of light-matter interactions is that the electric field of the light
induces oscillating dipoles in the medium in which it propagates. The dipoles ra-
diate secondary light at their oscillation frequencies, which in linear media are the
same frequencies as those in the incoming light. The effect of linear interactions is
a dispersion relation and the light travelling through the medium is slowed down.
In nonlinear media, the response of the induced dipoles is nonlinear and the dipoles
also oscillate, and thereby radiate, at frequencies that are not present in the incom-
ing light, which may lead to the generation of new frequencies.

This chapter gives a brief general overview of optical beams and a frequency-
domain description of second-order and third-order nonlinear optics, with a focus on
the processes and techniques that are relevant in this thesis: quasi-phase matching,
optical parametric oscillation and the effects of a nonlinear index of refraction. The
concepts described in this chapter are mainly based on the books by Yariv [20],
Boyd [21], and Sutherland [22], in which more complete descriptions are found.
The dipole approximation is used and all quantities are given in SI units.

2.1 The optical field

Being an electromagnetic wave, light is characterised by its electric and magnetic
components, Ẽ(r, t) and B̃(r, t), which evolve in space and time in accordance
with Maxwell’s equations. The fields interact with charged particles in matter,
but the light-matter interactions at optical frequencies are significantly stronger
for the electric-field component and the magnetic interactions can normally be
disregarded. For the applications described in this thesis, the interacting light will
be quasi-monochromatic laser beams with electric fields of the form

Ẽ(r, t) = 1
2 E(r, t)e−iωt + c.c., (2.1)

7
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where E(r, t) denotes a complex amplitude that is slowly varying in time in com-
parison with the exponential containing the the carrier frequency, exp(−iωt). The
complex conjugate, c.c., is added to ensure that the electric field is real. To-
gether with E(r, t), a spatially slowly-varying amplitude, A(r, t), is defined as
E(r, t) = A(r, t) exp(ik · r), where k is the wave vector that defines the propa-
gation direction of the beam and has the magnitude k = ωn/c = 2πn/λ. The
beams are referred to as quasi-monochromatic, meaning that the width, ∆ω, of the
temporal Fourier transform of Ẽ(r, t) is small compared to the carrier frequency,
∆ω/ω ≪ 1.

At optical frequencies, the oscillations of Ẽ(r, t) are too rapid to detect with
electronic detection systems. However, Ẽ(r, t) can be reconstructed by the use
of attosecond pulses [23], but the amplitude of Ẽ(r, t) is more often indirectly
determined through the intensity, I(r, t), which is proportional to the temporal
average of the square of the electric field,

I(r, t) = 1
2 ε0cn|A(r, t)|2. (2.2)

The direction of Ẽ(r, t) is referred to as the polarisation of the optical wave, which
in vacuum and in isotropic media lies in a plane perpendicular to the propagation
direction k. The beams considered in this thesis are linearly polarised, meaning that
Ẽ(r, t) oscillates in the same direction at all points in the beam. The polarisation
direction is important for many applications in nonlinear optics.

The total optical field may be a superposition of several quasi-monochromatic
waves,

Ẽ(r, t) =
∑

n

Ẽn(r, t) = 1
2

∑

n>0

E(ωn)e−iωnt + c.c., (2.3)

where the complex amplitudes now are denoted E(ωn) ≡ En(r, t). E(ωn) is still a
function of the spatial coordinate, but the dependence on r is not explicitly written
out. The complex conjugates are of the form E∗(ωn) exp(iωnt), which can be seen
as terms of negative frequency. The sum can then be written with a more compact
notation to sum over both positive and negative frequencies,

Ẽ(r, t) = 1
2

∑

n

E(ωn)e−iωnt, (2.4)

where E(−ωn) = E∗(ωn).

2.2 Spatial and temporal shapes of A(r, t)

If A(r, t) consists of only one quasi-monochromatic wave, the spatial and temporal
parts can often be separated, A(r, t) = Ar(r)At(t). The simplest spatial shape of
A(r, t) is a plane wave that extends to infinity in the transverse directions. With
the propagation direction defined as the z direction, the spatial part is then written
Ar(r) = Ar(z), where the amplitude is constant for a freely-propagating wave and
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has a z dependence if it experiences gain or attenuation. Plane waves serve as first
approximations of Ar(r) for collimated laser beams. As the transverse dimensions
can be disregarded, the calculations are greatly simplified and analytical solutions
can be obtained. A more realistic spatial shape for a free-propagating focused
beams is a TEM00 beam, where Ar(r) has a Gaussian profile perpendicular to
the propagation direction. The characteristics of this beam are determined by the
vacuum wavelength, the index of refraction and the beam size at the waist. A
beam propagating in the z direction with the beam waist located at z = 0 has an
amplitude of the form

Ar(ρ, z) = Ar,0
w0

w(z)
exp

[

− ρ2

w2(z)
+ i

kρ2

2R(z)
+ iζ(z)

]

, (2.5)

where ρ is a transverse radial coordinate, Ar,0 is the on-axis peak amplitude and
w0 is the beam waist radius, defined as the distance where the amplitude of the
electric field is 1/e times the on-axis value. w0, λ and n define the Rayleigh length,
z0 = πw2

0n/λ, being the distance from the beam waist where the beam area is
twice as big as at the waist. The beam radius, w(z), the wavefront radius of
curvature, R(z) and the Gouy phase, ζ(z), vary along the beam propagation axis
as w2(z) = w2

0[1+(z/z0)2], R(z) = z +z2
0/z and ζ(z) = − arctan (z/z0). Away from

the waist, the beam spreads due to diffraction and the curvature of the wavefront
increases from plane to spherical. In the far field, z ≫ z0, the divergence angle
of the beam is θ ≃ λ/(πw0n). The radial amplitude distribution and the beam
divergence of a Gaussian beam are illustrated in Fig. 2.1.

-w(z) w(z)

(b)(a)

1/e

1

2w(z)  

 z0

z

w(z)

-z0 

w0

Fig. 2.1: (a) The relative amplitude of a Gaussian beam as function of the transverse
coordinate, (b) the beam radius as function of the distance from the beam waist.

In the time domain, the beam amplitude can be either continuous or pulsed. If
pulsed, it can often be approximated by a Gaussian pulse with the amplitude

At(t) = At,0 exp
[

−2 ln 2 (t/∆t)2 + iφ(t)
]

, (2.6)

where ∆t is the pulse width defined as the full width at half maximum (FWHM)
of the intensity It(t) ∝ |At(t)|2 and φ(t) is the phase modulation of the pulse. If
the pulse propagates in a medium with refractive index n, the phase velocity is

v =
ω

k
=

c

n
, (2.7)
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whereas the pulse moves with the group velocity,

vg =
∂ω

∂k
=

c

ng
, (2.8)

where the group index in terms of vacuum wavelength is

ng = n − λ
∂n

∂λ
. (2.9)

The spectrum of the pulse generally depends on the particular pulse shape, the pulse
width and the phase modulation. With the Fourier transform of At(t) defined as

Aω(ω) = F [At(t)] =
∫ ∞

−∞

At(t)eiωtdt, (2.10)

the spectral width of the pulse is the width ∆ω of Iω(ω) ∝ |Aω(ω)|2. For a given
temporal width, there is a lower bound of the spectral width, and vice versa. For
linearly-chirped Gaussian pulses, i.e. pulses with a quadratic temporal phase mod-
ulation, φ(t) = bt2, the time-bandwidth product of the spectral and temporal widths
∆t and ∆ω, defined as the FWHM widths of It(t) and Iω(ω), is given by

∆t∆ω = 4 ln 2
√

1 + (b/a)2, (2.11)

where a ≡ 2 ln 2/(∆t)2. For a given bandwidth, the chirp broadens the temporal
shape of the pulse and moves the high frequencies to the trailing end of the pulse for
a positive chirp (b > 0) and to the leading end for a negative chirp (b < 0). With no
chirp (b = 0), ∆t∆ω is minimised, and the pulse is referred to as transform limited.

2.3 Induced electric polarisation

When light propagates in a dielectric material, the electric field exerts forces on
the charges in the medium, which results in a separation of positive and negative
charges. For electric fields at optical frequencies, the displaced charges are mainly
electrons, but ions are displaced to a significant extent for lower frequencies in the
far infrared. The separated charges give rise to induced electric dipole moments in
the material and the average amount of induced dipole moment per unit volume is
referred to as the induced electric polarisation of the medium, P̃ (r, t), which is a
function of the external electric field and the polarisability, which is the material’s
ability to displace charges. At low electric field strengths, the material response is
to a very good approximation linear, which in principle is the case for light that is
not in the form of focused laser beams. When nonlinear effects occur, the induced
polarisation can often be expressed as a power series in the applied electric field,

P̃ =
∑

N

P̃(N) = P̃(1) + P̃NL, (2.12)
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where P̃(1) is the linear polarisation and the remaining terms are the nonlinear
polarisation, P̃NL. The terms P̃(N) contain N factors of the electric field and
mixing of N frequencies that are present in Ẽ. Normally, the terms with N ≥ 4
are too weak to be of interest and the power series can be terminated. As for the
electric field, P̃(N) can be decomposed into complex amplitudes and temporally
oscillating terms,

P̃(N) = 1
2

∑

n

P(N)(ωn)e−iωnt, (2.13)

where the sum is over both positive and negative frequencies. The N th-order electric
susceptibility, χ(N), is defined as the quantity that relates the complex amplitude
of P̃(N) with the complex amplitude of Ẽ. With both E(ωn) and P(N)(ωn) being
three-dimensional vectors, χ(N) is a tensor of rank N + 1 with 3N+1 components.
All the components are not necessarily independent and the tensors reflect the
structural symmetry of the material, meaning that many components are related
for highly-symmetric structures, such as cubic crystals. The Cartesian components
of the first three terms P(N) are written,

P
(1)
j (ωα) = ε0

∑

k

χ
(1)
jk (−ωα; ωα)Ek(ωα), (2.14)

P
(2)
j (ωα) = 1

2 ε0

∑

kl

∑

(βγ)

χ
(2)
jkl(−ωα; ωβ , ωγ)Ek(ωβ)El(ωγ), (2.15)

P
(3)
j (ωα) = 1

4 ε0

∑

klm

∑

(βγδ)

χ
(3)
jklm(−ωα; ωβ , ωγ , ωδ)Ek(ωβ)El(ωγ)Em(ωδ). (2.16)

With this notation, the first arguments in the susceptibilities is minus the frequency
of the induced polarisation and all arguments sum to zero. For the second-order
case, this means that χ

(2)
jkl(−ωα; ωβ , ωγ) induces a part of the polarisation P

(2)
j (ωα)

from the electric fields Ek(ωβ) and El(ωγ), where the frequencies ωβ and ωγ obey
−ωα +ωβ +ωγ = 0. This is repeated for all such frequencies by the summation over
(βγ). Then the summation is done over the Cartesian indices k and l to obtain
the total polarisation P

(2)
j (ωα). The P

(1)
j (ωα) and P

(3)
j (ωα) terms are obtained

analogously, with the difference for P
(1)
j (ωα) that it only contains the frequencies

of the applied electric field. The effects of P̃(1), P̃(2) and P̃(3) are discussed in the
three subsequent sections.

Through Maxwell’s equations, the nonlinear part of the polarisation enters the
wave equation as a source term for frequencies that are not present in the applied
electric field. In a homogeneous dielectric medium with no free charges or currents,
the wave equation for Ẽ reads

∇ × ∇ × Ẽ +
n2

c2

∂2Ẽ

∂t2
= −µ0

∂2P̃NL

∂t2
. (2.17)

The wave equation is also fulfilled for each frequency component of Ẽ and the
corresponding term in P̃NL by making the substitutions Ẽ → 1

2 E(ωn) exp(−iωnt)
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and P̃NL → 1
2 PNL(ωn) exp(−iωnt). Frequency components that are not initially

present in Ẽ can then be generated through the corresponding components in P̃NL.
For monochromatic plane waves travelling in the z direction, Eq. (2.17) simplifies
to [

d2A(ωn)
dz2

+ 2ikn
dA(ωn)

dz

]

eiknz = −µ0ω2
nP NL(ωn), (2.18)

for each frequency component ωn present in P̃NL. Often the slowly-varying envelope
approximation (SVEA) can be used and the second-order derivative in Eq. (2.18)
is neglected, which requires that |d2A(ωn)/dz2| ≪ |2kndA(ωn)/dz|.

2.4 Linear optics

Linear optical phenomena are related to the material’s index of refraction and ab-
sorption coefficient. The phase velocity of the light is slowed down by a factor of
1/n and around certain frequencies absorption occurs. The Cartesian components
of the induced polarisation are then given by Eq. (2.14), where χ

(1)
jk (−ωα; ωα) often

is written χ
(1)
jk (ωα). In glasses, liquids, gases and cubic crystals, the linear suscepti-

bility tensor is isotropic, χ
(1)
jk (ω) = χ(1)(ω)δjk, which means that the tensor can be

replaced by the scalar quantity χ(1)(ω), whose real and imaginary parts are related
to the index of refraction, n(ω), and to the absorption coefficient with respect to
intensity, α(ω), as

n(ω) =
√

1 + Re
[
χ(1)(ω)

]
, (2.19)

α(ω) =
ωIm

[
χ(1)(ω)

]

n(ω)c
. (2.20)

For non-cubic crystals, as for orthorhombic KTiOPO4 (KTP) and the tetragonal
and monoclinic double tungstates studied in this thesis, the tensorial nature of χ(1)

needs to be taken into account and the expression for the refractive index becomes
more complicated. At frequencies where the material is transparent, the compo-
nents of χ(1) are real and it can be shown that the tensor is symmetric, meaning that
χ

(1)
jk (ω) = χ

(1)
kj (ω) in any matrix representation. The eigenvalues of a symmetric

matrix are always real and the eigenvectors corresponding to different eigenvalues
are orthogonal and define the principal coordinate axes. The Cartesian components
of any susceptibility tensor are here always given in the principal coordinate system.
In the basis of eigenvectors, the matrix representing χ(1) is diagonal. Beams that
are polarised along one of the principal axes j ∈ {x, y, z} experience a refractive
index of

nj =
√

1 + χ
(1)
jj , (2.21)

which is called a principal index of refraction. In isotropic media, the three principal
indices are equal, nx = ny = nz. Crystals belonging to the tetragonal, hexagonal
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and trigonal crystal classes are referred to as uniaxial crystals, for which two of the
principal indices coincide, e.g. nx = ny 6= nz. The degenerate value is referred to
as the ordinary index, no, whereas the other index is referred to as the extraordi-
nary index, ne. For orthorhombic, monoclinic and triclinic crystal classes, the three
principal indices are distinct and the crystals are referred to as biaxial. The prin-
cipal indices, and the corresponding principal axes x, y and z, are conventionally
labelled so that nx < ny < nz. An alternative notation for the principal indices
in biaxial crystals is np < nm < ng, with the corresponding principal axes Np,
Nm and Ng, where p, m and g stand for petite, moyen and grand, being French
for small, intermediate and large, respectively. In orthorhombic and tetragonal
crystals, the principal axes always coincide with the crystallographic axes. In mon-
oclinic crystals, one principal axis coincides with the crystallographic b axis, i.e.
the crystallographic axis that is perpendicular to the other two in a monoclinic
system.

In uniaxial and biaxial crystals, the index of refraction experienced by a wave
can, at least for one of two orthogonal polarisation directions, be altered by chang-
ing the propagation direction in the crystal. This is important for nonlinear ap-
plications where phase matching is necessary in order to achieve efficient energy
exchange between waves of different frequencies, which is further explained in the
next section. The index of refraction experienced by a wave that propagates in a
direction with unit vector k̂ = sin θ cos ϕ êx + sin θ sin ϕ êy + cos θ êz is in biaxial
crystals given by a solution of

sin2θ cos2ϕ
n2

x

n2 − n2
x

+ sin2θ sin2ϕ
n2

y

n2 − n2
y

+ cos2θ
n2

z

n2 − n2
z

= 0. (2.22)

There are two possible solutions, n1 and n2, for each direction of k̂, correspond-
ing to waves with orthogonal polarisations. A wave containing components of both
polarisations will be divided into two waves that propagate at different phase veloc-
ities. Both indices are bound between the lowest and the highest principal indices,
nx < n1, n2 < nz.

In uniaxial crystals, the situation is simplified. The ordinary index is indepen-
dent of the propagation direction and the extraordinary index depends on the angle
θ between the propagation direction and the non-degenerate principal axis as

1
n2

e(θ)
=

cos2θ

n2
o

+
sin2θ

n2
e

. (2.23)

Dispersion

According to Eq. (2.20) and Eq. (2.19), the index of refraction and the absorption
coefficient are given as functions of the real and imaginary parts of χ(1), respec-
tively. Re

[
χ(1)(ω)

]
and Im

[
χ(1)(ω)

]
are not independent, but are related through

the Kramers-Kronig relations, with the consequence that the index of refraction
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predominantly changes around frequencies where the material is absorbing. Be-
tween absorption lines, the index of refraction can be mathematically modelled as
a Sellmeier expansion of the form

n2(λ) = 1 +
∑

j

Bjλ2

λ2 − C2
j

, (2.24)

where Bj is related to the strength of the absorption peak at the wavelength Cj .
Slight variations of this form of n2(λ) are common, e.g. with a correction term
proportional to λ2. To accurately model the refractive index in the visible and
near-infrared wavelength regions, it is normally enough to model with one or two
absorption lines in the ultraviolet and one in the mid or far infrared. The absorption
in the UV is due to electronic resonances and the absorption in the far infrared
is caused by lattice resonances. Between absorption lines, the refractive index
increases with ω (decreases with λ), which is known as normal dispersion. The
opposite behaviour, which occurs around the absorption lines is called anomalous
dispersion. A schematic sketch of the refractive index between two absorption lines
in shown in Fig. 2.2. In the UV, absorption occurs for frequencies larger than
the material’s bandgap, as light at those frequencies generate free electrons in the
material, which is schematically illustrated with the extension of the absorption
line towards higher frequencies.

near
IRmid

IR

 n
 

visiblefar
IR

n

UV

Fig. 2.2: A schematic graph showing one absorption line in the ultraviolet and one in the
far infrared. Variation in n predominantly occurs around the absorption lines. Between
the lines, n increases with ω (decreases with λ).

2.5 Second-order nonlinear interactions

At sufficiently high field strengths, the nonlinear terms in the induced polarisation
cannot be disregarded. This section deals with second-order nonlinear interactions,
also referred to as three-wave mixing, which originate from P̃(2). The expression
for its Cartesian components, Eq. (2.15), contains a summation over (βγ) . For



2.5. SECOND-ORDER NONLINEAR INTERACTIONS 15

each pair (βγ), there is either one or two contributions to ωα, depending on if the
fields at ωγ and ωβ are distinguishable. The sum can be written as a sum over all
distinct pairs βγ obeying ωα = ωβ + ωγ times a degeneracy factor, D(2),

P
(2)
j (ωα) = 1

2 ε0D(2)
∑

βγ

∑

kl

χ
(2)
jkl(−ωα; ωβ , ωγ)Ek(ωβ)El(ωγ). (2.25)

D(2) is the number of distinct permutations of the fields at ωβ and ωγ , meaning
that D(2) = 1 if Ek(ωβ) and El(ωγ) are taken from the same beam and have the
same frequency, and else D(2) = 2. Positive and negative frequencies are counted
as distinct. If the electric field contains the positive frequencies ω1 < ω2, together
with their negative counterparts as the fields are real, the second-order polarisation
contains all frequencies ωα of the form

ωα = σβωβ + σγωγ , (2.26)

where σβ , σγ ∈ {−1, 1} and ωβ , ωγ ∈ {ω1, ω2}. These components of P̃(2) are used
for second-harmonic generation (SHG) at 2ω1 and 2ω2, sum-frequency generation
(SFG) at ω1 +ω2, difference-frequency generation (DFG) at ω2 −ω1 and optical rec-
tification (OR) at zero frequency. Second-order nonlinear media are commonly used
for frequency conversions of laser beams and these nonlinear effects were demon-
strated shortly after the invention of the laser [1]. SHG was first demonstrated in
1961 [9], where a pulsed ruby laser was frequency doubled in quartz. Later that
year, SFG was realised by mixing of beams from two ruby lasers of slightly differ-
ent frequencies in triglycine sulfate [10]. DFG was first demonstrated by frequency
mixing between axial modes in a ruby laser in CdSe [11].

Symmetries of χ
(2)
jkl

There are 27 components χ
(2)
jkl for each involved frequency set (−ωα; ωβ , ωγ), but

due to different symmetry arguments, not all of these are independent. Since Ẽ and
P̃(2) are real quantities, the complex amplitudes at a positive frequency is related
to the complex amplitude at its negative counterpart. This leads to the general
relation that complex conjugation of χ

(2)
jkl inverts all the signs of the frequency

arguments,

χ
(2)
jkl(−ωα; ωβ , ωγ) = χ

(2)∗

jkl (ωα; −ωβ , −ωγ). (2.27)

Two contributions to P
(2)
j (ωα) in Eq. (2.25) are χ

(2)
jkl(−ωα; ωβ , ωγ)Ek(ωβ)El(ωγ)

and χ
(2)
jlk(−ωα; ωγ , ωβ)El(ωγ)Ek(ωβ). Both these terms use the same fields and

only their sum has a physical meaning. It is then convenient to split the total
contribution in two equal terms,

χ
(2)
jkl(−ωα; ωβ , ωγ) = χ

(2)
jlk(−ωα; ωγ , ωβ), (2.28)
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which is known as intrinsic permutation symmetry. This symmetry relation enables
the introduction of the degeneracy factor in Eq. (2.25). When the involved frequen-
cies are far from absorption resonances, additional symmetry relations apply. When
there is no absorption, the energy density stored in the second-order polarisation
is a constant quantity and it can be shown that the susceptibility then is real and
possesses full permutation symmetry, meaning that the indices can be permuted
freely, as long as the frequency components also are permuted in the same way, i.e.,

χ
(2)
jkl(−ωα; ωβ , ωγ) = χ

(2)
kjl(ωβ ; −ωα, ωγ) = χ

(2)
lkj(ωγ ; ωβ , −ωα) = . . . (2.29)

Furthermore, the dispersion in the nonlinear susceptibility is low when the frequen-
cies are well below resonances. Then Kleinman symmetry applies, meaning that as
long as there is no resonance between the involved frequencies, the frequencies can
be permuted without permuting the Cartesian indices of the susceptibility,

χ
(2)
jkl(−ωα; ωβ , ωγ) = χ

(2)
jkl(ωβ ; −ωα, ωγ) = χ

(2)
jkl(ωγ ; ωβ , −ωα) = . . . (2.30)

Conversely, using the full permutation symmetry, the indices can be freely permuted
without permuting the frequencies,

χ
(2)
jkl(−ωα; ωβ , ωγ) = χ

(2)
kjl(−ωα; ωβ , ωγ) = χ

(2)
lkj(−ωα; ωβ , ωγ) = . . . (2.31)

The frequency arguments can then be omitted if all interacting frequencies are
between the same two resonances. Since most nonlinear interactions for frequency
conversions of laser beams take place in these frequency regions, all symmetry
relations often apply. The dispersion in the second-order susceptibility can be
estimated with the use of the semi-empirical Miller’s rule, which relates the second-
order susceptibility to the the first-order susceptibility,

∆jkl =
χ

(2)
jkl(−ωα; ωβ , ωγ)

χ
(1)
jj (−ωα; ωα)χ(1)

kk (−ωβ ; ωβ)χ(1)
ll (−ωγ ; ωγ)

, (2.32)

where ∆jkl is approximately constant. All relations, Eq. (2.27) - Eq. (2.32), can be
generalised to the susceptibility of any order.

Further symmetry relations can be found by considering the structural sym-
metry of the medium, which for most crystal classes relate several of the tensor
elements and many can be deduced to be zero. In fact, for centrosymmetric media,
like glasses and cubic crystals belonging to symmetry class 432, all components χ

(2)
jkl

are identically zero and such materials do not have any second-order polarisation
response in the bulk.

For the second-order case, the full permutation symmetry reduces the 27 com-
ponents χ

(2)
jkl to 18 independent elements, which are further reduced to 10 with

Kleinman symmetry. The tensor is often written in contracted form, where the two
last indices are replaced by one,

djm = 1
2 χ

(2)
jkl. (2.33)
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The Cartesian indices are written as numbers rather than x, y and z with the
following substitution:

j = x y z, kl = xx yy zz yz zy xz zx xy yx
j = 1 2 3, m = 1 2 3 4 4 5 5 6 6

. (2.34)

The contracted tensor can be represented as 3 × 6 matrix, which has up to 10
independent components when Kleinman symmetry is valid,

d =





d11 d12 d13 d14 d15 d16

d16 d22 d23 d24 d14 d12

d15 d24 d33 d23 d13 d14



 , (2.35)

and the second-order polarisation at ωα generated by one pair βγ obeying ωα =
ωβ + ωγ can be written in the following compact form:






P
(2)
x (ωα)

P
(2)
y (ωα)

P
(2)
z (ωα)




 = ε0D(2)d











Ex(ωβ)Ex(ωγ)
Ey(ωβ)Ey(ωγ)
Ez(ωβ)Ez(ωγ)

Ey(ωβ)Ez(ωγ) + Ez(ωβ)Ey(ωγ)
Ex(ωβ)Ez(ωγ) + Ez(ωβ)Ex(ωγ)
Ex(ωβ)Ey(ωγ) + Ey(ωβ)Ex(ωγ)











. (2.36)

As an example, if the fields E(ωβ) and E(ωγ) both are polarised in the z direction,
the second-order polarisation is






P
(2)
x (ωα)

P
(2)
y (ωα)

P
(2)
z (ωα)




 = ε0D(2)





d13Ez(ωβ)Ez(ωγ)
d23Ez(ωβ)Ez(ωγ)
d33Ez(ωβ)Ez(ωγ)



 . (2.37)

For fixed propagation and polarisation directions of the electric field, the magnitude
of the second-order polarisation may be written in terms of the magnitudes of the
electric fields,

P (ωα) = ε0D(2)deff E(ωβ)E(ωγ), (2.38)

where deff is the effective nonlinearity, which is a function of the components of
d and the propagation angles and polarisation directions of the involved fields.
In many cases deff is a single component djm with trigonometric functions of the
propagation angles θ and ϕ. In KTP, d13 = d23 = 0, meaning that Eq. (2.37) is of
the form of Eq. (2.38) with deff = d33 when E(ωβ) and E(ωγ) are z polarised.

Phase matching

Solving the wave equation, Eq. (2.18), for fields propagating in the z direction at
the three distinct positive frequencies ω1, ω2 and ω3, where ω3 = ω1 +ω2, leads to a
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set of three coupled equations, which in the slowly-varying envelope approximation
are of the following form:

dA1

dz
= i

ω1

n1c
deff A3A∗

2ei∆kz, (2.39)

dA2

dz
= i

ω2

n2c
deff A3A∗

1ei∆kz, (2.40)

dA3

dz
= i

ω3

n3c
deff A1A2e−i∆kz, (2.41)

where An ≡ A(ωn), A∗
n ≡ A(−ωn) and nn ≡ n(ωn). The wave-vector mismatch,

∆k ≡ k3 −k1 −k2 = (ω3n3 −ω2n2 −ω1n1)/c, is normally nonzero due to dispersion
in the refractive index of the nonlinear medium. In the degenerate case, ω1 = ω2 =
ω3/2, Eq. (2.39) and Eq. (2.40) are merged into one equation and the right hand
side of Eq. (2.41) is multiplied by 1/2, since D(2) then is reduced from 2 to 1. The
coupled equations describe how energy is exchanged between the fields of different
frequencies due to the nonlinear interaction. It can be deduced that the number of
photons created or lost at ω3 is equal to the number of photons lost or created at
ω1, and also at ω2, which is known as the Manley-Rowe relations:

1
ω3

dI3

dz
= − 1

ω1

dI1

dz
= − 1

ω2

dI2

dz
. (2.42)

Normally, fields at two of the three frequencies are initially present and gener-
ate a field at the third frequency through sum-frequency generation or difference-
frequency generation. For optical parametric generation (OPG) and optical para-
metric oscillation (OPO), only one field is initially present and the other fields start
from quantum noise. For weak interactions, the decrease in the amplitudes of the
input fields can as a first approximation be disregarded. This leads to easy calcu-
lations and some results that are qualitatively correct even for high conversion effi-
ciencies, such as the importance of phase matching. As an example, sum-frequency
generation is considered where a weak field at ω3 = ω1 + ω2 is generated from the
fields at ω1 and ω2 in a nonlinear medium of length L. With A1 and A2 approxi-
mately constant, Eq. (2.41) can be directly integrated to obtain the amplitude of
A3 at z = L, which results in the following sum-frequency intensity at the end of
the crystal:

I3(L) =
2ω2

3I1I2d2
eff L2

ε0c3n1n2n3
sinc2

(
∆kL

2

)

, (2.43)

where sinc(x) ≡ sin(x)/x. Apart from being proportional to the product of the
input intensities and the square of the effective nonlinearity, the wave-vector mis-
match limits the crystal length for which an additional increase in the output in-
tensity I3 is generated through the factor sinc2(∆kL/2). A graph of sinc2(∆kL/2)
as function of ∆kL/2 is shown in Fig. 2.3. The value of the function is reduced to
1/2 for |∆kL/2| ≃ 1.39 and the first zeros are located at at |∆kL/2| = π.
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Fig. 2.3: sinc2(∆kL/2) as function of ∆kL/2.

The total electric field at a point z′ is a superposition of the fields that were gen-
erated at earlier times at z < z′ and have propagated to z′ at the given time.
Unless ∆k = 0, these fields are not in phase at z′ and their interference is not fully
constructive. After one coherence length,

Lc =
π

|∆k| , (2.44)

the interference starts being destructive and the field amplitude decreases and power
starts flowing back from the field at ω3 to the fields that generate the nonlinear
polarisation at ω3, i.e. to the fields at ω1 and ω2. The amplitude at ω3 goes to zero
after 2Lc. For interactions with z-polarised light in KTP, the numerical value of Lc

ranges from ∼1 µm for interactions in the UV [24] to ∼20 µm for interactions in
the infrared [25], at the same time as the crystals where the interactions take place
normally have a length of several millimetres, i.e. hundreds of coherence lengths
or more. For an efficient interaction where the whole crystal length is used, it is
therefore necessary to achieve phase matching, ∆k = 0. In a homogeneous medium,
this can possibly be done in anisotropic crystals where one of the interacting waves
has its polarisation direction orthogonal to that of the other two. The birefringence,
e.g. |ne(λ) − no(λ)| in uniaxial crystals, needs to be large enough to compensate
for the dispersion in the refractive index. Once the principal refractive indices are
known as functions of the wavelength, the propagation angles in the crystal are
chosen in accordance with Eq. (2.23) for uniaxial crystals and Eq. (2.22) for biaxial
crystals to adjust the lengths of the wave vectors. This way of achieving ∆k = 0 is
referred to as birefringent phase matching (BPM) and was first considered in 1962
[26, 27]. The waves then have to interact through a nondiagonal component djm,
i.e. not through d11, d22 or d33, as these components couple fields that all have the
same polarisation. If E(ω3), the field at the highest frequency, has its polarisation
direction orthogonal to those of E(ω1) and E(ω2), the phase matching is referred
to as type I. If the polarisation of E(ω3) is parallel to one of E(ω1) and E(ω2),
and orthogonal to the other, the phase matching is referred to as type II. In the
case that all three fields are polarised in the same direction, the phase matching
is referred to as type 0. Even though the crystal birefringence cannot be used for
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phase matching of type-0 interactions, they can be made efficient through quasi-
phase matching, which is explained in the next subsection. For any type of phase
matching, the interacting waves may propagate in noncollinear directions, obeying
the vectorial relation ∆k = k3 − k1 − k2 = 0.

The interaction length for BPM is sometimes limited by Poynting vector walk-
off, caused by the fact that a beam propagates in the direction of the energy flow
given by Ẽ × H̃, where H̃ is the magnetic field. This direction is in anisotropic
crystals not necessarily parallel to the propagation direction of the phase fronts,
given by the wave vector k, which points in the direction of (Ẽ + P̃/ε0) × H̃.
P̃ and Ẽ only point in the same direction when Ẽ oscillates along a principal
axis. Two interacting beams that have orthogonal polarisations, e.g. where one is
polarised parallel to a principal axis and the other is not, will hence be spatially
separated as the beams propagate and the interaction length is thereby reduced,
especially for tightly focused beams. In uniaxial crystals, the walk-off angle, ρ, for
an extraordinary beam is given by

tan ρ =
n2

e(θ)
2

[
1
n2

e

− 1
n2

o

]

sin(2θ), (2.45)

which increases with a larger birefringence and is maximised around θ = π/4. When
the walk-off angle is zero for all extraordinary beams (θ = π/2), the phase matching
is referred to as noncritical, as opposed to critical for all other values of θ. The
interacting wavelengths where noncritical phase matching is possible are given by
the dispersion in the nonlinear medium and can be slightly varied by changing the
crystal temperature or the crystal composition [28].

Engineerable media: quasi-phase matching

As previously explained, the electric field amplitude builds up in the first coherence
length and then the power flows back into the waves that created the nonlinear
polarisation. This could be prevented if a relative phase shift between the po-
larisation and the electric field were to be introduced at z = Lc. A periodic π
phase shift, with the periodicity of Lc, assures that the interference of the electric
field generated at different positions in the crystal always is partially constructive
and the whole crystal length can be used for the interaction. This is referred to
as quasi-phase matching (QPM) and was first proposed in 1962 [14] and demon-
strated in 1966 [29] by frequency doubling of a CO2 laser in non-birefringent ZnS
and GaAs. The phase shifts were introduced by periodic total internal reflection
in plane-parallel slabs, making the phase difference obtain partially constructive
values throughout the crystals. Another way of achieving QPM is to periodically
structure the nonlinear coefficient. This was first done by bonding crystal plates
of different orientations into a stack, where two consecutive plates had an opposite
sign of the nonlinear coefficient [30]. This method has the disadvantage of Fresnel-
reflection losses between the plates and the plate thickness can normally not be
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made as thin as a coherence length. Instead, the real breakthrough for QPM had
to wait for the periodic polarisation switching by electric-field poling in ferroelectric
materials. Periodic electric-field poling was first demonstrated for QPM applica-
tions in 1993 by the generation of blue light through quasi-phase-matched SHG in
a waveguide in LiNbO3 [31]. This was later followed by bulk QPM interactions in
periodically-poled LiNbO3 [32] and KTiOPO4 [33]. Today, the ferroelectric crystals
are the most common QPM materials and the periodicities obtained in KTiOPO4

are below 1 µm [16, 34, 35]. Another technique for QPM is orientation patterning
of semiconductors, meaning that they are periodically grown in different crystal
directions and the sign of deff is thereby periodically inverted. This was first used
for QPM applications in GaAs [36] and later in GaN [37, 38].

With QPM, the efficiency of the nonlinear interactions no longer relies on the
birefringent and dispersive properties of the nonlinear medium, but the periodicity
of the polarisation phase shift can be designed to match the wave-vector mismatch
of any nonlinear process within the transparency range of the medium. Further-
more, novel nonlinear devices can be constructed, such as counterpropagating de-
vices, where the natural birefringence of any material is too low to phase match
interactions with counterpropagating waves of similar frequencies. QPM with pe-
riodicities of the order of the interacting wavelengths has been used for SHG in
the backward direction [35, 39], electrically-controlled Bragg reflectors [34], and, of
special interest for this thesis, for the realisation of mirrorless optical parametric
oscillators [16].

With a spatially-varying nonlinear coefficient, deff (z), the z dependence needs
to be included in Eq. (2.39) - Eq. (2.41). If deff (z) has a fixed magnitude, but
periodically changes its sign along the propagation direction, the resulting equations
can essentially be cast into the same form as Eq. (2.39) - Eq. (2.41) with a constant
deff , if the definitions of ∆k and deff are modified [40]. By writing deff (z) =
deff f(z), where f(z) changes from 1 to −1 and has the periodicity Λ, it can be
expanded in a Fourier series,

deff (z) = deff

∞∑

m=−∞

GmeiKmz, (2.46)

where the spatial frequencies Km are given by

Km =
2πm

Λ
(2.47)

and the Fourier coefficients Gm are

Gm =
1
Λ

∫ Λ

0

f(z)e−iKmzdz. (2.48)

For instance, by the use of Eq. (2.46), Eq. (2.41) becomes

dA3

dz
= i

ω3

n3c
A1A2deff

∞∑

m=−∞

Gme−i(∆k−Km)z. (2.49)
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All terms in the sum give rise to oscillatory terms that after integration average
out to zero, unless the modulation period Λ adds a spatial phase shift that has
been designed to match that caused by the dispersion between the interacting
waves, meaning that for m = m′, ∆k − Km′ ≃ 0. The amplitude of that term
grows linearly with z and its contribution dominates over the oscillating terms with
m 6= m′, meaning that the sum can be approximated with the m′ term. Eq. (2.39)
- Eq. (2.41) are then of their original forms, but with ∆k and deff substituted by

∆kQ = ∆k − Km′ (2.50)

and
deff,Q = deff Gm′ . (2.51)

Km′ is referred to as the magnitude of the grating vector for m′th-order QPM. For
further discussion in this text, the subscript Q for quasi-phase matching is mostly
omitted and the grating vector is denoted KG. The other values of m give rise to
oscillatory terms that slightly modify the field amplitudes within each coherence
length, but average out to zero after m′ coherence lengths. For a periodic sign
change of deff with a duty cycle D = l/Λ, as defined in Fig. 2.4, the Fourier
coefficients are

Gm =
2

mπ
sin (mπD) e−imπD, (2.52)

where only the amplitudes of the coefficients are important. In the ideal case for
odd-order QPM, D = 1/2 and the magnitudes of the odd coefficients are maximised
to 2/(mπ) and the even ones are zero. As the odd coefficients scale as 1/m, it is
desirable to use m = 1 in order to minimise the reduction in |deff,Q|.

f(z)

l Λ Λ − l

z

−1
0 

1 

Fig. 2.4: The duty cycle is defined as D = l/Λ

Even though quasi-phase matching reduces the effective nonlinearity by at least a
factor 2/π, the resulting nonlinearity may still be larger compared to in birefringent
phase matching, since all nonzero components djm are accessible. Materials that
lack birefringence, such as GaAs, but have a high nonlinearity can be used for QPM
but not for BPM. For other materials, such as LiNbO3 and KTiOPO4, the largest
component is the diagonal component d33, which is not accessible through BPM
since all interacting waves then are polarised in the z direction. In fact, 2d33/π is
significantly larger than any of the other components djm for these materials. The
possibility to use all waves with the same polarisation, polarised along a principal
axis, makes the phase matching noncritical and eliminates Poynting vector walk-off
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Fig. 2.5: The relative intensity of the second harmonic as function of the propagation
distance in KTP, expressed in coherence lengths for the non-phase-matched and QPM
interactions. The type-0 QPM interactions are compared with perfect phase matching, no
phase matching and type-II BPM with d24.

that reduces the interaction length in BPM. Therefore, if possible, QPM is often
used for type-0 interactions.

A comparison of the intensity of SHG in KTP for different phase-matching
techniques is illustrated in Fig. 2.5. Using the largest coefficient, d33 = 16.9 pm/V
[41], type-0 QPM of 1st and 3rd order are compared with the non-phase-matched
case and the case of perfect phase matching, which however cannot be achieved due
to dispersion. The QPM is also compared with a type-II interaction with d24 = 3.64
pm/V [41], where deff ≤ d24 and the exact value depends on trigonometric functions
of the propagation angle, θ, relative to the x axis. It is assumed in the graph that
θ = 0, which leads to deff = d24, which is slightly larger than deff for 3rd-order
QPM with d33. For the QPM cases, the effects of the non-phase-matched terms
give rise to the modulations between the coherence lengths. If only the Fourier
term with the m-value fulfilling ∆kQ = 0 were to be plotted, the QPM intensities
would follow the dotted lines and the modulations between the coherence lengths
disappear. For QPM calculations, the modulations are normally disregarded.

Optical parametric oscillators

Through a second-order nonlinear process, it is possible to generate two new fre-
quencies from a pump wave containing only a single frequency. This is referred to
as optical parametric generation (OPG), where a pump photon of frequency ωp is
spontaneously down-converted into a pair of parametric photons of frequencies ωs

and ωi. These photons are referred to as signal and idler, respectively, where, by
definition, the signal photon is the one in the pair with the higher energy, ωs > ωi.
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Both energies add up to that of the pump photon,

ωp = ωs + ωi. (2.53)

The spontaneous down-conversion is a purely quantum-mechanical process where
the pump photons interact with quantum fluctuations at either of the signal or the
idler frequencies through the second-order polarisation. Once the down-conversion
has started, other pump photons may interact with the generated photons at ωs or
ωi to create a new pair at the same frequencies through difference-frequency gen-
eration (DFG), that in turn can interact with other pump photons and coherently
stimulate the down-conversion process. In accordance with energy conservation
alone, the division of a pump photon into signal and idler photons can be done in
an infinite number of ways by varying the signal frequency to ωs +∆ω and the idler
frequency to ωi − ∆ω. The polarisations and propagation directions of the gener-
ated photons can be arbitrary. However, the interactions with the pump are only
efficient for the signal-idler pairs of frequencies and propagation directions where
the phase mismatch is small,

∆k = kp − ks − ki −KG
︸ ︷︷ ︸

if QPM

≃ 0, (2.54)

where the grating vector KG is included if deff is periodically structured. The am-
plitudes of the pump, signal and idler waves evolve in accordance with Eq. (2.39) -
Eq. (2.41) where ω1 = ωi, ω2 = ωs and ω3 = ωp. As quantum fluctuations always
are present, the signal and idler cannot strictly start from zero, but initially have
a very small amplitude and a random phase. In the nondepleted-pump approxi-
mation, the signal (or idler) intensity increases during the propagation length L
as

Is(L)
Is(0)

= 1 + (ΓL)2
sinh2

[√

(ΓL)2 − (∆kL/2)2
]

(ΓL)2 − (∆kL/2)2
, (2.55)

where the gain coefficient is given by

Γ2 =
8π2d2

eff

ε0cnpnsniλsλi
Ip(0). (2.56)

As perfect phase matching is not required, the signal and idler bandwidths are
often large and their exact values depend on the gain and on how fast ∆k increases
with a frequency shift from the phase-matched point where ∆k = 0. ∆k can be
approximated with a Taylor series in ∆ω,

∆k ≃
(

1
vgs

− 1
vgi

)

∆ω + 1
2 (β2s + β2i)(∆ω)2, (2.57)

where vgj = (∂ω/∂k)j and β2j = (∂2k/∂2ω)j . The first-order term in ∆ω is
sufficient as long as the group velocities are different, vgs 6= vgi. The equality,
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vgs = vgi, occurs e.g. at degeneracy for a type-0 interaction, as the parametric
waves then are identical, and the second-order term must be taken into account.
For large gains, ΓL ≫ 1, the FWHM bandwidth of the parametric waves, for a
monochromatic pump, is for vgs 6= vgi

∆ν ≃ 2(ln 2)
1

2

π

(
Γ
L

) 1

2

∣
∣
∣
∣

vgsvgi

vgs − vgi

∣
∣
∣
∣
, (2.58)

and for vgs = vgi

∆ν ≃ 2(ln 2)
1

4

π

(
Γ
L

) 1

4

∣
∣
∣
∣

1
β2s + β2i

∣
∣
∣
∣

1

2

. (2.59)

The gain bandwidth is very broad at the degeneracy point, especially if that occurs
at the wavelength where β2s = β2i = 0. In that case, third-order terms in ∆ω
need to be taken into account in Eq. (2.57). In order to reduce the bandwidth of
the parametric waves and to increase the efficiency of the interaction, the nonlinear
medium can be placed inside a cavity where at least one of the parametric waves
is resonant. This forms an optical parametric oscillator (OPO), which can be used
to convert a laser beam at the pump frequency to beams of lower frequencies. The
first OPO was demonstrated in LiNbO3 in 1965 [12] and was based on birefringent
phase matching. 30 years later, the first quasi-phase-matched OPO was realised in
periodically-poled LiNbO3 with a period of Λ = 15.5 µm [42]. A simple design of
a singly-resonant OPO is shown in Fig. 2.6(a). Only one of the parametric waves,
in this case the signal, is resonant in the cavity, which provides feedback to the
resonant wave. The cavity mirrors have high reflectivity for the signal, but low the
idler, which does not resonate in the cavity. If the idler also were to resonate, the
OPO would be doubly resonant. Tuning of the device can be achieved by adjusting
the phase-matching or oscillation conditions. The phase matching can be changed
by rotating the crystal, by changing the crystal temperature, by tuning the pump,
by changing the QPM grating if QPM is employed, or by a combination of all of
the above. The oscillation conditions can be changed by rotating the cavity for the
resonant wave and make the interaction noncollinear. In a singly-resonant OPO,
the oscillation threshold is reached when the gain equals the round-trip loss for the
resonant wave, which for low internal losses is approximately given by

ΓthL ≃ 1 − Rs, (2.60)

where Rs is the intensity reflectivity at the signal frequency [12].
The OPO studied in this thesis is of a different kind. It is a mirrorless optical

parametric oscillator (MOPO), which was proposed in 1966 [15], but has not been
extensively studied experimentally until the first demonstration in 2007 [16] and in
the continuing work in paper IV, paper V and paper VI. The MOPO is based on
a different physical mechanism compared to conventional OPOs, such as the one
in Fig. 2.6(a). For the MOPO, no resonant cavity is needed to provide feedback
to the parametric waves. Instead, the parametric waves in a MOPO propagate in
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Fig. 2.6: (a) A conventional signal-resonant OPO, based on signal feedback from the
cavity mirrors, generating signal and idler waves in the forward direction. (b) A mirrorless
OPO based on distributed feedback between the counterpropagating parametric waves.

opposite directions and automatically establish a distributed-feedback mechanism
when the crystal is pumped above threshold, which provides the necessary feedback
for the oscillation. The MOPO concept is schematically illustrated in Fig. 2.6(b)
and its special characteristics are further described in Chapter 5.

Large grating vectors are needed in order to quasi-phase-match counterpropa-
gating interactions. An example of the grating vectors required for the four possi-
ble QPM configurations for collinear parametric down-conversion is illustrated in
Fig. 2.7. The periods in KTP for interactions with λp = 861.7 nm, λs = 1217.9 nm
and λi = 2945.7 nm are Λ ≃ 805 nm for a counterpropagating idler, Λ ≃ 330 nm for
a counterpropagating signal, Λ ≃ 236 nm for counterpropagating signal and idler,
compared to Λ ≃ 30.27 µm for a co-propagating interaction. The submicrometre
periodicities are not easy to fabricate, but the fabrication techniques are under
constant development, as is discussed in paper III and in Chapter 4.
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Fig. 2.7: The four collinear configurations to down-convert pump into signal and idler
through QPM. (a) counterpropagating idler, Λ ≃ 805 nm, (b) counterpropagating signal,
Λ ≃ 330 nm, (b) counterpropagating signal and idler, Λ ≃ 236 nm, (d) co-propagating
configuration, Λ ≃ 30.27 µm. The vectors are approximately drawn to scale for λp = 861.7
nm, λs = 1217.9 nm and λi = 2945.7 nm in KTP, except in (d) where the length of KG

is significantly shorter than the arrow head.
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2.6 Third-order nonlinear interactions

Unlike second-order nonlinear interactions, third-order nonlinear interactions take
place in any material, centrosymmetric or not. The interactions describe the energy
exchange between up to four distinct frequencies and is therefore referred to as
four-wave mixing. Like for the second-order case, a degeneracy factor, D(3), can be
introduced to simplify the expression for the nonlinear polarisation as a result of
the intrinsic permutation symmetry:

P
(3)
j (ωα) = 1

4 ε0D(3)
∑

βγδ

∑

klm

χ
(3)
jklm(−ωα; ωβ , ωγ , ωδ)Ek(ωβ)El(ωγ)Em(ωδ), (2.61)

where the value of D(3) depends on how many of the factors Ek(ωβ), El(ωγ) and
Em(ωδ) that are taken from the same beam and have the same frequency. If this
is the case for all three fields, then D(3) = 1. D(3) = 3 if that applies to two fields
and D(3) = 6 if all fields are distinct. Again, positive and negative frequencies
are counted as distinct. The third-order polarisation induced by an electric field
containing the positive frequencies ω1, ω2 and ω3, together with their negative
counterparts, contain the frequencies ωα of the form

ωα = σβωβ + σγωγ + σδωδ, (2.62)

where σβ , σγ , σδ ∈ {−1, 1} and ωβ , ωγ , ωδ ∈ {ω1, ω2 ω3}. At moderate intensities,
third-order interactions are generally much weaker than second-order ones. There-
fore, second-order interactions are more common for efficient frequency conversions,
making third-harmonic generation more efficient by two sequential χ(2) processes
than by one χ(3) process. However, third-order effects may be large in optical fibres
due to the long interaction lengths [43].

Nonlinear index of refraction

The main interest of four-wave mixing for this work is the case of degenerate four-
wave mixing where an intense laser beam due to a χ(3) nonlinearity modifies the
refractive index that the beam itself experiences in the medium, which is referred to
as self-action. A change in the refractive index that is proportional to the intensity
of the optical beam, ∆n = n2I, is often referred to as the optical Kerr effect and
such a nonlinearity is called a Kerr nonlinearity. The coefficient n2, which has the
units of inverse intensity, is referred to as the nonlinear index of refraction.

If a beam contains the positive frequency ω and is linearly polarised along a
principal axis, here taken as the x axis, the third-order polarisation along the same
axis is

P (3)
x (ω) = 3

4 ε0χ(3)
xxxx(−ω; ω, −ω, ω)Ex(ω)Ex(−ω)Ex(ω). (2.63)

It should be stressed that this interaction is automatically phase matched, as all
interacting fields have the same polarisation direction and the frequencies are in
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pairs of ±ω. The total polarisation at the frequency ω that is generated from linear
and third-order effects is then

Px(ω) = ε0

[

χ(1)
xx + 3

4 χ(3)
xxxx|Ex(ω)|2

]

Ex(ω) ≡ ε0χ
(1)
xx,eff (I)Ex(ω). (2.64)

The frequency arguments have been dropped as only one frequency is involved
and an intensity-dependent effective χ

(1)
xx has been introduced, which in terms of

intensity is

χ
(1)
xx,eff (I) = χ(1)

xx +
3I

2ε0cn0
χ(3)

xxxx, (2.65)

where n0 denotes the linear refractive index. The real part of the intensity-dependent
susceptibility leads to an intensity-dependent index of refraction,

n(I) =
√

1 + Re[ χ
(1)
xx,eff (I) ] ≃ n0 +

3Re[ χ
(3)
xxxx ]

4ε0cn2
0

I, (2.66)

which defines the nonlinear index of refraction as

n2 =
3Re[ χ

(3)
xxxx ]

4ε0cn2
0

. (2.67)

The Taylor expansion of the square root in Eq. (2.66) is valid when the intensity-
dependent part n2I is small compared to the linear refractive index, n2I ≪ n0. It
is shown in Chapter 3 that this is the case even for highly nonlinear materials and
intensities of several tens of GW/cm2. Similar to the introduction of n2, nonlinear
absorption can be included by assuming that the absorption coefficient has an
intensity dependence,

α(I) = α + βI. (2.68)

The part of the absorption coefficient that is proportional to the intensity is related
to two-photon absorption (TPA), which occurs when the energy of two photons in
the beam exceeds the energy of a transition between energy states in the medium.
The TPA coefficient, β, is related to the imaginary part of χ

(3)
xxxx,

β =
3ωIm[ χ

(3)
xxxx ]

2ε0n2
0c2

. (2.69)

Measurement techniques for n2 and β are explained in Chapter 3.

Effects of a nonlinear index of refraction

A nonlinear index of refraction affects optical beams both in the time-frequency
domain and in the spatial domain due to nonlinear phase shifts. The nonlinear
phase shift after propagation through a medium of length L is

φNL =
2π∆n(I)

λ
L, (2.70)
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which gives rise to a frequency shift of

δω =
∂φNL

∂t
=

2π

λ

∂[∆n(I)]
∂t

L. (2.71)

A frequency shift hence only occurs when there is a temporal change in the intensity-
dependent refractive index, for which it is necessary that the beam is pulsed. In a
Kerr medium, ∆n(I) = n2I, a pulsed beam experiences a phase shift proportional
to ∂I/∂t, which leads to a modification of the phase modulation in the beam and
thereby also of the spectral content in the pulse. This is known as self-phase
modulation (SPM) [44], which can be used to broaden [45, 46] or to narrow [47]
pulses in the frequency domain. Balancing of the effect of SPM with dispersion
leads to the generation of temporal solitons [48]. An intensity-dependent refractive
index can also be used for all-optical switching [49] and signal processing [50].

A similar effect also occurs in the spatial domain. As the intensity of a focused
beam has a transverse dependence, the amount of nonlinear phase acquired in the
medium varies transversely across the beam. This leads to a changed curvature
of the wavefronts, as wavefronts are surfaces of constant phase, which leads to
nonlinear lensing and possibly self-trapping [51] or self-focusing [52] of the light. The
nonlinear lensing properties, which e.g. can be used for the generation of spatial
solitons [53] or modelocking of lasers by Kerr-lens modelocking (KLM) [13], are
further discussed in Chapter 3.





Chapter 3

Characterisation of the Kerr nonlinearity

The main aim of laser-material engineering is to tailor the magnitude and the spec-
trum of relevant absorption and emission cross sections. In many cases, this also
results in a collateral modification of the nonlinear response. This chapter is devoted
to the investigation of variations in the Kerr nonlinearity in novel polystructural
(monoclinic and tetragonal) laser hosts derived from the same double-tungstate
family of crystals. This family of crystals is characterised by large spectroscopic
cross sections and is very suitable for spectral engineering. It is shown in paper I
and paper II that the variation of the Kerr nonlinearity in different chemical compo-
sitions of these crystals can be rather large. The findings are important for the field
of ultrashort-pulse oscillators and amplifiers, where these materials are increasingly
used.

3.1 MT(XO4)2 laser crystals

Double-tungstate and double-molybdate crystals with the chemical composition
MT(XO4)2 (in short, MTX) are common host materials for optically-active ions,
such as Yb3+, Nd3+, Er3+, Tm3+ and Ho3+. In the formula, M is a monovalent
alkali cation, T is a trivalent cation and X denotes W or Mo for double tungstates
and double molybdates, respectively. The compositions studied in this thesis in-
volve laser-ion doped and undoped crystals with M = Na or K; T = Y, La, Gd, Lu,
Yb or Bi.

Crystal structures

Depending on the growth conditions, the MTX compounds crystallise in different
crystallographic structures. Many of the NaTX compounds melt congruently and
can be grown by the Czochralski (Cz) method. In fact, this applies to all NaTX

31
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compounds treated here, with the exception of NaLuW and samples with high dop-
ing concentrations. These can instead be grown by the top-seeded solution-growth
slow-cooling (TSSG-SC) method from a high-temperature solution in Na2W2O7 or
Na2WO4 [54]. The NaTX compounds crystallise in disordered tetragonal struc-
tures [55, 56], meaning that the Na and T ions are randomly distributed on the
same lattice sites [55, 57]. The crystals are optically uniaxial, with the optical axis
coinciding with the crystallographic c axis. Light with ordinary and extraordinary
polarisation, i.e. H||c and E||c, are referred to as σ-polarised and π-polarised, re-
spectively. The lattice constants are a = b ≃ 5.20 Å and c ≃ 11.27 Å for NaYW
[58], with similar values for the other NaTX compounds.

As opposed to the sodium compounds that crystallise in disordered tetragonal
forms, potassium compounds of the form KTW crystallise in monoclinic structures
when grown by the TSSG-SC method from a solution in K2W2O7 [59]. The mon-
oclinic crystal structure gives rise to large anisotropies in the linear-dielectric, me-
chanical and thermal properties, which are described for KLuW in [60]. Monoclinic
crystals are biaxial and the principal dielectric axis corresponding to the smallest
refractive index, Np, coincides for KTW compounds with the crystallographic b

axis. KYW has the lattice constants a ≃ 10.64 Å, b ≃ 10.35 Å and c ≃ 7.54 Å,
where the angle between the a and c axes is β ≃ 130.5◦. The principal axis corre-
sponding to the largest refractive index, Ng, is rotated an angle κ ≃ 18.5◦ from the
c axis and makes an angle β + κ with the a axis. For KYW, the lattice constants
and the angles are taken from [61] and the values for the other KTW compounds
are similar. The relations between the crystallographic and the dielectric axes for
the tetragonal and monoclinic crystals are illustrated in Fig. 3.1.

α=β=γ=90°

a=b≠c

α=γ=90°, β>90°
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b
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(a) (b)crystallographic axes
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c

Fig. 3.1: (a) The optical axis, Ne, is parallel to the c axis in the uniaxial tetragonal
structure. (b) Ng is rotated an angle κ from the c axis and makes an angle β + κ with
the a axis in the monoclinic structure. The crystallographic vectors in (a) and (b) are
approximately drawn to scale for NaYW and KYW, respectively.

Optical properties

The linear refractive index of the MTX compounds is around 2. Fig. 3.2 shows the
dispersion in NaYW [62] and KLuW [60] for wavelengths up to 1100 nm.
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Fig. 3.2: The three principal indices in KLuW [60] and two in NaYW [62] as function of
the wavelength.

In the NaTX compounds doped with active ions, the random distribution of the
Na and T ions cause the crystal potential around the dopants to vary in the same
random manner. This gives rise to a substantial inhomogeneous broadening of the
spectral lines [55], which can be used to achieve an increased tunability or for the
generation of ultrashort pulses [62]. However, as the spectral lines broaden, there
is a proportional decrease in the peak of the emission and absorption cross sections
[55, 56]. The emission and absorption cross sections in disordered Yb:NaYW are
for the σ and π polarisations illustrated in Fig. 3.3 [62].
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Fig. 3.3: Absorption (dashed line) cross section and the calculated (solid line) and
directly-measured (circles) emission cross section in disordered Yb:NaYW [62].
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In Yb:NaYW, the broad cross sections allow for broad laser tunability or the gen-
eration of pulses down to 53 fs by using a semiconductor saturable-absorber mirror
(SESAM) for passive modelocking of the laser [62]. An example of the broad tun-
ability and the ultrashort-pulse generation is shown in Fig. 3.4 .
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Fig. 3.4: (a) The wide tunability of continuous-wave lasing in disordered Yb:NaYW [62].
(b) Modelocked operation in disordered Yb:NaYW with pulse lengths of 53 fs [62].

Another way to passively modelock lasers is to use the nonlinear properties of the
laser crystal itself. With a correct cavity design, the nonlinear focusing properties
of the laser medium provide the saturable loss that favours a pulsed operation.
This is referred to as Kerr-lens modelocking (KLM) and was first demonstrated
in Ti:sapphire oscillators [13]. It has also been been demonstrated in monoclinic
Yb:KYW with pulses down to 71 fs [63]. The monoclinic double tungstates have
higher peak cross sections than the disordered tetragonal ones, as can be seen
by comparing the cross sections for Yb:KYW [64] in Fig. 3.5 with the ones for
Yb:NaYW in Fig. 3.3.

Due to the unsurpassed gain bandwidth in Ti:sapphire, the shortest laser pulses
are generated from Ti:sapphire oscillators. Ti:sapphire lasers, however, suffer from
some major drawbacks that can be overcome in Yb lasers. Ti:sapphire needs green
light for pumping, which nowadays is provided by a frequency-doubled solid-state
laser. Yb lasers, on the other hand, can be directly diode pumped and can be made
very efficient due to the close frequency distance between the absorption (∼975 nm)
and the emission wavelengths (∼1020 nm - 1070 nm).

For further development of KLM lasers with MTX crystals, the nonlinear prop-
erties of the crystals need to be known in order to properly design the laser cavities.
n2 for the disordered tetragonal crystals had not been characterised at all before
the work in paper I. There was also some uncertainty regarding the anisotropy
of n2 along the different principal dielectric axes in the monoclinic compounds.
The two very different values of n2 ≃ 8.7 · 10−16 cm2/GW for Yb:KYW [65] and
n2 ≃ 21 · 10−16 cm2/GW for KYW [66] had previously been reported, where the
first value was measured with E||a, i.e. not parallel to a principal axis, and the sec-
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Fig. 3.5: Absorption (dashed line) and emission (solid line) cross section in monoclinic
Yb:KYW for the electric field polarised along Nm [64].

ond value was measured with both E||Nm and E||Np, with no significant difference
in n2 between the two polarisations. This is in contrast to the values measured
for Yb:KGdW [67], which show an anisotropy between the E||Nm and E||Np cases.
The uncertainties in the anisotropy measurements and the measurement of the new
compound KLuW motivated for the measurements of n2 with the light polarised
along Nm and Np in paper II.

3.2 The z-scan technique

The z-scan technique is a simple experimental method for the characterisation of
a material’s intensity-dependent refractive index and absorption coefficient by the
use of a single focused beam [68]. The principle of the method is to scan the
sample through the focus of the beam, while measuring the power transmitted
through an aperture in the far field. Since the intensity distribution of the beam
has a transverse dependence, the nonlinear phase acquired after passing through
a sample with a nonlinear index of refraction varies across the beam. The sample
then acts as a nonlinear lens, whose focusing properties alter the curvature of the
wavefront that leaves the sample. This change in wavefront curvature modifies the
beam-intensity pattern in the far field. Depending on the aperture geometry, this
effect may modulate the power transmitted through the aperture, which is recorded
throughout the scan as a function of the sample position relative to the focus and
provides information about the nonlinear absorption or the nonlinear refractive
index.

The nonlinear absorption can first be deduced by scanning the sample with the
aperture fully open, so that all the light that is transmitted through the sample
is collected. Any reduction in the measured power is then, apart from Fresnel re-
flections, due to nonlinear absorption. Once the nonlinear absorption is known,
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another scan with the aperture partially closed gives information about the nonlin-
ear index of refraction. A schematic sketch of the setup and a typical shape of the
aperture transmittance for different sample positions are shown in Fig. 3.6.

Fig. 3.6: The z−scan principle is that the power transmitted through the aperture in
the far field changes as the sample is scanned through the beam. The nonlinear refractive
index and absorption coefficient can be deduced by varying the aperture geometry.

Far away from the focus, the intensity is relatively low and the nonlinear lensing is
therefore weak, causing the intensity to approach the value where the sample is not
in the beam. If no nonlinear absorption occurs, the same intensity is also obtained
when the sample is in the focus, since the sample then acts as a field lens and
does not affect the far-field intensity distribution. Within a few Rayleigh lengths
from the focus, the effect of the lensing is strongest and the intensity transmitted
through the far-field aperture is modulated. Normally a scan of at least 8 Rayleigh
lengths on each side of the focus is needed in order for the aperture transmittance
to stabilise at a constant value. In theory, the sample thickness, L, has to be much
smaller than the Rayleigh length of the beam, L ≪ z0, in order to simplify the
mathematical evaluation of the nonlinear refractive index. It has however been
experimentally verified that the same results are obtained as long as L < z0 [68].
This greatly simplifies the experimental setup, as a smaller scanning range can be
used. With a sample thickness of about 1 mm, the Rayleigh range can be 2.5 mm,
meaning that a total scanning range of 40 mm is adequate, which is within the
range of most motorised translation stages. To strictly fulfill that L ≪ z0, the
scanning range would need to be increased by a factor of about 10 and scanning
ranges around 400 mm are rather inconvenient.

L ≪ z0 could also be fulfilled by instead reducing the sample thickness, which
however leads to other problems. The peak intensity needed for a certain modula-
tion in the aperture transmittance is inversely proportional to the sample length,
meaning that a thinner sample may have to operate close to, or even beyond, the
damage threshold in order to show sufficient nonlinear lensing for the modulation
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to be measurable. From a damage point of view, it is also more suitable to use pulse
lengths of a few picoseconds compared to pulse lengths of tens of picoseconds. The
nonlinear lensing in a given sample is in theory determined by the peak intensity of
the pulse, meaning that a shorter pulse with lower energy can give rise to the same
lensing as a longer pulse. The damage probability increases with both the peak
intensity and the pulse duration [69], so the use of a shorter pulse is motivated.

z-scan theory

This subsection is based on the z-scan theory described in [68]. The refractive index
is assumed to be of the form

n(I) = n0 + ∆n(I) ≃ n0 + n2I, (3.1)

where n0 is the linear part and ∆n(I) is the intensity-dependent nonlinear part.
If the nonlinear part is caused by a Kerr nonlinearity, i.e. by degenerate four-
wave mixing in the material, the index change is proportional to the intensity,
∆n(I) = n2I. The corresponding intensity-dependent absorption, α(I), consists of
a linear part and a coefficient β related to the two-photon absorption,

α(I) = α + βI. (3.2)

The beam that is used for the z-scan has a Gaussian spatial amplitude distribution,

A(ρ, z, t) = A0(t)
w0

w(z)
exp

[

− ρ2

w2(z)
+ i

kρ2

2R(z)
+ iζ(z)

]

, (3.3)

where w2(z) = w2
0[1 + (z/z0)2] and R(z) = z + z2

0/z define the 1/e2 intensity ra-
dius and wavefront radius of curvature, respectively. The Gouy phase, ζ(z), has
no ρ dependence and does not contribute to any change in the radial distribution.
A0(t) denotes the temporal shape of the pulse, which typically is a linearly-chirped
Gaussian, A0(t) = A0 exp

[
−2 ln 2(t/∆t)2 + ibt2

]
close to the transform limit. In

the presence of an intensity-dependent refractive index, the beam acquires a non-
linear phase shift, ∆φ(ρ, z, t), as it propagates through the sample, which modifies
the wavefront curvature and the radial intensity distribution in the far field. For a
Kerr nonlinearity, ∆φ(ρ, z, t) is proportional to the beam intensity,

I(ρ, z, t) =
I0(t)

1 + (z/z0)2
exp

[

− 2ρ2

w2(z)

]

, (3.4)

and can be written,

∆φ(ρ, z, t) =
∆Φ0(t)

1 + (z/z0)2
exp

[

− 2ρ2

w2(z)

]

, (3.5)

where ∆Φ0(t) is the on-axis phase shift at the focus of the beam,

∆Φ0(t) =
2πn2I0(t)Leff

λ
. (3.6)
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Leff is the effective length given by the physical length L and the linear absorption
coefficient α as Leff = [1 − exp(−αL)]/α ≃ L for α ≃ 0. As a pulsed beam
normally is used in order to reach the high peak powers that are needed in order
to observe a nonlinear effect, the measurement contains a temporal average of the
refractive-index change. For Gaussian pulses, the average index change is

〈n2I0(t)〉 = n2I0/
√

2, (3.7)

where I0 is the the on-axis peak intensity at the focus. Eq. (3.6) can then be
rewritten in terms of the average phase shift at the focus,

〈∆Φ0〉 =
2πn2I0Leff√

2λ
. (3.8)

At a distance d ≫ z0 from the focus, a circular aperture of radius ρa is centred
on the optical axis. The power fraction of a Gaussian beam that passes through
the aperture is S = 1 − exp(−2ρ2

a/w2
a), where wa is the 1/e2 intensity radius at

the aperture. However, the measured quantity after the aperture is absolute power
rather than relative power, which is dependent on if absorption occurs in the sample.
For now, it is assumed that no absorption occurs in the sample and the effects of
absorption will be included later. Due to the fact that the beam experiences a
ρ-dependent nonlinear phase shift in the sample, wa will depend on the sample
position, which explains why the transmitted intensity is modulated as the sample
is scanned through the focus, as illustrated in Fig. 3.6. The effect is stronger when
the aperture radius is small and S ≪ 1. With a large aperture that collects most of
the beam, S ≃ 1, the modulation is very low, as in principle all power is collected at
all z positions. A sample with n2 > 0, as the sample in Fig. 3.6, acts as a nonlinear
positive lens, causing the beam to focus earlier when the sample is positioned at
z < 0, resulting in a lower transmittance through the far-field aperture. When the
sample instead is positioned at z > 0, the aperture transmittance increases as the
sample still acts a a positive lens and decreases the angular spread of the beam.
The opposite effect occurs for a sample with n2 < 0. The distance between the
positions where the maximum and minimum aperture transmittance occurs, called
the peak-to-valley distance, is given by the Rayleigh length and is

∆zpv ≃ 1.7z0. (3.9)

The difference in aperture transmittance between the peak and the valley con-
tains information about the nonlinear phase shift. A normalised transmittance,
T (z, 〈∆Φ0〉), is defined as the power transmitted through the aperture when the
sample is at position z divided by the transmitted power when the sample is far
from the focus at |z′| ≫ z0. Within an uncertainty of ±2 %, the peak-to-valley
difference in normalised transmittance is proportional to | 〈∆Φ0〉 |,

∆Tpv ≃ 0.406(1 − S)
1

4 | 〈∆Φ0〉 |, (3.10)
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for | 〈∆Φ0〉 | ≤ π. It is clear from Eq. (3.10) that the peak-to-valley transmittance
difference is largest when the aperture is small, S ≃ 0, and vanishes when the
aperture is fully open, S = 1. For small phase shifts, | 〈∆Φ0〉 | ≪ 1, the normalised
transmittance can be written

T (z, 〈∆Φ0〉) ≃ 1 − 4 〈∆Φ0〉 x

(x2 + 9)(x2 + 1)
, (3.11)

where x ≡ z/z0. This function is used to fit the experimentally-obtained values.
The theory above is based on the assumption that there is no absorption. Linear

absorption results in a constant decrease in the transmitted intensity and can be
avoided by measuring at wavelengths where the linear absorption is low, α ≃ 0.
However, two-photon absorption (TPA) occurs in many samples and that effect
needs to be taken into account. As TPA is intensity dependent, the intensity
through the aperture goes down as the sample approaches the focus. Fig. 3.7 shows
z-scans of two samples with different amounts of TPA.
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Fig. 3.7: (a) Measured transmittance through the aperture for π-polarised light in tetrag-
onal Yb:NaGdW (triangles) with low TPA and NaBiW (circles) with high TPA. The graph
shows z-scan traces with partially-closed aperture (S = 0.22) and fully-open aperture
(S = 1). (b) Normalised scan based on the information in (a).

Fig. 3.7(a) shows z-scan traces with a fully-open aperture (S = 1) and with a
partially-closed aperture (S ≃ 0.22). From the transmittance drop around z = 0 in
the open-aperture scans, it can be deduced that TPA occurs in both Yb:NaGdW
and NaBiW, but that the effect is much stronger in NaBiW. In order to compensate
for the reduction in transmitted intensity due to TPA, the scan with partially-closed
aperture is normalised by dividing the values by the open-aperture values at the
corresponding z positions. The values are renormalised so that T (z, 〈∆Φ0〉) ≃ 1
for |z| ≫ z0, which yields the normalised trace in Fig. 3.7(b). The peak-to-valley
transmittance difference, ∆Tpv, measured on a normalised curve, can be used to
extract the nonlinear phase shift from Eq. (3.10). Using Eq. (3.8), the nonlinear
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index of refraction is finally obtained as

n2 ≃
√

2
λ

2π

〈∆Φ0〉
I0L

≃
√

2
λ

2π

∆Tpv

0.406(1 − S)
1

4 I0L
. (3.12)

For Gaussian pulses, the TPA coefficient β can be calculated from the normalised
trace with fully-open aperture by fitting the following equation to the experimental
points:

T (z)|S=1 =
1√

πq0(z)

∫ ∞

−∞

ln
[

1 + q0(z)e−τ2
]

dτ, (3.13)

where τ is a dimensionless integration variable and q0(z) ≡ βI0Leff /[1 + (z/z0)2].

3.3 Experimental z-scan setup

A linearly-polarised beam from a Ti:sapphire regenerative amplifier was used for
the z-scans in paper I and paper II. The beam was pulsed with the repetition rate
of 1 kHz, generating pulses of energies up to 1 mJ with pulse lengths between 2 ps
and 4 ps. The pulse energy was reduced by using the 4 % relection from a glass
surface and then controlled with a waveplate-polariser setup. As the Yb3+-doped
crystals are intended to lase between 1020 nm and 1070 nm, the wavelength for
the z-scan was chosen to be relatively close to the lasing region, with the condition
that the crystals did not exhibit linear absorption. For undoped and Yb3+-doped
samples, the wavelength of 820 nm was used in paper I and 819 nm in paper II. Two
samples in paper I were doped with Nd3+ and Tm3+, for which linear absorption
was avoided by tuning the wavelength to 850 nm. The beam was focused to a 1/e2

intensity radius of 25 µm, resulting in a Rayleigh length of z0 = πw2
0/λ ≃ 2.4 mm,

which is longer than the typical sample length of 1 mm. The far-field aperture was
placed 0.6 m to 1 m away from the focus, i.e. at least 25z0.

The relative values of n2 obtained in scans with the same experimental setup
can be rather accurate, whereas the absolute values of n2 depend on experimental
uncertainties in the parameters in Eq. (3.12), with the largest uncertainty being in
the peak intensity at the focus. Other sources of uncertainty is that the beam is
not a perfect TEM00 beam, the pulses are not perfectly Gaussian and the aperture
may not be properly centred on the optical axis. The setup can be evaluated by
performing a z-scan with a well-characterised material, which in our case was a 1
mm-long reference sample of BK-7 glass. A scan of this sample yielded the value
of n2 ≃ 4.5 · 10−16 cm2/W, which is in the range of the previously reported values
between 3.45·10−16 cm2/W and 4.71·10−16 cm2/W [70–73] for BK-7. The absolute
uncertainty in the values is estimated to be ±20 %, which is comparable to that in
other z-scan setups [67, 68, 74].
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3.4 z-scan with tetragonal NaT(XO4)2 crystals

The nonlinear refractive index of disordered tetragonal NaTX crystals was measured
in paper I, for both σ-polarised and π-polarised light. At the focus, the peak
intensity was around 65 GW/cm2 and the transmittance of the far-field aperture
was set to S ≃ 0.22. The scanned crystals had a thickness in the range between
0.74 mm and 2.08 mm. Fig. 3.8 illustrates the normalised transmittance of four of
the samples and the measured values of n2 for all the seven samples are found in
Table 3.1.

The first observation is that the nonlinear refractive index is positive for all the
measured NaTX compounds. This is deduced by noting that the valley is located
at z < 0 and the peak is located at z > 0, meaning that the nonlinear lensing is
positive and thereby n2 > 0. For the laser-ion doped crystals, the samples with
large T3+ ionic radii, NaLaW and NaGdW, have the smallest values of n2, around
16 · 10−16 cm2/W. The values for Yb:NaYW and NaLuW are around a factor of 2
larger. It is also observed that the strength of the Kerr nonlinearity in Yb:NaYX
is not appreciably changed when W6+ is replaced with Mo6+. The largest Kerr
nonlinearity is found in NaBiW, where n2 is around a factor of 2 larger than for
Yb:NaYX. NaBiW also has a large nonlinear birefringence, |n2σ − n2π|, which for
the other NaTX compounds is rather low.

TPA was observed in most crystals in Table 3.1. From Eq. (3.13), the TPA
coefficient was estimated to be β ≃ 0.4 cm/GW in NaBiW, compared to β ≃ 0.09
cm/GW for Yb:NaGdW and β ≃ 0.04 cm/GW for NaLuW. The differences in TPA
coefficients is related to the bandgaps, which for π-polarised light increases from
3.50 eV (355 nm) in NaBiW to 4.18 eV (297.2 nm) in NaGdW and 4.29 eV (289.3
nm) in NaLuW [75]. Compared to for the z-scan wavelength of 820 nm, the effect
of TPA will be lower when lasing occurs, as the wavelengths then are around 1040
nm and the photon energies are lower.
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Fig. 3.8: z-scan measurements of four different doped and undoped disordered tetragonal
NaT(XO4)2 crystals [paper I]. The sample thickness and the peak intensity used in each
sample are slightly different, so the traces cannot be directly compared to evaluate the
relative values of n2.

Table 3.1: Nonlinear refractive index for disordered tetragonal NaT(XO4)2 crystals.

Crystal Dopant L (mm) n∗
2 (σ) n∗

2 (π)
NaLaW Nd (10 at. %) 0.911 15a 13a

NaLaW Tm (5 at. %) 0.745 16a 16a

NaGdW Yb (5 at. %) 2.081 17b 17b

NaYW Yb (10 at. %) 1.875 35b 30b

NaYMo Yb (10 at. %) 0.848 34b 33b

NaLuW - 0.995 23b 28b

NaBiW - 1.160 68b 58b

∗ in units of 10−16 cm2/W. aλ = 850 nm. bλ = 820 nm.
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3.5 z-scan with monoclinic KT(WO4)2 crystals

The nonlinear refractive index of monoclinic KTW crystals was measured in pa-
per II, for light polarised along Np and Nm. At the focus, the peak intensity
was around 50 GW/cm2 and the transmittance of the far-field aperture was set
to S ≃ 0.18. The crystal thickness was around 1.0 mm for all samples. Fig. 3.10
illustrates normalised transmittance of four of the samples and the measured values
of n2 for all the seven samples are found in Table 3.2, with values ranging between
15 · 10−16 cm2/W and 26 · 10−16 cm2/W.

Compared to the disordered tetragonal NaTX compounds, the monoclinic KTW
compounds exhibit less two-photon absorption, with a maximum decrease in the
intensity at the focus of 3 % for KLuW. The KTW crystals also have a larger
anisotropy in n2 along the principal axes, with a larger n2 for E||Nm compared
to E||Np. As nm > np, it is to be expected from Miller’s rule, the third-order
generalisation of Eq. (2.32), that the nonlinear refractive indices also are related as
n2m > n2p. This is beneficial, as the KTW compounds have larger absorption and
emission cross sections when E||Nm and the higher nonlinear index can then be used
for Kerr-lens modelocking. It is observed that n2m increases in the order KLuW,
KYbW, KYW, KGdW and it is illustrated in Fig. 3.9(a) that the increase has an
almost linear dependence on the raduis of the T3+ ion. The nonlinear birefringence,
n2m − n2p, also increases in this order and this effect is less pronounced when the
crystals are doped with Yb3+, as shown in Fig. 3.9(b).
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Fig. 3.9: (a) For E||Nm, n2 increases approximately linearly with the T3+ ionic radius
[paper II]. (b) The nonlinear birefringence also increases with the T3+ ionic radius, but
the effect is lower when the crystals are doped with Yb3+ [paper II].
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Fig. 3.10: z-scan measurements of four different doped and undoped monoclinic
KT(WO4)2 crystals [paper II]. The sample thickness and the peak intensity used in each
sample are similar, so the traces can be directly compared to evaluate the relative values
of n2.

Table 3.2: Nonlinear refractive index for monoclinic KT(WO4)2 crystals.

Crystal Dopant L (mm) n∗
2 (E||Nm) n∗

2 (E||Np)
KLuW - 1.034 23 17
KLuW Yb (5 at. %) 1.032 22 19
KYbW - 0.996 23 17
KYW - 1.063 24 15
KYW Yb (5 at. %) 1.026 19 15
KGdW - 1.013 25 15
KGdW Yb (5 at. %) 1.034 26 17

∗ in units of 10−16 cm2/W. λ = 819 nm.
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3.6 Conclusions

The nonlinear index of refraction of doped and undoped disordered-tetragonal and
monoclinic MT(XO4)2 crystals were measured in paper I and paper II, with the
measured values displayed in Table 3.1 and Table 3.2. The values range between
13 · 10−16 cm2/W and 68 · 10−16 cm2/W for the tetragonal crystals and 15 · 10−16

cm2/W and 26 · 10−16 cm2/W for the monoclinic samples. These Kerr coefficients
are 5 to 22 times as large as that of sapphire, n2 ≃ 3.1 · 10−16 cm2/W [76], which
means that the samples doped with active ions are good candidates for Kerr-lens
modelocking of lasers.

The crystal with the highest Kerr nonlinearity is NaBiW. However, the attempts
to Cz-grow NaBiW doped with adequate amounts of active Yb3+ or Tm3+ ions for
lasing has so far been unsuccessful [77]. The increased amount of dopants leads to
modification of the melting properties, which results in degradation of the optical
quality of the crystals. Other growth procedures must therefore be developed for
the fabrication of Yb:NaBiW crystals. The high Kerr nonlinearity of NaBiW could
be related to the electronic structure of Bi3+. Glasses doped with heavy ions,
like Pb2+ and Bi3+, also exhibit an increased Kerr nonlinearity, which has been
attributed to the hyperpolarisability associated with the lone 6s2 electron pair of
these ions [78].

It is also worth to comment on the magnitude of the change in the refractive
index due to the Kerr nonlinearity in these crystals. By using σ-polarised light with
an on-axis peak intensity of I0 ≃ 65 GW/cm2 in NaBiW, where n2 ≃ 68 · 10−16

cm2/W, the maximum value of the intensity-dependent part of the refractive index
is ∆n = n2I0 ≃ 4.4 · 10−4 at the focus of the beam. This value should be compared
to 2.170, which is the linear refractive index of σ-polarised light in NaBiW at a
wavelength of 820 nm [77]. The relative change in the refractive index at this high
intensity is hence only 0.02 % and the Taylor expansion in Eq. (2.66) is thereby
valid. The other samples have lower Kerr nonlinearities and the relative changes in
the refractive index are even lower, but are still enough for nonlinear lensing.





Chapter 4

Structure engineering of KTiOPO4

KTiOPO4 (KTP) is a ferroelectric crystal with a wide transparency range and
a relatively high second-order nonlinearity, which is extensively used for nonlin-
ear frequency conversions with either birefringent phase matching or quasi-phase
matching. Electric-field poling turns a KTP crystal consisting of only one ferro-
electric domain into a periodically-poled KTP (PPKTP) crystal with domains of
alternating polarity with a fixed periodicity. The domain inversion also leads to
a sign change of the second-order djm coefficients, which spectrally modifies the
nonlinear response, and the PPKTP crystal can be used for quasi-phase-matched
interactions. By proper design of the domain-inversion periodicity, any nonlinear
interaction within the crystal’s transparency range can be made efficient. This
chapter gives an overview of the KTP properties and some of the findings in pa-
per III, including the fabrication techniques for submicrometre PPKTP, which is
a necessary component for the mirrorless optical parametric oscillator used in pa-
per IV, paper V and paper VI.

4.1 Crystallographic properties of KTiOPO4

The crystal structure of KTiOPO4 is orthorhombic and belong to the noncen-
trosymmetric point group mm2 and the space group Pna21 [79]. The lattice con-
stants are a ≃ 12.81 Å, b ≃ 6.40 Å and c ≃ 10.62 Å [80], where the two-fold
symmetry axis is in the direction of the c axis and the two mirror planes are each
perpendicular to the a or b axes. Each unit cell contains eight formula units of
KTiOPO4, which has a structure characterised by chains of TiO6 octahedra that
bind to each other directly and also via bridges of PO4 tetrahedra. An illustration
of the crystal structure is found in Fig. 4.1(a). The lengths of the Ti-O bonds alter-
nate between between long and short, which gives rise to the ferroelectricity and a
spontaneous electric polarisation, Ps, along c. Regions of the same direction of Ps

form ferroelectric domains in the crystal, where the polarity determines the signs of
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the djm coefficients. The spontaneous polarisation can be inverted by applying an
electric field with opposite polarity and a magnitude that is larger than the coercive
field, Ec, which for KTP is around 2 kV/mm [33]. A three-dimensional network is
formed by the TiO6-PO4 chains, in which channels are formed where the potassium
ions are located at two nonequivalent lattice sites, K1 and K2. The potassium ions
can move in these channels and the crystal therefore has a rather high ionic con-
ductivity. Above the Curie temperature, 934 ◦C [80], KTiOPO4 undergoes a phase
transition and becomes paraelectric. The crystal structure is then centrosymmetric
with the point group mmm and the space group Pnan [81]. The melting point is
around 1150 ◦C [79].

As rubidium is located just below potassium in the periodic table, Rb+ ions can
substitute K+ ions in the crystal structure. A low Rb+ content, typically below 1
% of the K+ ions, hardly affects the linear and nonlinear properties of KTP, but the
larger ionic radius lowers the ionic conductivity by about two orders of magnitude
[82]. The coercive field is 3.8 kV/mm, about twice as high as for undoped KTP.
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Fig. 4.1: (a) The crystal structure of KTiOPO4 in the ferroelectric phase [81]. (b)
The transmission through 10 mm KTiOPO4 [83]. Fresnel reflections have reduced the
transmission by approximately 9 % per surface.

4.2 Optical properties of KTiOPO4

KTiOPO4 has a wide transparency window between 365 nm and 4.3 µm [83]. In
the infrared, there is a transmission dip around 2.8 µm due to OH groups trapped
in the crystal during growth. The transparency is reduced for wavelengths longer
than around 3 µm, as can be seen in the transmission graph in Fig. 4.1(b). The
principal dielectric axes x, y and z are parallel to the crystallographic axes a, b

and c, respectively. For nonlinear applications, z polarised waves are of a par-
ticular interest, since the largest djm coefficient, d33, then is accessible. For this
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polarisation, the refractive index, nz, calculated from different Sellmeier expansions
[84–86] is shown in Fig. 4.2(a), together with the group index in Fig. 4.2(b) and the
group-velocity dispersion (GVD) coefficient β2 ≡ ∂2k/∂ω2 = λ3/(2πc2)∂2n/∂λ2 in
Fig. 4.2(c).
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Fig. 4.2: (a) Index of refraction (b) group index and (c) GVD coefficient for z-polarised
light in KTiOPO4 as function of the vacuum wavelength, calculated with the Sellmeier
expansions by Fan et al. [84], Fradkin et al. [85] and Kato et al. [86].

Unless otherwise stated, the Sellmeier expansion by Kato et al. [86] is used for the
calculations of the refractive index in this thesis. nz is then given by

n2
z(λ̂) = 4.59423 +

0.06206

λ̂2 − 0.04763
+

110.80672

λ̂2 − 86.12171
, (4.1)

where λ̂ is the vacuum wavelength in µm. This expression is valid at 20 ◦C and
can be estimated at other temperatures with the temperature derivative,

∂nz

∂T
=

(
9.221

λ̂3
− 29.220

λ̂2
+

36.677

λ̂
− 1.897

)

· 10−6/K, 0.53 ≤ λ̂ ≤ 1.57

∂nz

∂T
=

(−5.523

λ̂
+ 33.920 − 17.101λ̂ + 3.424λ̂2

)

· 10−6/K, 1.32 ≤ λ̂ ≤ 3.53.

(4.2)

A change in the crystal temperature also leads to thermal expansion, which due
to the anisotropic crystal structure is larger in the x and y directions and has the
expansion coefficients αx ≃ 9.5 · 10−6/K, αy ≃ 9.2 · 10−6/K and αz ≃ 0.3 · 10−6/K
[87].
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In contracted form, the second-order susceptibility tensor for orthorhombic mm2
crystals is





0 0 0 0 d15 0
0 0 0 d24 0 0

d31 d32 d33 0 0 0



 , (4.3)

where d31 = d15 and d32 = d24 when Kleinman symmetry is valid. The second-
order nonlinear coefficients of KTiOPO4 have been experimentally measured for
frequency-doubling of light at 1064 nm with the typical values d15 ≃ 1.9 pm/V,
d24 ≃ 3.6 pm/V, d31 ≃ 2.3 pm/V, d32 ≃ 4.0 pm/V and d33 ≃ 16.9 pm/V [41].
Clearly, d33 is much larger than the other coefficients, but is in principle only
accessible through quasi-phase-matched interactions.

Another important optical parameter is the damage threshold. It is hard to
give an exact value for the damage threshold, as it depends on the pulse length
and the wavelength, but it also varies from crystal to crystal. One value that has
been reported is 15 GW/cm2 for a pulse length of 1 ns at 1064 nm [84]. For shorter
pulses, the damage threshold as a rule of thumb scales with the inverse square
root of the pulse length. The large transparency range and the relatively high
nonlinearity, together with a high damage threshold, makes KTP a good candidate
for a material to use in OPOs.

4.3 Periodic poling of KTiOPO4

In order to use KTP for quasi-phase-matched interactions, it is necessary to pe-
riodically invert the sign of the spontaneous polarisation. This can be done by
periodic ion exchange [88], but is more often done by periodic poling, which first
was demonstrated in 1997 [33]. The periodic poling is done by coating a surface of
a crystal that consists of only a single ferroelectric domain with a metal-insulator
periodic pattern. By applying a high electric field, the ferroelectric domains can
then be inverted under the part of the crystal surface that has contact with the
metal. Typical crystal dimensions are 10 mm × 5 mm × 1 mm in the a, b and c di-
rections, respectively. A schematic sketch of the different steps from single-domain
KTP to PPKTP is illustrated in Fig. 4.3.

An insulating photoresist layer with a thickness of a few micrometres is first
spun onto the c− face of the crystal and is heat treated at 110 ◦C for 90 s. A
photolithographic mask with a periodic pattern of the desired period is placed on
top of the photoresist, which is illuminated by UV light through the mask for a few
milliseconds. For one-dimensional patterns, the mask is normally aligned with the
crystal so that the periodicity is in the a direction. The reason for this is that the
domain growth is much faster in the b direction [89, 90] compared to a, meaning
that it is easier to pole dense grating along a than along b. The UV light breaks
molecular bonds in the photoresist, which makes the exposed resist dissolve when
the crystal is immersed into a developing solution. If this is done correctly, there
is now a periodic pattern with air and photoresist on the c− face. The air gaps



4.3. PERIODIC POLING OF KTIOPO4 51

photoresist layer UV exposure with mask developing

metal evaporation

c− 

c+ 

high-voltage pulse

+

−
periodically-poled

 crystal

c 

a b

z 

x y

Fig. 4.3: An insulating photoresist layer is spun onto the c− face of the crystal. A
periodic pattern is written in the photoresist by UV exposure under a periodic mask. The
photoresist is developed and aluminium is evaporated onto the pattern. The crystal is
connected to a high-voltage supply and the ferroelectric domains are inverted where there
is metal contact.

are then filled with aluminium, typically with a thickness around 100 nm, which is
evaporated onto the c− face in a vacuum chamber. The crystal is now ready to be
poled and is connected to a high-voltage supply via liquid electrodes in the form of
a solution of KCl. A voltage pulse that produces fields of the order of the coercive
field with a duration of a few milliseconds is applied and the ferroelectric domains
are periodically inverted where there is metal contact. The metal increases the
domain nucleation rate [91] and increases the probability that the domains start
growing on the c− face and propagate through towards c+.

The procedure described above and in Fig. 4.3 appears straight forward, but as
every crystal sample is slightly different, particularly in terms of ionic conductivity,
the process needs to be monitored so that one can adjust the voltage and the
length of the electric pulses in order to reach the desired result. A too low voltage
does not pole the sample and a too high voltage poles it even under the insulating
photoresist. There are two main ways to monitor the poling process. One way
is to monitor the polarisation rotation caused by the electro-optic effect as the
poling voltage is applied across the crystal [92]. This is done by shining a HeNe
laser through a polariser, then through the crystal and through a second polariser,
which is rotated 90◦ with respect to the first one. With no voltage applied, there
is no transmission of the HeNe beam through the second polariser. When the
poling pulse is applied and if no poling occurs, the HeNe intensity after the second
polariser is approximately constant throughout the applied voltage pulse. On the
other hand, if poling occurs, the HeNe intensity will be modulated, as shown in
Fig. 4.4.

After the poling, the quality of the domain grating can be evaluated by measur-
ing the efficiency of second-harmonic generation in the crystal. This is done with
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Fig. 4.4: When the crystal poles, the electro-optic effect modulates the photocurrent
generated by the HeNe laser. This occurs for the middle trace, but not for the lower trace.
The upper trace shows the applied voltage, which at the beginning of the pulse shows the
RC response of the poling circuit.

a Ti:Sapphire laser, which can be tuned to wavelengths where QPM of some order
occurs for the specific domain-inversion periodicity. A high relative SHG power
that is sensitive to detuning from the QPM peak indicates that the domain grating
is good. The homogeneity of the grating is tested by scanning the Ti:sapphire beam
in the y and z directions and differences in the SHG is detected. Another method to
evaluate the domain grating is to etch the crystal in an aqueous solution of KNO3

and KOH [88]. The etching rate is faster at the c− face compared to c+, which
makes the domain grating visible, as is shown in Fig. 4.5. However, this method
only gives information about the grating structure on the surfaces and not in the
bulk.

4.4 Fabrication of 3 mm-thick PPKTP crystals

The fabrication of PPKTP crystals with a period of Λ = 38.86 µm and a thickness
of 3 mm in the c direction is described in paper III. These crystals are thicker
than the typical PPKTP thickness of 1 mm and are suitable for high-power laser
applications. The large crystal aperture allows for large beams with high average
power, at the same time as the peak intensity is below damage threshold. A QPM
period of 38.86 µm is designed for converting light at 1064 nm to around 2128
nm in a near-degenerate OPO. Both undoped and Rb-doped KTP crystals were
used, where in the doped crystals 0.3 % of K+ was replaced by Rb+. The crystals
were poled with a single 8 ms-long square-shaped pulse with an amplitude of 2.9
kV/mm for KTP and 5 kV/mm for Rb:KTP, with the results of one doped and one
undoped crystal shown in Fig. 4.5. The crystal dimensions were 12 mm × 7 mm ×
3 mm in the a, b and c directions, respectively, with periodically-poled regions of
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approximately 9 mm × 5 mm × 3 mm.
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Fig. 4.5: Microscope images of the patterned and unpatterned sides of the 3 mm-thick
periodically-poled KTP and Rb:KTP crystals. The crystals are poled all the way through.
The undoped crystals obtains a duty cycle close to 50 %, whereas the Rb-doped crystals
maintains the 30 % duty cycle of the mask [paper III].

One interesting feature is that the photolithographic mask used had openings with
a duty cycle of 30 %. In KTP, this was a good choice, as the inverted domains have
broadened from the 30 % of the mask opening to 49 %, i.e. close to the optimum
duty cycle of 50 %. No such domain broadening occurs for the Rb-doped crystals.
The domain grating in Rb:KTP maintains the duty cycle of the photolithographic
mask, meaning that a mask with duty cycle of 50 % would have been a better
choice. The effective nonlinearity is then, according to Eq. (2.52), reduced by a
factor of sin(πD) ≃ 0.81 for D = 0.3. It can also be seen in Fig. 4.5 that the
domain walls are much straighter in Rb:KTP than in KTP, which is a property
that makes Rb:KTP a promising material for crystals with submicrometre periods
or for even thicker crystals. After the poling of these crystals, 5 mm-thick Rb:KTP
crystals have been periodically poled [25].
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4.5 Fabrication of submicrometre periods

With QPM periodicities below 1 µm, novel nonlinear light sources can be realised,
e.g. mirrorless optical parametric oscillators. For the poling of submicrometre pe-
riods, KTP is a better material than e.g. LiNbO3, as the domain growth in KTP
is highly anisotropic, which allows for large domain sizes in the b and c directions
and small sizes in the a direction [90]. In LiNbO3, the domains tend to grow in
shapes that follow the trigonal crystal structure [93], which makes it challenging to
reduce the domain size in one spatial direction. Dense domain gratings in LiNbO3

are normally limited to the surface and do not have the depth that is required for
bulk devices [94].

The fabrication techniques for submicrometre periods are different compared
to periods of a few or tens of micrometres. Due to diffraction, photolithographic
masks are not suitable for patterning periods around 1 µm or below. Instead, the
periodic pattern is created by the interference fringes formed by two UV beams,
whose spatial period is determined by the UV wavelength and the angle α between
the beams,

Λ =
λ

2 sin(α/2)
, (4.4)

where in our case a frequency-quadrupled Nd:YVO4 laser gives the UV wavelength
of λ = 266 nm.

Two methods for poling of submicrometre PPKTP are described in paper III.
One is to make a periodic coercive-field grating by periodic in-diffusion of potassium
ions. As the potassium content increases, the coercive field is reduced [95]. By
leaving the crystal in a KNO3 melt at 380 ◦C for 24 hours, the coercive field
decreases by approximately 0.5 kV/mm [35]. With a periodic metallic pattern on
the crystal c− face, the in-diffusion of K+ ions only occurs in the metal openings,
creating regions with a periodic coercive-field difference. The crystal can then be
poled at a field that periodically exceeds the coercive field in the crystal.

Another method is to use short electric pulses, typically with a length around one
millisecond. The patterning is done similar to in Fig. 4.3, but where the interference
pattern is used instead of the photolithographic mask. By using a short pulse with
an amplitude that is substantially higher than the coercive field, the nucleation of
domains is rapid at the c− face and the short pulse length prevents the domains
from spreading beyond the electrodes [91]. The drawback of this method is that
the domains normally do not propagate all the way through to the c+ face. The
crystal that was used to realise the mirrorless optical parametric oscillator used in
[16], and in paper IV, paper V and paper VI, was poled with a single 1.5 ms-long
pulse with an amplitude of 2.6 kV/mm. An atomic force microscopy (AFM) image
of this PPKTP crystal is shown in Fig. 4.6, revealing a crystal period of Λ ≃ 800
nm.
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5 µm

Fig. 4.6: Atomic force microscopy image of the patterned c face of a PPKTP crystal
with Λ ≃ 800 nm, used for the mirrorless OPO in paper IV, paper V and paper VI.

4.6 Conclusions

Periodically-poled KTP and Rb:KTP crystals with a thickness of 3 mm and a poling
periodicity of Λ = 38.86 µm have been fabricated. The crystals are designed for
near-degenerate parametric down-conversion of pump light at 1064 nm with the
largest second-order nonlinear coefficient d33. The thickness of 3 mm makes them
suitable for high-power applications. A low content of Rb-doping of KTP (here 0.3
%) affects the poling properties of the crystals. The ionic conductivity is greatly
reduced and the coercive field increases by about a factor of 2. It is found that
the Rb-doped crystals have straighter domain walls and maintain the periodicity of
the photolithographic mask. This feature of Rb-doped crystals is promising for the
poling of submicrometre periodicities in order to quasi-phase-match interactions
with counterpropagating photons. It can also be used for the poling of even thicker
crystals.





Chapter 5

Mirrorless optical parametric oscillators

Nonlinear three-wave interactions with counterpropagating photons can be used
for the creation of narrowband parametric devices with unique spectral properties.
These interactions, however, constitute an experimentally rather unexplored branch
of nonlinear optics, due to the difficulty to achieve phase matching in a counterprop-
agating configuration. Some materials, like GaSe [96], possess a birefringence that
is large enough to phase match interactions between two orthogonally-polarised
co-propagating near-infrared waves in order to generate a counterpropagating wave
at their frequency difference. These interactions are normally limited to backward
waves in the THz region when the phase matching relies on the natural birefrin-
gence of the nonlinear medium. In order to increase the frequency of the backward
wave, quasi-phase matching is needed, and it is for first-order QPM necessary to
use a periodicity that is comparable to the pump wavelength.

The main feature that makes counterpropagating parametric interactions attrac-
tive is that they, unlike co-propagating interactions, may lead to optical parametric
oscillation without the use of external mirrors or surface coatings. The necessary
feedback is instead automatically provided through an internal distributed-feedback
mechanism, which is established by the counterpropagating waves when the crystal
is pumped above threshold. Furthermore, a counterpropagating phase-matching
scheme intrinsically leads to parametric waves with narrow bandwidths, which i.e.
could be used for the generation of ultrabright biphotons [97] for quantum ap-
plications. Before discussing the findings in paper IV, paper V and paper VI, a
theoretical overview is given based on the original ideas behind the mirrorless op-
tical parametric oscillator (MOPO) in [15] and the plane-wave modelling of the
device in [98], as well as the first experimental realisation of a MOPO in PPKTP of
submicrometre periodicity [16]. Throughout the chapter, the subscripts j = p, f, b
denote the pump, the forward and the backward parametric waves, respectively.

57
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5.1 MOPO in homogeneous media

As in a conventional OPO, the sum of the energies of the parametric photons is
equal to the energy of the pump photon,

ωp = ωf + ωb, (5.1)

and phase matching is necessary for an efficient interaction,

kp = kf + kb. (5.2)

Since kp and kf point in the forward direction, whereas kb points in the backward
direction, the scalar form of Eq. (5.2) reads

kp = kf − kb. (5.3)

The counterpropagating phase matching hence requires that the wave-vector magni-
tude the forward parametric wave is larger than the that of the pump, even though
the pump has a higher frequency. This condition could be satisfied by employing
BPM in a material with a large birefringence, where the forward parametric wave
is generated orthogonally polarised to the pump, at the same time as the backward
parametric wave has a wavelength that is much longer than those of the pump and
the forward wave, λp ≃ λf ≪ λb. The combined solution of Eq. (5.1) and Eq. (5.3)
results in the following expression for the backward wavelength,

λb = λp
nf + nb

nf − np
. (5.4)

As opposed to conventional co-propagating parametric interactions, the configura-
tion with counterpropagating parametric waves establishes an internal distributed-
feedback mechanism, which leads to optical parametric oscillation without the need
of external feedback from a cavity. A device based on this principle is called a
mirrorless optical parametric oscillator (MOPO) and the principle of operation is
somewhat similar to the oscillation obtained in distributed-feedback (DFB) lasers
[99, 100]. However, unlike a DFB laser, which relies on the narrowband reflectivity
obtained from a periodic modulation of the propagation constant, a MOPO is a
truly mirrorless device and its operation is not based on reflections of any kind, but
rather on counterpropagating phase matching. The MOPO was proposed in 1966
[15] with the suggestion to use trigonal selenium as the nonlinear medium, which
is a uniaxial crystal with a trigonal crystal structure belonging to the point group
32. This material has a large birefringence, no = 2.78 and ne = 3.58, a very large
second-order nonlinearity and a wide transparency range between 0.8 µm and 20
µm. Type-II phase matching using d26 = −d11 = −80 pm/V could be achieved
with ordinary pump and idler waves and an extraordinary signal wave, with an
index of refraction depending on the propagation direction in the crystal given by
Eq. (2.23). The effective nonlinearity of the interaction depends on the propagation
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angle to the optical axis, θ, as deff = d26 cos θ. With a Q-switched Nd laser at 1.06
µm as pump source, the backward wavelength calculated from Eq. (5.4) and deff for
the interaction are illustrated Fig. 5.1(a), together with phase-matching diagrams
in Fig. 5.1(b) and (c). Dispersion has been neglected for the phase-matching calcu-
lations, which therefore are inaccurate, but however still show a correct qualitative
behaviour.
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Fig. 5.1: (a) The backward-generated wavelength in trigonal selenium pumped at 1.06
µm (solid line) and the effective second-order nonlinearity for the interaction (dotted line)
as function of the phase-matching angle θ. (b) Phase-matching diagram for θ = 90◦:
λb = 8.43 µm and λf = 1.21 µm. (c) θ ≃ 44◦: λb = 20.0 µm, λf = 1.12 µm.

In theory, a widely-tunable source in the mid-infrared could be constructed with
thresholds in the range of tens of MW/cm2 in a 10 mm-long crystal. However,
MOPOs have not yet been experimentally demonstrated in any homogeneous ma-
terial. Instead, various schemes of backward DFG have been reported, e.g. the
amplification of a backward mid-infrared beam in NaNO2 [101] and backward DFG
in the THz range in GaSe [96] between the pump and a forward signal. Hence
counterpropagating nonlinear interactions in homogeneous media are possible, but
it has so far always been necessary to have an input at either of the parametric
waves for the interaction to take place. One reason for the difficulty to achieve
parametric oscillation may be that the near-infrared forward wave and the far-
infrared backward wave have very different diffraction properties, which leads to a
poor overlap between the parametric beams. This could possibly be circumvented
if the interaction is confined in a waveguide. Another approach, which has proven
to be successful, is to instead of BPM use QPM with a periodicity comparable to
the pump wavelength in order to increase the frequency of the backward wave to
the mid infrared [16].
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5.2 Plane-wave model of a nondegenerate MOPO

Analytical solutions of the counterpropagating nonlinear interaction can be ob-
tained when the interacting fields are monochromatic plane waves [98], with the
result of analytical expressions for the MOPO oscillation threshold and for the con-
version efficiency. With the pump and the forward parametric wave propagating
along x, and the backward wave propagating along −x, which is the propagation
directions in KTP in our experiments, the coupled wave equations in the slowly-
varying envelope approximation can be written in a normalised form [98],

daf

dx
= iκapa∗

b , (5.5)

dab

dx
= − iκapa∗

f , (5.6)

dap

dx
= iκaf ab, (5.7)

where the common coupling coefficient is

κ =
deff

2c

√
ωpωf ωb

npnf nb
. (5.8)

The amplitudes, aj , are here normalised with respect to frequency and refractive
index with the definition,

Ẽj(x, t) =
√

ωj

nj
aj(x)ei(±kjx−ωjt) + c.c., (5.9)

for j ∈ {p, f, b}. The sign in the exponential is − for the backward wave and + for
the forward wave and the pump. First-order quasi-phase matching is assumed,

kp = kf − kb + KG, (5.10)

where KG = 2π/Λ. This condition, together with energy conservation, determines
the frequencies of the parametric waves. It is here assumed that the MOPO is
nondegenerate, i.e. ωf 6= ωb. The degenerate case is slightly different, as quasi-
phase-matched back-conversion to the pump from the parametric waves is possible
in both the ±x directions. With the normalised fields, the intensities are

Ij(x) = 2ε0c ωj |aj(x)|2 . (5.11)

The nonlinear medium is located between x = 0 and x = L where the pump is
incident on the face at x = 0. With no input fields at either of the parametric
frequencies, the boundary conditions are af (0) = 0 and ab(L) = 0. Solving the
coupled wave equations, Eq. (5.5) - Eq. (5.7), with these boundary conditions leads
to the following solutions for the parametric waves:

af (x) = ia0 sin θ, (5.12)

ab(x) = a∗

0 cos θ, (5.13)
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where the complex constant a0 depends on the input pump intensity, Ip(0), and θ
is a real function of x with the boundary conditions θ(0) = 0 and θ(L) = π/2. The
threshold is reached at the pump amplitude of ap,th = π/(2κL), which translates
into the threshold intensity

Ip,th =
ε0cnpnf nbλf λb

2L2d2
eff

. (5.14)

Once above threshold, the pump is efficiently converted into parametric waves with
the efficiencies ηf = ηωf /ωp and ηb = ηωb/ωp, where η ≡ 1 − Ip(L)/Ip(0) is the
pump depletion, implicitly given by the integral equation

∫ π/2

0

dθ′

√

1 − η sin2θ′
=

π

2

√

Ip(0)/Ip,th. (5.15)

The efficiencies and the pump depletion are illustrated in Fig. 5.2(a). With η given
by the input pump intensity through Eq. (5.15), the function θ is calculated from
the relation

∫ θ

0

dθ′

√

1 − η sin2θ′
=

πx

2L

√

Ip(0)/Ip,th, (5.16)

which close to threshold, η ≪ 1, can be approximated with θ ≃ πx/(2L). The
intensities of the parametric waves and the pump inside the crystal for different
input pump intensities are shown in Fig. 5.2(b).
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Fig. 5.2: (a) The pump depletion (dotted line) and the conversion efficiencies for the
forward wave (solid line) and the backward wave (dashed line) as function of the pump
intensity. (b) The intensity distribution throughout the crystal for the pump (dotted
line), the forward wave (solid line) and the backward wave (dashed line) at the input
pump intensities of Ip(0)/Ip,th = 1.1, 1.3, 1.5 and 1.7. The frequencies in both graphs are
related as ωb = ωf /2 = ωp/3.
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The mathematical description of the MOPO interactions is simple when the inter-
acting waves are monochromatic and have a constant time dependence. In experi-
ments, it is however necessary to use a pulsed pump in order to reach the oscillation
threshold. The mathematical modelling is then more complicated and needs to be
done numerically, as was done in the simulations in paper V and paper VI.

5.3 Experimental realisation of a MOPO

The first experimental demonstration of a MOPO was reported in 2007 [16], 41
years after the initial idea [15]. The experimental setup of a MOPO is schematically
illustrated in Fig. 5.3 and only consists of the pump beam and the nonlinear crystal,
which here is a 6.5 mm-long PPKTP crystal with a periodicity of Λ ≃ 800 nm.

Fig. 5.3: The MOPO setup consists of only the pump source and the nonlinear crystal.
A mirror, transparent for the pump and reflective for the idler, is placed in front of the
crystal to pick up the backward idler beam. All beams overlap each other, but have been
displaced vertically in the figure.

Due to the counterpropagating interaction, the MOPO has spectral properties that
are very different compared to those of co-propagating OPOs. The backward wave
intrinsically has a narrow bandwidth and the forward wave has a spectral width
that is comparable to that of the pump. An example of the spectra of the pump
and the parametric waves generated in a MOPO are found in Fig. 5.4.

The experimental setups in paper IV, paper V and paper VI were similar to
the one shown in Fig. 5.3. The pump source was a Ti:sapphire regenerative ampli-
fier (Coherent Legend), seeded with pulses from a modelocked oscillator (Spectra-
Physics Tsunami) at the repetition frequency of 76 MHz. The pulses obtained a
positive linear frequency chirp by adding positive group-delay dispersion (GDD) in
a grating stretcher. They were then amplified at a repetition rate of 1 kHz, with the
option to recompress the pulses by adding negative GDD in a grating compressor
after the amplification. The system generates pulse energies of up to 1 mJ and
can be tuned from 790 nm to 880 nm. Two alternative sets of stretcher-compressor



5.3. EXPERIMENTAL REALISATION OF A MOPO 63

812 814 816

0.0

0.2

0.4

0.6

0.8

1.0

 

S
pe

ct
ra

l i
nt

en
si

ty
 (a

.u
.)

p
 (nm)

1122 1124

 

s
 (nm)

2951 2952 2953

(c)(b)

 

i
 (nm)

(a)

Fig. 5.4: (a) Depleted and undepleted pump spectrum, ∆νp = 1.21 THz. (b) The forward
signal spectrum, ∆νf = 410 GHz. (c) The backward idler spectrum, ∆νb = 23 GHz (13
GHz deconvoluted) [paper V].

gratings with different dispersive properties can be used, where spatial filtering of
the beam is performed in the stretcher in order to select the spectral width of the
seed spectrum to amplify. The FWHM spectral width of the output can typically
be chosen to be between 0.7 THz and 4 THz with FWHM pulse lengths from 1
ps to 100 ps for negatively-chirped compressed pulses and from 200 ps to 500 ps
for uncompressed positively-chirped pulses. Temporal pulse characterisation of the
compressed pump pulses was done by autocorrelation and the uncompressed pulses
were measured with cross correlation with a 1 ps-long reference pulse.

The pump pulse energy was controlled with a waveplate-polariser setup before
loosely focusing the beam to a 1/e2 intensity radius around 100 µm. The PPKTP
crystal was placed at the focus, behind a partially reflective mirror that was used to
pick up the idler beam. After the crystal, the spectra of the near-infrared pump and
signal were measured with a fibre-coupled spectrometer (Ando AQ-6315A) and the
mid-infrared idler spectrum was measured with a free-space imaging spectrometer
(Jobin Yvon iHR550).

It should be pointed out that too short pump pulses are not suitable for MOPO
pumping. The pump pulse should allow for the backward wave to interact with
the pump throughout the whole crystal, meaning that the pump pulse length, ∆tp,
should be longer than the time it takes for the pump to travel through the crystal,
where it can start amplifying the backward wave at its input plane, plus the time
it takes for the backward wave to travel through the crystal to its exit plane,

∆tp ≥ L

(
1

vgp
+

1
vgb

)

. (5.17)

For the wavelengths in Fig. 5.4, the minimum pump duration is ∆tp ≃ 82 ps. It is
possible to use a shorter pulse, but the efficiency is then reduced. Eq. (5.17) is an
estimate, as the particular temporal pump shape also comes into play.
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5.4 Spectral MOPO characteristics

In the plane-wave model of a MOPO, the parametric waves are monochromatic
in the approximation that phase matching strictly applies. Pumping with chirped
pulses far from the transform limit gives rise to a large asymmetry in the bandwidths
between the parametric waves, as can be seen in Fig. 5.4. As described in paper V,
this asymmetry is related to how the phase modulation in the pump affects the
phase modulation in the generated parametric waves. In a down-conversion process,
the phases of the interacting waves are generally related as

φp − φf − φb = −π/2, (5.18)

which can be deduced from the coupled wave equations. In the MOPO case, it
turns out that the phase of the backward-propagating wave essentially is constant
as a result of the counterpropagating geometry. This can be shown by calculating
the derivatives of the parametric frequencies with respect to the pump frequency.
The derivatives are obtained by differentiating the QPM condition, Eq. (5.10),
while keeping the grating periodicity constant and using the energy-conservation
condition, Eq. (5.1), which results in the following expressions,

∂ωf

∂ωp
=

vgf (vgb + vgp)
vgp(vgb + vgf )

≡ 1 + ε1, (5.19)

∂ωb

∂ωp
=

vgb(vgp − vgf )
vgp(vgb + vgf )

≡ −ε1, (5.20)

where vgj (j = p, f, b) are the group velocities. The plus signs in the denominators
and in the numerator for the forward wave originate from the counterpropagating
geometry. A dimensionless parameter, ε1, is introduced as a measure of the group-
velocity difference between the forward wave and the pump. For any value of the
group velocities, the forward and backward derivatives have very different values
as there still is a minus sign in the numerator of the backward equation. A low
dispersion in the nonlinear medium implies that |ε1| ≪ 1 and the forward derivative
is very close to unity and the backward tunability is consequently close to zero.
Fig. 5.5 shows the tunability of the backward wave in KTP for a broad range of
pump wavelengths and QPM periods.

Fig. 5.5 shows that in a counterpropagating configuration, the magnitude of the
pump tunability for the backward wave is significantly lower than for the forward
wave, regardless of the pump wavelength or QPM period. The backward wave
contains approximately |∂ωb/∂ωp|/|∂ωf /∂ωp| = |ε1|/(1 + ε1) ≃ |ε1| times the fre-
quency content in the forward wave that originates from the frequency content in
the pump. Compared to the pump and the forward wave, the temporal phase of
the backward wave is then slowly varying and approximately constant, and truly
constant when ε1 = 0. Through the phase relation in Eq. (5.18), this implies that
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Fig. 5.5: The calculated pump tunability for the backward wave in KTP as function of
the QPM period. The pump wavelengths range from 0.8 µm to 1.1 µm in steps of 25 nm.

the time derivatives of the phases in MOPOs generally are related as

∂tφb ≃ 0, (5.21)

∂tφf ≃ ∂tφp. (5.22)

In the case of strict equalities, the phase of the backward wave stays constant,
implying that the backward-wave pulses are transform limited and the bandwidth
is given by the temporal pulse duration. On the other hand, the phase of the forward
wave varies with any changes in the pump phase, meaning that the forward wave
essentially is a frequency-shifted replica of the pump. The same phenomena, i.e.
that one parametric wave has a near-constant phase and that the phase of the other
one essentially varies with the phase of the pump, may also occur in co-propagating
configurations under very special conditions [102, 103]. It is then necessary to design
the experiment so that the group velocity of one parametric wave is close to that
of the pump, at the same time as the pump and the other parametric wave have
a large group-velocity difference. The latter condition is automatically fulfilled in
a counterpropagating configuration, as one wave counterpropagates the pump, and
the former condition is approximately fulfilled if the dispersion in the nonlinear
medium is low.

Experimental verification of the phase-modulation transfer

The large asymmetry in phase modulation between the forward and backward para-
metric waves was experimentally verified in paper V. A 6.5 mm-long PPKTP crystal
with a period of 800 nm was pumped with positively-chirped pulses of a FWHM
length of 480 ps, generating a forward signal and a backward idler with pulse lengths
of 160 ps. The MOPO threshold was reached at Ip,th ≃ 0.8 GW/cm2 and the spec-
tra generated at 1.3Ip,th are the ones shown in Fig. 5.4. Both the pump and the
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Fig. 5.6: The cross-correlation setup used in paper V for measurements of the chirp rates
and the temporal intensity profiles of the forward signal and the pump.

forward signal were temporally and spectrally analysed by cross correlation with
a short reference pulse in a BBO crystal. The principle is to measure the sum-
frequency intensity and spectrum generated by the forward signal (or the pump)
and the reference pulse as the reference pulse is scanned through the signal (or
pump) pulse. The beams are designed to have a common focus inside the nonlinear
crystal and the timing between the pulses can be changed by varying the delay in
the reference arm, as is schematically illustrated in Fig. 5.6.

The reference pulse interacts with a part of the signal pulse and the sum-
frequency spectrum and intensity, in Fig. 5.6 denoted ωX(τ) and IX(τ), provide
information about the local frequency and intensity in the signal pulse. The reso-
lution is set by the width of the reference pulse, which in this case was 1 ps, i.e.
more than a factor of 100 shorter than the pump and the signal. By scanning
the reference pulse through the pump and the signal pulses, the detected shift of
the peak in the sum-frequency spectrum is illustrated in Fig. 5.7(a). For both the
pump and the forward signal, there is an approximately linear frequency shift in
the sum frequency as the delay is changed. This is to be expected for the pump,
as the pulses have passed through a grating stretcher, which adds a linear chirp.
It is also expected for the signal, as the phase modulation should be transferred
from the pump with the multiplication of 1 + ε1 ≃ 1.01. The measured chirp rate
was ∂ωp/∂t ≃ 15.7 mrad/ps2 for the pump and about 1.6 % higher for the sig-
nal, ∂ωf /∂t ≃ 16.0 mrad/ps2, which within the experimental resolution verifies the
expected transfer of phase modulation from the pump to the forward parametric
wave. The chirp of the backward idler was not directly measured. However, as a
result of energy conservation, the idler chirp must be weak and has an opposite
sign compared to the chirp of the pump, as expected from Eq. (5.21).

It can also be pointed out that the positive chirp in the pump explains why the
pump spectrum in Fig. 5.4 is not depleted uniformly. At the leading end of the pulse,
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Fig. 5.7: (a) Both the pump and the forward signal are linearly chirped, where the chirp
rate of the signal is slightly faster than that of the pump. (b) Cross-correlation traces of
the uncompressed signal pulses and two compressed pulses at different compressor settings.

which here contains the longer wavelengths, no depletion occurs as the distributed
feedback has not had the time to establish and the MOPO is not operational. Once
the MOPO starts operating, the pump is efficiently depleted, which here occurs
for wavelengths shorter than 814.7 nm. This also causes the signal spectrum to be
narrower than the pump spectrum, as the whole pump spectrum is not depleted.

Another way to confirm that a linearly-chirped pump gives rise to a linearly-
chirped forward signal is to verify that the signal pulses are compressible in the time
domain. This was investigated in paper V, where the signal pulses passed through
a grating compressor with negative GDD. The cross-correlation traces for an un-
compressed pulse and for two different amounts of negative GDD in the compressor
are illustrated in Fig. 5.7(b), which shows that compression occurs.

Numerical verification of the phase-modulation transfer

The transfer of phase modulation to the forward wave was also numerically sim-
ulated in paper V and paper VI by solving the coupled wave equations in the
counterpropagating configuration:

(∂t + vgp∂x + γp + iβp∂tt) Ap = − σpAf Ab, (5.23)

(∂t + vgf ∂x + γf + iβf ∂tt) Af = σf ApA∗

b , (5.24)

(∂t − vgb∂x + γb + iβb∂tt) Ab = σbApA∗

f . (5.25)
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Here σj ≡ 2πdeff vgj/(λjnj), γj and βj ≡ vgjβ2j/2 are the coupling, damping
and dispersion coefficients, respectively. This form of the coupled wave equations
is mathematically more complex and physically more realistic compared to the
monochromatic model, Eq. (5.5) - Eq. (5.7), as the effects of the temporal and
spectral shapes of the waves, as well as the dispersive properties of the nonlinear
medium, are taken into account. The coupled equations were solved for different
spectral and temporal pump shapes in a model PPKTP crystal of length 6.5 mm
and deff = 9 pm/V. In order to simulate the experiment that yielded the spectra in
Fig. 5.4, the input pump amplitude was linearly-chirped with a similar pulse length
and the spectrum shown in Fig. 5.8(a). An input pump intensity of 1.1 GW/cm2

generated the forward signal spectrum shown in Fig. 5.8(b) and the narrow back-
ward idler spectrum in Fig. 5.8(c). The last part of the figure shows the phase
distribution of the three waves inside the crystal at a given time. Clearly, the phase
of the backward idler is in principle constant throughout the crystal and that of the
forward signal is locked to the pump, all in very good agreement with experiments
and theory.

Fig. 5.8: A simulation of a MOPO at the pump intensity of 1.1 GW/cm2. The input
pump (spectral width, 1.27 THz) generates a forward signal (440 GHz) and a backward
idler (6.5 GHz). The zeros on the frequency scales correspond to 814.5 nm, 1125 nm and
2952 nm for the pump, signal and idler. The last figure shows the phase distributions
inside the crystal at a given time, where the x axis is given in mm [paper V].
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Effects of dispersion and pump spectrum

In paper V, the MOPO is pumped with relatively narrowband pulses with a spectral
width of 1.2 THz. In order to investigate the effects of a broad pump bandwidth,
the MOPO was pumped with broadband pulses in paper VI. The regenerative am-
plifier settings were modified to let through a large part of the oscillator spectrum,
resulting in pump pulses with a bandwidth of 4.0 THz. The temporal FWHM pulse
length was 50 ps and the MOPO threshold was reached at an intensity of Ip,th = 1.5
GW/cm2. Fig. 5.9 illustrates the spectra at 1.7Ip,th, generating a forward signal
and a backward idler with temporal lengths around 20 ps and bandwidths of 1.62
THz and 59 GHz, respectively. The pump was negatively chirped, which explains
why the longer wavelengths in Fig. 5.9 are the ones converted into signal and idler.
Compared to in Fig. 5.4, the pump chirp rate was changed by a factor of -31. The
strong pump chirp makes the backward idler bandwidth to be slightly dominated
by chirp rather than by the temporal length.
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Fig. 5.9: (a) Depleted and undepleted pump spectrum, ∆νp = 3.98 THz. (b) The
forward signal spectrum, ∆νf = 1.62 THz. (c) The backward idler spectrum, ∆νb = 59
GHz [paper VI].

In paper VI, the effect of the pump bandwidth on the MOPO efficiency is nu-
merically studied by using linearly-chirped Gaussian pump pulses with the same
temporal length of 52 ps, but with different chirp rates. With ε1 as defined in
Eq. (5.20), the dispersion in the PPKTP crystal at the interacting wavelengths,
which are the same as in Fig. 5.9, is such that the group-velocity difference between
the forward wave and the pump results in ε1 ≃ 9.8 · 10−3. For these dispersion
conditions, it is found that the conversion efficiency in the MOPO decreases with
an increased pump spectral width, as is illustrated in Fig. 5.10 where the spectral
width is increased from the transform limit up to about 5 THz. It is also found,
by artificially manipulating the dispersion, that the reduction in the efficiency does
not occur in the case where the group velocities of the forward wave and the pump
are matched, vgf = vgp, which leads to ε1 = 0. The height of the plus (+) symbols
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in the figure denotes fluctuations in the conversion efficiency that depend on the
initial phase of the pump pulse. As this is a random parameter for the pump source
used in the corresponding experiments, averaging has been done over several initial
phases. The reduction in the efficiency with an increased spectral width happens
because the spectral components in the forward signal move slightly faster than
those in the pump. This temporal walk-off reduces the effective interaction length
and thereby the efficiency of the interaction. This does not occur when there is no
group-velocity difference between the pump and the forward wave and the efficiency
is therefore not affected.

Fig. 5.10: Pump depletion and conversion into signal (1217.9 nm) and idler (2945.7 nm)
as function of the pump spectral width for linearly-chirped pulses at the pump intensity
of 2.57 GW/cm2. When the dispersion is changed so that ε1 = 0, the pump depletion
is not affected by the pump bandwidth. The triangle and the diamond mark the pump
depletion for a pump with stochastic phase modulation at the pump intensities of 2.57
GW/cm2 and 3.5 GW/cm2, respectively [paper VI].

In simulations, any phase modulation can be incorporated in the pump pulses. It
was numerically shown in paper VI that MOPOs can operate when pumped with
pulses of stochastic phase modulation. The forward wave absorbs the stochastic
phase jumps and allows the backward wave to be almost free of phase modula-
tion. However, Fig. 5.10 shows that the stochastic phase modulation has a more
detrimental effect on the MOPO efficiency compared to a deterministic phase mod-
ulation in the form of a linear chirp. For the eventual experimental verification
of this phenomenon, a pump source is needed that delivers pulses with a stable
and high peak power, at the same time as the pulses are incoherent. Good can-
didates for such a pump source are figure-eight fibre lasers operating in noise-like
pulse mode with pulse lengths around 1 ns [104], which could be amplified to the
required energies in fibre amplifiers.
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A MOPO with group-velocity matching

According to Fig. 5.10, group-velocity matching between the forward wave and the
pump increases the MOPO efficiency. It is therefore interesting to realise such
a MOPO experimentally, which could be done in KTP by using pump and for-
ward wavelengths on different sides of the maximum on the group-velocity curve in
Fig. 5.11. Group-velocity matching is obtained e.g. with the pump at 1060 nm and
a forward idler around 2883 nm. This configuration generates a backward signal
at 1676 nm and requires a QPM period as short as 456.7 nm, which currently is
beyond the state-of-the-art poling technology in KTP.
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Fig. 5.11: Group velocity (solid line) and group-velocity dispersion (dashed line) for z-
polarised waves in KTP. The symbols denote the pump (circle), the forward wave (triangle)
and the backward wave (square) for the wavelengths in Fig. 5.9 (open symbols) and for
the group-velocity-matched wavelengths (solid symbols) [paper VI].

As a result of different group-velocity dispersion around the wavelengths of the
pump and the forward wave, there is a still a small amount of phase modulation
in the backward wave. The value of ∂ωb/∂ωp varies within the pump bandwidth
and is only strictly zero for one of the frequencies within the pump bandwidth.
Instead of depending on the group-velocity difference, which here is zero, the phase
modulation is approximately given by the pump bandwidth and the difference in
GVD coefficients, which never is zero in KTP, as shown in Fig. 5.11. The variation
in ∂ωb/∂ωp within the pump bandwidth can be approximated with

∂ωb

∂ωp

∣
∣
∣
∣
ωp+δωp

≃ δωp
∂2ωb

∂ω2
p

∣
∣
∣
∣
ωp

= δωp
vgf vgb

vgf + vgb
(β2f − β2p) . (5.26)

Group-velocity matched configurations enable for pumping with highly incoherent
beams, as is shown by running a simulation with a 50 ps-long pump pulse with
a FWHM bandwidth of 23 THz and stochastic phase modulation. The result is
illustrated in Fig. 5.12, showing that the backward signal has a temporal length of
18 ps and a bandwidth of only 23 GHz, which means that the backward signal is
transform limited, despite the broad pump bandwidth.
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Fig. 5.12: A simulation of a MOPO at the pump intensity of 4 GW/cm2. The input
pump (spectral width, 23 THz) with random phase modulation generates a forward idler
(10 THz) and a backward signal (23 GHz). The zeros on the frequency scales correspond
to 1060 nm, 1676 nm and 2883 nm for the pump, signal and idler, respectively. The
group-velocity matching makes the backward wave a factor of 1000 narrower than the
pump [paper VI].

5.5 Output wavelengths from a MOPO

In the case of a quasi-phase-matched interaction, the parametric wavelengths are
determined by energy conservation, Eq. (5.1), and quasi-phase matching, Eq. (5.10).
The mutual solution of the two equations leads to the following relation between
the QPM period and the interacting wavelengths:

1
Λ

=
1
λp

(np − nf ) +
1
λb

(nf + nb), (5.27)

where the forward wavelength has been eliminated by energy conservation. The
MOPO wavelengths in KTP, calculated from Eq. (5.27) as function of either the
pump wavelength or the QPM period, are shown in Fig. 5.13. The pump wave-
length and the QPM periodicity determine which of the forward and the backward
waves that carries the most energy, i.e. which is the signal and which is the idler.
A backward signal requires that Λ < λp/np, whereas a reversed inequality results
in a backward idler and the degenerate case λf = λb = λp/2 is obtained when
Λ = λp/np. A general feature of MOPOs based on QPM is that the backward
wavelength has a very strong dependence on the QPM period and is only slightly
affected by the choice of pump wavelength. This is especially pronounced in cases
where the dispersion is low, which is deduced by rewriting Eq. (5.27) as

1
λb

=
1

2n̄

(
1
Λ

− ∆n

λp

)

, (5.28)

where ∆n ≡ np − nf and n̄ ≡ (nf + nb)/2. The resulting backward wavelength can
be seen be given by one contribution from the QPM grating and one contribution
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Fig. 5.13: The forward (a) and backward (b) wavelengths as function of the QPM period.
The pump wavelengths range from from 0.8 µm to 1.1 µm in steps of 25 nm. The forward
(c) and backward (d) wavelengths as function of the pump wavelength. The QPM periods
range from 0.3 µm to 1.1 µm in steps of 50 nm. As KTP absorbs around 4.3 µm, the
calculations are performed for parametric pairs where both wavelengths are below 4 µm.

from the pump and the dispersion, where the influence of the grating-related part
typically is much stronger. In the case of KTP, where all interacting wavelengths
are z polarised, nz decreases monotonically from 1.84 at 800 nm to 1.78 at 3 µm,
i.e. a decrease with 4 % (see Fig. 4.2). With Λ ≃ 800 nm and a Ti:sapphire pump,
λp ≃ Λ, the difference in refractive index between the pump and the forward wave
is in the interval 0.01 < ∆n < 0.02, meaning that the grating part is about 50 to
100 times larger than the pump-dispersive part. The backward wavelength is hence
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to a good approximation directly given by the grating period and the average index
of refraction,

λb ≃ 2n̄Λ. (5.29)

This gives an approximate expression for the required modulation period for a
desired backward wavelength. The strong dependence of λb on Λ, and the weak
dependence on λp, can be observed in Fig. 5.13(b) and Fig. 5.13(d). As a result
of energy conservation, the dependence for the forward wave on the pump is the
opposite. In Fig. 5.13(a), it can be seen that an increase in the pump wavelength
essentially shifts the forward-wavelength curve vertically to longer wavelengths.
As the pump wavelength increases, so does the forward wavelength, as shown in
Fig. 5.13(c). In terms of frequency rather than wavelength, the frequency shift of
the forward wave is approximately equal to the frequency shift of the pump, which
is experimentally verified in the next section.

Clearly, the output wavelengths of a MOPO change when the pump is tuned or
the QPM period is changed. Two other ways to tune MOPOs is to vary the crystal
temperature and to rotate the QPM grating with respect to the pump beam. The
tuning methods are described in the four sections below.

5.6 Pump tuning

Due to the counterpropagating quasi-phase matching, the frequency of the forward
wave changes much faster than that of the backward wave when the pump is tuned,
which could be seen in Fig. 5.13 and also from the asymmetries in ∂ωf /∂ωp and
∂ωb/∂ωp. A shift of the pump of δωp shifts the forward and backward frequencies
with an amount δωj (j = f, b), given by

δωj =
〈

∂ωj

∂ωp

〉

δωp, (5.30)

where the angle bracket denotes the average for the pump frequencies between
ωp and ωp + δωp. Pump tuning of a MOPO was experimentally measured for
the crystal with Λ ≃ 800 nm and the spectra generated by three different pump
wavelengths are shown in Fig. 5.14. From the spectra labelled with a to the ones
labelled with b and c, the position where maximum pump depletion occurs is tuned
by -19.82 THz and -26.79 THz, causing the forward signal to shift by -20.04 THz
and -27.05 THz, whereas the backward idler shifts by only 0.22 THz and 0.26 THz.
This tuning behaviour, using only two pump wavelengths, was shown in paper VI
and was verified in [16] for a smaller frequency range. The forward signal tunes
approximately 1 % faster than the pump and the backward idler tunes at only -1
% of the pump tuning rate, which is to be expected from the values of ∂ωj/∂ωp.

In order to compare theory and experiments, Fig. 5.15 shows the pump tuning
curves calculated with the dispersion from [86] for QPM periodicities between 795
nm and 815 nm in steps of 2.5 nm. The four experimental points suggest that the
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Fig. 5.14: Pump tuning of a MOPO in PPKTP with Λ ≃ 800 nm. The forward signal
tunes about 1 % faster than the pump, whereas the backward idler tunes at only 1 % of
the pump tuning rate in the opposite direction. The symbols a, b and c denote which of
the parametric waves that corresponds to which of the three pumps.

QPM period is just above 805 nm, which is within 1 % from the 800 nm deduced
by atomic force microscopy of the crystal (Fig. 4.6).
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Fig. 5.15: The graphs show the calculated forward (a) and backward (b) wavelengths for
QPM periodicities between 795 nm and 815 nm in steps of 2.5 nm. The four experimental
points and the calculations with the KTP dispersion from [86] suggest that the QPM
period is just above 805 nm.
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5.7 Grating tuning

Another way to change the output wavelength is to change the grating periodicity.
The rate of change of the backward frequency with respect to the QPM period can
be calculated by differentiating the quasi-phase-matching condition with respect to
the QPM period while keeping the pump frequency constant,

∂νb

∂Λ
= −∂νf

∂Λ
= − 1

Λ2

vgf vgb

vgf + vgb
, (5.31)

which for KTP is illustrated in Fig. 5.16. The pump wavelength only affects the
grating tunability slightly and indirectly through the dispersion at the paramet-
ric wavelengths and the derivative has an inverse-square dependence on the QPM
period. For 800 nm < λp < 900 nm and Λ ≃ 805 nm, the grating tunability is
∂νb/∂Λ ≃ −124 GHz/nm. The backward bandwidth in paper V was ∆νb ≃ 13
GHz, which means that a shift in the QPM periodicity of only 1 nm would tune
the backward wave with almost 10 bandwidths.
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Fig. 5.16: The rate of change of MOPO output frequency with respect to the QPM
period is essentially independent of the pump wavelength.

5.8 Temperature tuning

The MOPO output wavelengths can be tuned by changing the crystal temperature.
Two separate effects contribute to the MOPO tuning: the temperature dependence
of the refractive index, n(λ, T ), and the change in QPM periodicity due to the
thermal expansion of the crystal. A change in the crystal temperature of ∆T gives
rise to a change in the QPM period of ∆Λ ≃ αΛ∆T , where α is the thermal-
expansion coefficient in the direction of the grating. The temperature tuning of
a MOPO is calculated by differentiating the quasi-phase-matching condition, Eq.
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(5.10), with respect to temperature while keeping the the pump frequency constant.
By inserting the energy-conservation condition, the rate of change of the parametric
frequencies with respect to temperature is

∂νb

∂T
= −∂νf

∂T
= − 1

nf + nb

[

νf

(
∂np

∂T
− ∂nf

∂T

)

+ νb

(
∂np

∂T
+

∂nb

∂T

)

+
cα

Λ

]

, (5.32)

The temperature tuning of a MOPO in a PPKTP crystal with Λ ≃ 805 nm is
presented in Fig. 5.17(a). By varying the crystal temperature between 18 ◦C and 80
◦C, the parametric waves tune around ±100 GHz, at an average rate of ∆νi/∆T =
−∆νs/∆T ≃ −1.60 GHz/K. The crystal is only heated from below, which explains
the slight broadening of the backward wave that occurs during the heating. ±1.60
GHz/K is a slow temperature-tuning rate, meaning that the temperature cannot be
used as a parameter for broad tuning, but is limited to fine tuning of the narrowband
backward wave. On the other hand, this implies that the MOPO output is not
sensitive to temperature fluctuations and that MOPOs are environmentally-stable
devices.
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Fig. 5.17: (a) Temperature tuning of a MOPO between 18 ◦C and 80 ◦C, measured on
the backward wave. (b) Experimental values and the tuning calculated from Eq. (5.32),
with 25 ◦C as the reference temperature.

In order to compare the measured temperature tuning with theory, the temperature
tuning was calculated by using the value of ∂nz/∂T given by Eq. (5.32) and the
thermal-expansion coefficient in the x direction of KTP of α ≃ 9.5 · 10−6/K [87].
The calculated values and the experimental points are presented in Fig. 5.17(b) and
show similar behaviour. The average value of the calculated temperature tuning
in the interval is ∆νi/∆T ≃ −1.84 GHz/K, where approximately equal parts are
attributed to the thermal expansion (-0.94 GHz/K) and to the temperature-induced
change in the refractive index (-0.89 GHz/K).
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5.9 Angular tuning

The angular tuning of a MOPO by the use of noncollinear interactions is explained
in paper IV. Noncollinear interactions in a MOPO are fundamentally different from
noncollinear interactions in co-propagating OPOs, as the nonlinear interaction in
a MOPO self-selects the parametric wavelengths and their propagation directions.
The parametric waves are here referred to as signal and idler, and the illustra-
tions correspond to the case of a counterpropagating idler. As in noncollinear co-
propagating interactions, energy conservation and vectorial quasi-phase matching
apply:

1/λp = 1/λs + 1/λi, (5.33)

np/λp = (ns/λs) cos ϕs + (ni/λi) cos ϕi + (1/Λ) cos ϕG, (5.34)

0 = (ns/λs) sin ϕs + (ni/λi) sin ϕi + (1/Λ) sin ϕG, (5.35)

where, as shown in Fig. 5.18(a), the angles are defined with the pump direction as
the reference direction.
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Fig. 5.18: (a) Definitions of the noncollinear angles, positive in the clockwise direction
from the pump. (b) A general configuration that is a solution of Eq. (5.33) - Eq. (5.35).

λp and Λ are given by the pump source and the engineered crystal. The angle
between the pump and the grating, ϕG, can be freely varied by rotating the crystal,
meaning that there are four unknown variables: λs, λi, ϕs and ϕi. However, there
are only three constraints, so the number of solutions of Eq. (5.33) - Eq. (5.35) is
infinite.

For given wavelengths λs and λi, there are two geometrically nonequivalent
solutions consistent with energy conservation and QPM, obtained by mirroring the
signal and idler wave vectors for one phase-matched pair in the vector kp − KG,
shown as a dashed line in Fig. 5.18(b). For noncollinear interactions in a singly-
resonant co-propagating OPO, the direction of the resonant parametric wave is
determined by the resonant cavity and is not a free parameter. This fixes the value
of either ϕs or ϕi and a unique solution of Eq. (5.33) - Eq. (5.35) is obtained.
Strictly speaking, the dispersion in the nonlinear medium may be such that two
solutions are simultaneously possible with two signals and two idlers at different
wavelengths [105, 106].
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The situation is different in a MOPO. There is no cavity to fix a propagation
direction and it is not obvious how, or if, the distributed feedback can establish in
a situation where the interacting beams propagate in slightly different directions.
Experimentally, it was shown that a MOPO indeed can operate in noncollinear con-
figurations and that a single signal-idler pair is generated for each value of ϕG, with
no measurable change in the bandwidths compared to when ϕG = 0. One could
argue that the MOPO should operate at the wavelengths which experience the low-
est oscillation threshold, or equivalently, which experience the highest parametric
gain. This occurs for one of the configurations in Fig. 5.19. If the two signal-idler
pairs with the same wavelengths are independent, and thus mutually incoherent,
then the maximum gain should occur for the configuration with the largest beam
overlap, i.e. for the pair with the smallest noncollinear angles |ϕs| and π − |ϕi|.
This occurs in Fig. 5.19(a), where the idler counterpropagates the pump and the
signal propagates at an angle to compensate for the transverse component of the
grating vector. If, on the other hand, both signal-idler pairs of the same frequencies
contribute coherently to the parametric gain, the gain is maximised for the config-
uration in Fig. 5.19(b) where the two pairs become spatially degenerate. This can
be seen by writing the wave equation for one of the phase matched signals as

ks1 ·∇As1 = i
ω2

sdeff

c2
Ap

[

A∗

i1 + A∗

i2ei(ki1−ki2)·r

]

, (5.36)

which has two quasi-phase-matched contributions in the case when ki1 = ki2. In
terms of wave-vector magnitudes, this situation can be expressed as

ks = ki + ‖kp − KG‖ , (5.37)

which means that the signal wavelength is minimised and that the idler wavelength
consequently is maximised. The situation is equivalently described in terms of
propagation angles as

|ϕs − ϕi| = π, (5.38)

i.e. the signal and the idler are mutually counterpropagating.

(a) (b)
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Fig. 5.19: (a) The idler counterpropagates the pump, resulting in the smallest angles
and the largest beam overlap. (b) The idler counterpropagates the signal. For one specific
wavelength pair, the two solutions in Fig. 5.18 coincide and become spatially degenerate.

The experimentally measured tuning from the collinear value and the beam angles
are shown in Fig. 5.20, together with calculations for the spatially-degenerate con-
figuration using the Sellmeier expansion by Fradkin et. al [85]. Two different pump
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wavelengths around 813.3 nm and 879.2 nm were used and the pump intensity was
1.3Ip,th0, where Ip,th0 is the collinear threshold intensity. As for the temperature
tuning, the total tuning range is smaller than the FWHM signal bandwidth, so the
angular tuning is measured on the spectrally-narrow backward idler. The angles
are measured on the signal and the idler angles are calculated from the QPM con-
dition. Note that the angles in Fig. 5.20 and Eq. (5.34) - Eq. (5.35) are defined
relative to the pump inside the crystal, i.e. refraction at the crystal surfaces has
been taken into account after the measurement. The physical rotation of the crystal
is approximately npϕG ≃ 1.84ϕG.
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Fig. 5.20: (a) The idler tuning from the collinear value as function of ϕG. Pump at
813.3 nm: experimental points (squares) and calculation (solid line). Pump at 879.2
nm: Experimental points (circles) and calculation (dotted line). (b) The signal and idler
angles as function of ϕG. Pump at 813.3 nm: measured ϕs (diamonds), ϕi deduced
from experiments (squares) and calculation (solid line). Pump at 879.2 nm: measured ϕs

(triangles), ϕi deduced from experiments (circles) and calculation (dotted line) [paper IV].

The angular tuning is rather slow and results in a shift of the idler of -63 GHz
for ϕG ≃ 1.2◦. An approximate expression for the tunability of the parametric
frequencies with respect to ϕG can be derived for small angles when the MOPO
is operating far from degeneracy. The small-angle approximation is valid when
ϕG ≪ |

√

npΛ/λp−
√

λp/(npΛ)|, which cannot be fulfilled near degeneracy, λp/np ≃
Λ. The angular tunability in the configuration with mutually counterpropagating
signal and idler is given by

∂νi

∂ϕG
= − ∂νs

∂ϕG
≃ − vgsvgi

vgs + vgi

1
|Λ − λp/np|ϕG, (5.39)

which integrates to the angular tuning formula given in paper IV. Angular tuning
of MOPOs is expected to always tune the signal and idler wavelengths away from
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degeneracy, no matter which of the signal and idler that is the backward wave,
but this remains to be verified experimentally for a backward signal. With a back-
ward idler, the signal angle is in the small-angle approximation proportional to the
grating angle,

ϕs ≃ − 1
Λ (ns/λs − ni/λi)

ϕG. (5.40)

As the interaction goes from collinear to noncollinear, the beam overlap is reduced
and the efficiency of the process decreases. This was investigated in paper IV by
measuring the signal pulse energy as function of the grating angle when the pump
power was increased to 2Ip,th0. A pump beam with a radius of 110 µm was used,
which determines the volume where the interaction can take place. The angular
dependence on the efficiency for this pump beam and intensity is shown in Fig. 5.21.
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Fig. 5.21: The relative signal pulse energy as function of the grating angle, measured at
2Ip,th0 with a pump beam radius of 110 µm [paper IV].

The efficiency clearly decreases with an increased rotation and eventually MOPO
threshold cannot be reached. This could partially be circumvented by pumping
the MOPO with a larger beam, e.g. with an elliptic beam that is larger in the y
direction to increase the beam overlap throughout the crystal.

5.10 MOPO conversion efficiency

The conversion efficiency into signal and idler is an important parameter for the
applicability of MOPOs. A direct measurement of the signal pulse energy as func-
tion of the pump pulse energy was done in [16] for 47 ps-long pump pulses, with the
result presented in Fig. 5.22(a). For chirped pump pulses, the conversion efficiency



82 CHAPTER 5. MIRRORLESS OPTICAL PARAMETRIC OSCILLATORS

can also be estimated by measuring and comparing the input and output pump
spectra, as is shown in Fig. 5.22(b) and (c) for 66 ps-long pulses with a negative
linear chirp. The undepleted spectra are measured at the same pump power as the
depleted ones, but with the beam propagating outside the structured area of the
PPKTP crystal where the MOPO is not operational. In Fig. 5.22(b), the MOPO is
close to threshold, Ip ≃ 1.01Ip,th, and the interaction has just started depleting the
pump. In Fig. 5.22(c), the pump intensity is increased to Ip ≃ 1.44Ip,th and clearly
a larger part of the pump spectrum has been converted into parametric waves. The
estimated average conversion efficiencies from the pump into signal and idler are
in the two cases 9 % and 28 %, respectively. However, the pump is almost totally
depleted at the end of the pulse and there seems to be no back-conversion from
the parametric waves to the pump. The back-conversion depends on the product
of the parametric amplitudes, Af (x)Ab(x), which in the counterpropagating config-
uration has a small value, since the parametric waves grow in opposite directions
and one has its maximum where the other has its minimum. This can be seen in
Fig. 5.2(b), where the intensity distributions inside the crystal are illustrated in the
monochromatic approximation.
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Fig. 5.22: (a) The conversion efficiency (triangles) and the signal (squares) and idler
(circles) pulse energies as function of the pump pulse energy or peak intensity for 47 ps-
long pump pulses [16]. (b), (c) The depleted (dotted line) and undepleted (solid line)
pump spectra at Ip ≃ 1.01Ip,th and Ip ≃ 1.44Ip,th for 66 ps-long pump pulses.
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5.11 Comparison with co-propagating parametric devices

In this section, the spectral and tuning properties of a MOPO with counterpropa-
gating idler is compared with those of a co-propagating OPO or OPG. Just as for
MOPOs, co-propagating OPOs can be made narrowband by the use of spectrally-
selective elements, such as volume Bragg gratings [19]. However, the pumping of a
crystal that is phase-matched for OPG in the forward direction gives a broadband
output, unless spectral filtering is employed. Fig. 5.23(a) shows the signal spec-
tra generated in a MOPO with Λ ≃ 0.8 µm and in another PPKTP crystal with
Λ ≃ 28.5 µm that is phase matched for co-propagating OPG. Both are pumped at
827 nm with pulses of similar spectral widths.
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Fig. 5.23: (a) Comparison of the spectra generated in PPKTP crystals of periods Λ ≃ 0.8
µm and Λ ≃ 28.5 µm. (b), (c) For a given frequency detuning from the phase-matched
point, the phase mismatch is much stronger in a counterpropagating interaction.

The OPG signal is more than 100 times broader than the MOPO signal. The idler
spectra were not measured, but should in the co-propagating case be as broad as
the signal, whereas it in the MOPO case is known to be around 13 GHz for similar
pumping conditions and thereby differs from the co-propagating idler by a factor of
2500. The reason for the broadband output in the co-propagating case is that the
phase mismatch varies slowly with a frequency detuning from the phase-matched
point. This as can be seen by calculating the derivative of the phase mismatch,
∆k = kp − ks ± ki − KG, with respect to the change in the signal frequency for a
constant pump frequency,

∂(∆k)
∂ωs

=
vgi ± vgs

vgivgs
, (5.41)
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where the upper and lower signs in ± are for the cases with counterpropagating
and co-propagating idler, respectively. With the sum of the group velocities in
the numerator, the absolute value of the derivative is typically 300 times larger
in the MOPO case than in the co-propagating case, meaning that the MOPO
is much more sensitive for small detunings from the phase-matching point, as is
schematically illustrated in Fig. 5.23(b) and (c).

The pump, grating and temperature tunabilities are also very different in the
co-propagating and counterpropagating cases. For a numerical comparison, the
pump, signal and idler wavelengths of 861.67 nm, 1217.94 nm and 2945.73 nm
are considered (the same as in paper VI), which correspond to a PPKTP MOPO
with Λ ≃ 805 nm or a co-propagating configuration with Λ ≃ 30.27 µm. In the
MOPO case, a broad range of pump wavelengths can be used to pump the crystal,
regardless of the dispersion in the medium. The large QPM grating vector allows
the parametric waves to distribute the pump energy between themselves in such
a way that the QPM condition is met. In the co-propagating case, the dispersion
limits the pump-wavelength range where QPM is possible, typically to a few tens
of nanometres. When QPM is possible, the pump tunabilities are

∂ωs

∂ωp
=

vgs(vgi ± vgp)
vgp(vgi ± vgs)

, (5.42)

∂ωi

∂ωp
=

vgi(vgp − vgs)
vgp(vgi ± vgs)

, (5.43)

which for the selected wavelengths have the values 1.01 (-1.75) for the signal and
-0.01 (2.75) for the idler, with the values in the brackets corresponding to the
co-propagating case. The idler tunability is a factor of (vgi + vgs)/(vgi − vgs) ≃
−281 faster in the co-propagating configuration, so the pump-tuning behaviours
are completely different. It can also be seen that the phase-mismatch derivative
with respect to the frequency detuning from phase matching, Eq. (5.41), differs by
the same factor of -281, but has the larger magnitude in the counterpropagating
case.

The tunability with respect to the QPM period is

∂νi

∂Λ
= −∂νs

∂Λ
= − 1

Λ2

vgivgs

vgi ± vgs
, (5.44)

which has the value -124 GHz/nm (25 GHz/nm). These values differ by a factor of
about -5, which is a much smaller difference than in the pump-tuning case. Despite
the plus sign in the denominator, the MOPO tunes faster with a changed periodicity
due to the fact that the QPM periods in the two cases differ by a factor of 38.

The temperature derivative is

∂νi

∂T
= −∂νs

∂T
= − 1

ns ± ni

[

νs

(
∂np

∂T
− ∂ns

∂T

)

+ νi

(
∂np

∂T
± ∂ni

∂T

)

+
cα

Λ

]

. (5.45)
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The last term in Eq. (5.45) shows that the relative effect of thermal expansion
becomes more pronounced in the counterpropagating configuration where the QPM
periods are significantly shorter. For the selected wavelengths, the temperature
derivative is -1.89 GHz/K (-24.1 GHz/K), whereof -0.91 GHz/K (-21.9 GHz/K)
is attributed to the index change and -0.98 GHz/K (-2.1 GHz/K) to the thermal
expansion. The temperature tuning is about 13 times faster in the co-propagating
case, where most of the tuning is due to the change in the refractive index.

Regarding the angular tunability, it is hard to quantitatively compare the MOPO
tuning with the tuning in co-propagating OPOs. In MOPOs, there is only one de-
gree of freedom that can be controlled, i.e. the angle between the pump and the
QPM grating, whereas the OPO designer has an additional degree of freedom in
noncollinear co-propagating OPOs, where the propagation angle of the resonant
wave can be changed by a rotation of the cavity. This fundamental difference
makes a fair comparison of the two cases difficult. However, the angular tuning of
a MOPO has so far been limited to 63 GHz, but could with a changed pumping
geometry realistically be increased by at least a factor of 5. On the other hand,
noncollinear interactions in co-propagating PPKTP devices reach angular tunabil-
ities of 15 THz or more [107, 108], so the angular tunability of MOPOs can at this
point be considered to be slow.

5.12 Conclusions

The spectral properties of mirrorless optical parametric oscillators are very different
from those of conventional co-propagating OPOs as a result of the counterpropa-
gating quasi-phase matching. A pump source with sufficient pulse energy and a
properly engineered nonlinear crystal are the only things that are needed for the
creation of a narrowband parametric source. It has been shown that the phase
modulation in the pump is approximately transferred to the forward parametric
wave, which means that the forward wave essentially is a frequency-shifted replica
of the pump. The backward parametric wave then has a low phase modulation
and a narrow bandwidth, which in simulations has been shown to be independent
of if the phases in the pump are ordered, e.g. in a linear chirp, or if they are
stochastic. Pumping with a narrowband pump, i.e. with a Q-switched laser, would
automatically lead to the creation two narrowband parametric waves.

The strong dependence of the backward frequency on the QPM periodicity
affects the tuning properties of MOPOs. With a fixed QPM period, the backward
wave can only be tuned by a small amount. With Λ ≃ 805 nm, a tuning of the
pump frequency by 26.8 THz shifts the backward idler by only (-)260 GHz, i.e.
by approximately 1 % of the tuned pump. A change of the crystal temperature
from 18 ◦C to 80 ◦C tunes the idler by about -100 GHz, or by -1.6 GHz/K. A
rotation of the crystal so that the internal angle between the pump and the grating
vector is 1.2◦ shifts the idler by about -60 GHz. Thus, the combined effects from a
widley-tunable pump source, a rather large tempeature interval and some crystal
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rotation can, for this QPM period, tune the backward wave in an interval of the
order of 500 GHz, which for λb ≃ 2952 nm is about 15 nm, or a relative change
of 0.5 %. The forward wave, on the other hand, tunes with the pump and has
due to energy conservation the same temperature tuning and angular tuning as the
backward wave, but with an opposite sign.



Chapter 6

Conclusions

In this thesis, I have described the nonlinear response in engineered optical ma-
terials, in particular in double-tungstate laser crystals and in periodically-poled
KTiOPO4.

The engineering of the chemical and crystallographic compositions of double-
tungstate crystals leads to a modification of the Kerr nonlinearity. In paper I and
paper II, the z-scan technique was used for the measurement of the Kerr nonlin-
earities of doped and undoped disordered-tetragonal and monoclinic MT(XO4)2

crystals. For the disordered-tetragonal crystals, with M = Na; T = Y, La, Gd, Lu
or Bi; X = W or Mo, the values of n2 range between 13·10−16 cm2/W and 68·10−16

cm2/W, and there is, for most of the measured compounds, a low anisotropy in n2

for light of σ and π polarisations. An exception is NaBiW, which also has the
largest n2 of 68 · 10−16 cm2/W and 58 · 10−16 cm2/W for the σ and π polarisa-
tions, respectively. However, with the current growth techniques, NaBiW cannot
be doped with sufficient amounts of laser ions without a degradation in the crystal
quality.

For the monoclinic compounds, with M = K; T = Gd, Y, Yb or Lu; X = W,
n2 ranges between 15 · 10−16 cm2/W and 26 · 10−16 cm2/W. Just as for the linear
refractive index, n2 for these crystals is larger when E||Nm compared to when
E||Np. The anisotropy is reduced when the crystals are doped with ytterbium.
Still, n2 is larger when E||Nm, which also is the polarisation direction where the
Yb3+ ions have the largest absorption and emission cross sections. The values of
n2 for these compounds tend to increase with the ionic radius of the T ion.

Considering all the measured compounds, the measured Kerr coefficients are 5
to 22 times as large as that of sapphire, n2 ≃ 3.1 · 10−16 cm2/W, which means
that the double tungstates doped with active ions are good candidates for Kerr-
lens modelocking of lasers. Thanks to the large Kerr nonlinearities, the intracavity
focusing requirements for modelocking can be relaxed, which makes the cavity
design more flexible. It should be emphasised that Yb-doped monoclinic double
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tungstates have proven to be among the most efficient laser media to employ for
the generation of ultrashort pulses.

Two different directions of the structure engineering of second-order nonlinear
media have been used in this thesis. One direction is, as explained in paper III, the
fabrication of large-aperture periodically-poled KTiOPO4 crystals with a poling pe-
riodicity of Λ = 38.86 µm and a thickness of 3 mm for high-power laser applications.
In these crystals, doping with rubidium improves the material’s domain-switching
properties and makes the domain walls straighter, at the same time as the domain
broadening is reduced. These properties can be used for future improvement of the
fabrication of thick Rb-doped PPKTP crystals, or for the fabrication of crystals
with submicrometre periodicities.

The other direction of structure engineering is the use of submicrometre peri-
odicities for the realisation of mirrorless optical parametric oscillators based on the
distributed feedback between the counterpropagating parametric waves. As a re-
sult of the counterpropagating quasi-phase matching, the backward frequency has
a very strong dependence on the QPM periodicity and can only be tuned with a
small amount by changing the pump frequency. In the case with a QPM period of
Λ ≃ 805 nm and a pump at Ti:sapphire wavelengths, a frequency shift in the pump
of δωp only tunes the backward idler with approximately -0.01δωp. As a result of
energy conservation, most of the shift in the pump frequency is transferred to the
forward signal, which here tunes slightly faster than the pump.

The slow pump tunability of the backward wave in MOPOs results in unique
spectral properties. In paper V and paper VI, it was shown that the slow tunability
leads to that most of the phase modulation in the pump is transferred to the
forward parametric wave, which results in a backward parametric wave with low
phase modulation and a narrow bandwidth. The transferred phase modulation
essentially makes the forward wave a frequency-shifted replica of the pump. These
are general spectral features of MOPOs, but are more pronounced in the cases
where the group velocities of the forward wave and the pump are matched. In
simulations, it was shown in paper VI that the phase-modulation transfer and the
generation of a narrowband backward wave occur independently of the nature of
the phase modulation in the pump. It does not matter if the pump phases are
ordered, e.g. in a linear chirp, or if they are stochastic.

Apart from pump tuning of MOPOs, temperature tuning and angular tuning
have been studied. Temperature tuning of a PPKTP crystal with a period of
Λ ≃ 805 nm resulted in the slow tuning rate of the backward idler of -1.6 GHz/K. As
explained in paper IV, the angular tuning is different compared to in co-propagating
OPOs, as the output wavelengths and their propagation angles in MOPOs are self-
selected by the nonlinear process. Angular tuning of the backward idler of -63 GHz
was obtained by rotating the crystal so that the internal angle between the pump
and the grating vector was 1.2◦. With the strong dependence that the backward
wave has on the QPM periodicity, the combined effects of pump tuning, temperature
tuning and angular tuning only affect the backward wavelength to a small extent.
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6.1 Outlook

With the relatively large Kerr nonlinearities in the MT(XO4)2 compounds, it should
be possible to use these crystals doped with laser ions to construct Kerr-lens mod-
elocked lasers, as has already been proven in the past. New cavity designs may be
possible with the knowledge of the values of the Kerr coefficients.

As counterpropagating parametric devices form a very young subfield of non-
linear optics, many experiments remain to be done. Some of these may require
longer crystals, as the oscillation threshold scales inversely to the square of the
length of the periodically-poled area. The thresholds for 6.5 mm-long crystals are
typically obtained at peak intensities around 1 GW/cm2, which for a crystal length
of 15 mm would be reduced to 200 MW/cm2. Improved fabrication techniques are
required for the fabrication of periodically-poled gratings with submicrometre pe-
riodicity that have a large degree of homogeneity over 10 millimetres or more, but
can realistically be done with Rb-doping of the KTiOPO4 crystals. With improved
fabrication techniques, it is also possible to further reduce the grating periodicities
and have a degenerate MOPO or a MOPO with a backward signal.

From a fundamental point of view, it is interesting to investigate the limitations
that the pump spectrum imposes on the MOPO operation. In paper VI, the MOPO
was successfully pumped with the most broadband pump source available that met
the requirements of pulse energy and pulse length. It was shown in simulations
that MOPOs can be pumped with highly incoherent pulses of stochastic phase
modulation, but this remains to verify experimentally. However, from a practical
point of view, it is probably more interesting to go in the other direction and
pump MOPOs with pulses from a narrowband Q-switched laser and generate two
spectrally-narrow parametric waves.

The spatial-coherence properties of MOPOs have so far not been well studied.
For a given pump beam, this can be done by varying the focusing conditions inside
the MOPO crystal and see how that affects the spatial properties of the parametric
beams.
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