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Abstract

In this master thesis a method for reducing radiation trapping by us-
ing a confocal microscope has been tested and analyzed, and theory to
explain the results has been developed. Two types of numerical sim-
ulations, including a Monte Carlo simulation, have been constructed
and analyzed to gain knowledge and understanding of the processes at
work. The simulation results show that by using a confocal microscope
the radiation trapping can be reduced significantly, if the set-up is prop-
erly designed. Further, an attempt to simulate the energy transfer in
Er-Yb doped double-tungstate crystals using a Monte Carlo simulation
has been made. The results were inconclusive, however, further work
should easily correct the problem.

Sammanfattning

I detta examensarbete utvecklades en metod för att minska effekten av
”radiation trapping” genom att använda ett konfokalmikroskop, och
teori för att förklara resultaten har tagits fram. Tv̊a olika numeris-
ka simuleringar, inklusive en Monte Carlo-simulering, har utförts och
analyserats för att öka först̊aelsen av de processer som sker. Resultaten
av simuleringarna visar att man genom att använda ett konfokalmik-
roskop kan reducera ”radiation trapping” avsevärt, om de använda
uppställningarna är rätt konstruerade. Ett försök att simulera ener-
giöverföringar mellan Er och Yb-joner i kristall med en Monte Carlo-
simulering gjordes ocks̊a. Resultaten var ofullständiga, men med fort-
satt arbete kan de felen lätt korrigeras.
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1 INTRODUCTION

1 Introduction

Lasers are finding more and more applications in widely different areas of
science and engineering, from scanning data off a CD or DVD to cutting
and welding in heavy industries to analyzing the compositions of chemi-
cal compounds in bio-medical labs. This expansion causes a demand for
tailored laser systems with strict specifications of size, output power, laser
wavelength and beam quality. To meet these demands, a wide range of
laser sources have been developed: gas lasers, solid-state lasers, free-electron
lasers, dye lasers, diode lasers, x-ray plasma lasers etc., each with character-
istics desirable in certain situations. The advent of the diode laser allowed
lasers to be easily integrated in electronic devices, and would also provide
a very suitable pump source for solid-state lasers. It was now possible to
construct lasers with the desired properties of both these techniques: stable,
compact, durable lasers with a wide choice of wavelengths and a good beam
quality.

Er-doped solid-state lasers are used to generate laser light in the eye-safe
region around 1.5 µm. Light at wavelengths above 1.4 µm are considered
eye-safe, since it is absorbed in the eye before it hits the retina where it
will cause permanent damage. This property makes these lasers ideal for
applications in e.g. communication and range finding. In this thesis, crys-
tals to be used in diode-pumped solid-state lasers have been examined in
order to determine key characteristics such as lifetimes of energy levels and
optimum doping concentrations. Improvements in terms of doping concen-
trations and design can be made by knowing the lifetimes of the different
energy levels and understanding the dynamics in the laser system. By being
able to simulate these processes, better crystal can be designed for specific
applications with demands on power and size. In the work progress a cer-
tain measurement error became apparent when measuring the lifetimes of
Er and Yb co-doped crystals, known as radiation trapping. When measur-
ing lifetimes of energy levels, the intensity decay of the fluorescence emitted
by atoms that change their energy state will serve as a clock. The faster
the fluorescence intensity decay, the shorter the lifetime of the initial energy
level in the atom. However, if the fluorescence is re-absorbed by other atoms
in the crystal before it hits the detector, the fluorescence decay will seem
slower than it really is, whereby measurements will indicate a longer lifetime
of the energy level involved. This is known as radiation trapping. Radiation
trapping can be very pronounced in quasi-three-level laser systems, such as
Er and Yb atoms, since fluorescence is emitted as the atom decays to its
ground state. This means that the radiation can also be absorbed by an
atom in the ground state, of which there are plenty in the crystal.

The work conducted was then focused on methods of reducing this mea-
surement error. This thesis can be divided into two distinct parts: con-
structing a method for reducing radiation trapping in the measurements,
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1 INTRODUCTION 1.1 A method to reduce radiation trapping

and numerical simulations explaining and trying to replicate the results ac-
quired through the measurements.

1.1 A method to reduce radiation trapping

The methods for reducing radiation trapping that are used today mainly
focus on attaining the lifetime for a certain energy level when there are no
perturbations. However, when examining the energy levels involved in the
Er-Yb laser, this is not the case. The Yb atoms in this laser will not take part
in the actual lasing, but acts as a sensitizer, absorbing pump radiation and
transferring the absorbed energy to the Er atoms where lasing is achieved.
This energy transfer is a non-radiative process, and the efficiency depends
both on the proximity of the atoms as well as the lifetimes of the energy
levels through which the transfer occurs. However, the depletion of energy
levels does not only depend on intrinsic properties in the atoms, but also of
the efficiency of the energy transfers in question. The methods for reducing
radiation trapping in lifetime measurements most commonly used today will
also affect the fluorescence and energy dynamics in the system, and cannot
be used in this case, so a new method had to be developed.

Fluorescence that has been reabsorbed and re-emitted seems to origi-
nate from a point not overlapped by the pump beam. Using the principles
of confocal microscopy, this radiation can be blocked. With the confocal mi-
croscopy technique it is possible to look at light originating from one point
by placing an aperture in the optically conjugate plane, whereby allowing
only for one point to be imaged onto the detector. Hence, off-centre fluores-
cence will not be detected, which effectively means that light that has been
reabsorbed and re-emitted will not reach the detector, and lifetime measure-
ments will be much more accurate. The smaller the aperture in the confocal
microscope is, the smaller the area from which fluorescence is detected will
be. Ideally, an infinitely small aperture should be used, but naturally this is
not implementable. By taking lifetimes measurements at different aperture
diameters, the lifetime at zero aperture could be estimated by extrapolating
the measurements down to a zero diameter value.

1.2 Simulating radiation trapping

The relation between the measured lifetime and the aperture diameter was
not known, and to make accurate predictions based on the measurements
taken, further understanding of the processes involved was needed. To gain
insight, several numerical simulations were performed, and based on the re-
sults from these simulations, the measurements could be understood and
properly analyzed. Monte Carlo simulations were also constructed to con-
firm that the reduction of radiation trapping was the only reason for the
shorter lifetimes measured at smaller apertures. By extending the Monte
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1 INTRODUCTION 1.3 Outline of the thesis

Carlo simulations, an attempt to simulate the energy transfers in Er-Yb
co-doped crystals was made. The results from these simulations were unfor-
tunately inconclusive, most probably due to an incomplete implementation
of the physical processes. By assessing these shortcomings, an effective way
of calculating these energy transfers could gain a clear insight to the dynam-
ics involved in an Er-Yb laser.

1.3 Outline of the thesis

The disposition of this thesis is as follows: In sections 2, 3 and 4, the basics
of laser theory is presented, with an emphasis on quasi-three-level lasers
and Er-Yb lasers. In section 5 the theory of non-radiative energy transfers
is presented, together with the applications to this thesis. Section 6 will
outline the theory of nonlinear optics and describe the OPO used to generate
light in the wavelengths needed to perform the lifetime measurements. In
section 7, the problems of radiation trapping are presented, as well as a
method to reduce them, using a confocal microscope. Also, the results
from the measurements as well as the simulations performed to properly
understand how to interpret the data can be found there. Section 8 explains
the principles of the Monte Carlo simulations, the theory and methods used.
The implementation of the Monte Carlo simulation can be found in section
9, as well as an overview of the programs, clarified by a flowchart. The Mote
Carlo simulation results are presented in section 10. Finally, a summary of
the thesis, together with a discussion of results and methods can be found
in section 11, as well as suggestions to future work.

3





2 QUANTISATION OF ENERGY

2 Quantisation of energy

In the end of the 19th century physicists were struggling to explain the emis-
sion spectrum from a radiating blackbody using a model, Rayleigh-Jean’s
law, where the energy density per unit frequency would increase with fre-
quency. Not only did it not fit the observed emission spectrum, but it also
predicted an infinite amount of energy emitted by the blackbody, (referred
to as the ultraviolet catastrophe) which was obviously wrong. To overcome
this problem, German physicist Max Planck suggested that electromagnetic
radiation could only be emitted in discrete amounts, ”quanta”. Employing
his idea to the blackbody radiator and using Boltzmann’s statistical me-
chanics, it was possible to predict the emission of any blackbody at any
temperature, the Planck radiation law [1]:

ρ (ν) =
8πh

c0

ν3

e
hν
kT − 1

, (2.1)

where ρ (ν) is the energy density per unit frequency, h is Planck’s constant,
ν is the frequency, k is Boltzmann’s constant and T is the absolute temper-
ature. At first Planck believed that the quantisation of the emitted energy
was just a crude way of solving the problem, however it turned out to be the
birth of quantum mechanics. As later shown by Schrödinger (and to some
extent Bohr) electrons in atoms can only occupy discrete energy states, and
the atom can only absorb or emit energy in agreement with these energy
states:

E2 − E1 = hν, (2.2)

where E2 is the final energy state, E1 is the initial energy state, h is Planck’s
constant and ν is the frequency of the absorbed or emitted light. In 1917
Albert Einstein proposed that there are three mechanisms in which electro-
magnetic radiation and atoms interact [2]; (stimulated) absorption, stim-
ulated emission and spontaneous emission. Assuming a two level system
of N atoms, where N1 is in the number of atoms in the ground state and
N2 is the number of atoms in the excited state, Einstein proposed that the
rate of stimulated absorption would be proportional to the energy density
of the radiation at the specific wavelength of the transition and the number
of atoms in the ground state:

dN1

dt
= −B12ρ (ν) N1, (2.3)

and similarly that the rate of stimulated emission would be proportional to
the energy density of the radiation and the number of atoms in the excited
state:

dN2

dt
= −B21ρ (ν) N2, (2.4)
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2 QUANTISATION OF ENERGY

where B12 and B21 are proportionality constants with dimension
[

m3

s2J

]
. The

phase of the stimulated emission would be the same as the external radia-
tion by which it is being stimulated, i.e. the stimulated emission is coherent.
Finally he proposed that the rate of spontaneous emission would be propor-
tional to the number of atoms in the upper level:

dN2

dt
= −AN2, (2.5)

where A is a proportionality constant with dimension
[
s−1

]
. Solving this

equation gives
N2 = N20e

− t
τ , (2.6)

where τ = A−1 is the life time of the upper level. The phase of the sponta-
neous emission is random; the photons emitted by this process are incoher-
ent. The rate equations for this two-level system can then be expressed as
[3]:

dN1

dt
= −dN2

dt
= AN2 + B21ρ (ν) N2 −B12ρ (ν) N1. (2.7)

In thermal equilibrium the rate equations are equal to zero, there is no net
change in the population distribution. Solving for ρ gives:

ρ =
AN2

B12N1 −B21N2
=

AN2
N1

B12 −B21
N2
N1

. (2.8)

Using N2
N1

= g2

g1
e−

E2−E1
kT from statistical physics; where g1 and g2 are the

degeneracies of level 1 and 2, respectively, the above expression can be sim-
plified to

AN2
N1

B12 −B21
N2
N1

=
Ag2

g1
e−

E−E1
kT

B12 −B21
g2

g1
e−

E−E1
kT

=

A

B12
g1

g2
e

E−E1
kT −B21

=
A

B21

B12
B21

g1

g2
e

E−E1
kT − 1

. (2.9)

Comparing this to the Planck radiation law, Eq.(2.1), the A and B coeffi-
cients can be identified:

B12 =
g2

g1
B21, (2.10)

A =
8πhν3

c0
B21. (2.11)

These results are valid under the assumption that the external radiation
is perfectly matched by the energy separation of the two levels, however
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2 QUANTISATION OF ENERGY

in reality the radiation field is never monochromatic, and this should also
be accounted for. The intensity output from an ensemble of exponentially
decaying atoms is given by

I = I0e
−γt, (2.12)

when I0 is the intensity at t = 0, and γ = 1/τ is the decay rate. By
applying a fourier transform to this equation [3], the intensity as a function
of frequency is found to be

I (ν) = I0
γ/4π2

(ν − ν0)
2 + (γ/4π)2

, (2.13)

where ν0 is the centre frequency, and I0 is defined as I0 =
∫∞
0 I (ν) dν. The

function

S (ν) =
γ/4π2

(ν − ν0)
2 + (γ/4π)2

, (2.14)

is called the Lorentzian line-shape function, and describes the broadening
mechanism of the emitted radiation. Similarly it can be shown[3] that the

Figure 2.1. The Lorentzian lineshape.

Einstein A coefficient is also broadened with a Lorentzian line-shape func-
tion, giving a new expression for the Einstein A coefficient:

A (ν) = A
γ/4π2

(ν − ν0)
2 + (γ/4π)2

, (2.15)

7



2 QUANTISATION OF ENERGY 2.1 Absorption and gain

where A is given by A =
∫∞
0 A (ν) dν. Since the B coefficients are related

to the A coefficient, Eq.(2.11), B12 and B21 are also broadened by the same
mechanism, and can now be expressed as:

Bij (ν) =
γ/4π2

(ν − ν0)
2 + (γ/4π)2

Bij . (2.16)

This type of broadening is called natural or homogeneous broadening, since
it occurs for all types of decay in all media, and the broadening is the
same for all atoms within a species. There is also inhomogeneous broaden-
ings, e.g. the Doppler broadening which affect gaseous media or broadening
mechanisms in glass, where perturbations affect atom lifetimes depending on
their position. These types of broadening have a Gaussian line shape, and
are generally much larger than the Lorentzian broadening. In this thesis,
the only broadening mechanism encountered was homogeneous broadening,
since only crystals were used as host material. Crystals are well structured,
so all atoms will experience the same perturbations, and since they are
placed in a solid, there will be no Doppler broadening.

2.1 Absorption and gain

Now it is possible to model what happens when a beam of intensity I and
frequency width ∆ν passes through a medium where the atoms have a set
of energy levels suitable to absorb and emit the incoming radiation. In
this model the spontaneous emission will be neglected, since it does not
significantly change the net intensity of the beam. The number of photons
absorbed by the atoms per unit volume per unit time is given by [3]:

N1B12 (ν) ∆νρ (ν) = N1B12 (ν) ∆νI (ν) /c = N1B12 (ν) I/c, (2.17)

where ρ (ν) = I (ν) /c has been used. Similarly the stimulated emission per
unit volume per unit time can be expressed as:

N2B21 (ν) I/c. (2.18)

The energy flux of a surface element dA at position z and z + dz can be
described by:

[I (z + dz)− I (z)] dA =
[
N2B21 (ν) I

c
hν − N1B12 (ν) I

c
hν

]
dzdA, (2.19)

see Fig.(2.2). Simplifying this expression gives:

dI

dz
= [N2B21 −N1B12]

hν

c
. (2.20)

This is a differential equation, and solving it gives:

I = I0e
[N2B21−N1B12]hν

c
z. (2.21)
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2 QUANTISATION OF ENERGY 2.1 Absorption and gain

Figure 2.2. Light with intensity I incident on a medium.

So, intensity varies exponentially with the distance traveled in the medium.
The coefficient in the exponent can be rewritten:

[N2B21 −N1B12]
hν

c
=

[
N2 −

g2

g1
N1

]
c2

8πν2
A (ν) = ∆Nσ (ν) , (2.22)

where

∆N =
[
N2 −

g2

g1
N1

]
, (2.23)

is called the population difference, with dimension [m−3]. It compares the
population of the upper and lower level, thereby determines whether there
will be a net increase or decrease of the beam as it travels in the medium.
If more atoms are in the upper level there will be more stimulated emission
than absorption, so the beam will increase in intensity with distance trav-
eled. If the opposite is true, there will be more absorption than stimulated
emission, and the beam will attenuate.

σ (ν) =
c2

8πν2
A (ν) (2.24)

is called the cross section, with dimension [m2], which describes the atom’s
”ability” to emit a photon at a specific frequency. Usually the cross section
dependence on frequency is understood, and is suppressed, so the intensity
of the beam after a distance z in the medium is usually expressed as

I = I0e
σ∆Nz. (2.25)

This is sometimes referred to as the Beer-Lambert law.
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3 LASERS

3 Lasers

By examining Eq.(2.25) one can see it would be possible to amplify a beam
if there would be a way of making ∆N > 0 for a specific medium. That is
the upper level should be populated by more atoms than the lower level.

3.1 Two-level system

First the two-level system will be examined. In this system there are two
energy levels, E1 which is the ground state of the system, and E2, the only
excited state. If the energy separation between the levels is sufficiently large

(a) Stimulated absorption (b) Stimulated emission

Figure 3.1. Stimulated emission and absorption in a two-level system.

there will initially be no population in the excited state, (∆E >> kT ). The
only interaction between the atoms and the incident beam will be absorption.
As time progresses more atoms will be in the excited state, so the amount
of stimulated emission will increase, depopulating the upper level and thus
affecting the population difference in a negative way. Still as long as the
lower level is more populated absorption will dominate. If the intensity of
the beam is increased further, the population difference between the excited
and ground state will decrease, until, at very high intensities it will be
almost 0, that is N2 = N1. At this point the stimulated emission and
stimulated absorption will be almost equal, since they depend on N2 and
N1 respectively. At this point half of the photons interacting with the atoms
will excite an atom; the other half will stimulate emission. If spontaneous
emission is taken in consideration it is obvious that N2 = N1 is an impossible
goal to achieve. There is no way to achieve a positive population difference
in a two level system. To further clarify this, the rate equations for the two
levels are presented:

dN1

dt
= ΓN2 − ΓN1 + γN2, (3.1)

dN2

dt
= ΓN1 − ΓN2 − γN2, (3.2)

11



3 LASERS 3.2 Three-level systems

where Γ is the pump rate and γ is the spontaneous rate of decay. A steady-
state solution can be found when dNi

dt = 0, and an expression for the relation
between N1 and N2 can be determined:

N2

N1
=

Γ
Γ + γ

. (3.3)

As the pump rate Γ is increased sufficiently the spontaneous decay rate γ can
be neglected, and hence the ratio approaches unity. However it can never
increase beyond unity, thus it is impossible to achieve population inversion
in a two-level system.

3.2 Three-level systems

Now a three-level1 system will be examined. In this case there are three
energy levels in the atom that can be accessed, E1, E2 and E3. The incident
radiation excites atoms in the ground state, E1, to the first excited state,
E2. The atom will then rapidly decay from E2 to E3. This rapid decay will
ensure that there is a minimal stimulated emission from E2 to E1 since the
atom will only be in E2 for a very short time. As more and more atoms
are transferred from E1 to E3 without any detrimental process working in
the other direction, since there is virtually no stimulated emission in this
process, it could now be possible to have a population inversion, that is a
positive population difference, in the levels E3−E1. The rate equations for

Figure 3.2. Stimulated emission and absorption in a three-level system.

this system are:

dN1

dt
= ΓN2 − ΓN1 + γ31N3, (3.4)

dN2

dt
= ΓN1 − ΓN2 − γ23N2, (3.5)

dN3

dt
= γ23N2 − γ31N3, (3.6)

(3.7)
1A system with the ground state energy level as lower laser level is sometimes referred

to as a quasi-three-level system. Since the Er and Yb ions are quasi-three-level systems,
the theory outlined here will only include the quasi-three-level system.
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3 LASERS 3.3 Four-level system

where Γ is the pump rate, γ23 is the spontaneous decay from E2 to E3 and
γ31 is the spontaneous decay from E3 to E1. Since there is a rapid decay from
E2 to E3 the spontaneous decay from E2 to E1 will be neglected. Solving
these equations for N3 and N1, and using the fact that N1 + N2 + N3 = N
yields

N1 =
(Γ + γ23) γ31

Γ (γ23 + γ31) + γ31 (Γ + γ23)
N, (3.8)

N3 =
γ23Γ

Γ (γ23 + γ31) + γ31 (Γ + γ23)
N. (3.9)

To check if population inversion is possible to achieve between the E3 and
E1 states, the ratio N3/N1 will be examined:

N3

N1
=

γ23Γ
(Γ + γ23) γ31

. (3.10)

The ratio should be greater than 1 for population inversion of the system.
To calculate the pump rate necessary for population inversion Γ is solved
for:

γ23Γ
(Γ + γ23) γ31

> 1 ⇒ Γ >
γ31

1− γ31

γ23

≈ γ31. (3.11)

As mentioned previously, the spontaneous rate γ23 is fast, so the quotient
γ32/γ23 is small. Neglecting that term gives a simpler expression which says
that the pump rate has to be higher than the spontaneous decay rate from
E3 to E1 in order to achieve population inversion of the system.

3.3 Four-level system

Lastly a 4 level system will be examined. There are now four energy levels
that can be accessed by external radiation, E1, E2, E3 and E4. The external

Figure 3.3. Stimulated emission and absorption in a four-level system.

radiation pumps atoms from the ground state E1 to E2. As in the three-
level system, the decay from E2 to E3 can be very fast, so there will be an
almost immediate depletion of the level E2. If the transition E3 to E4 is
slow, there will be a build-up of atoms in E3. Also, if the transition E4 to
E1 is very rapid, the population difference could be very large. Fulfilling
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these requirements give a very easy way of achieving population inversion.
The rate equations of the system are:

dN1

dt
= ΓN2 − ΓN1 + γ41N4, (3.12)

dN2

dt
= ΓN1 − ΓN2 − γ23N2, (3.13)

dN3

dt
= γ23N2 − γ34N3, (3.14)

dN4

dt
= γ34N3 − γ41N4. (3.15)

Again it is possible to find the ratio of the two interesting energy levels, E3

and E4:
N3

N4
=

γ41

γ34
. (3.16)

If a system has a very high rate of decay from E2 and E4, and a much slower
rate of decay from E3 to E4, this ratio can be very high. This effectively
means that all photons pumped from the ground state ends up in the up-
per laser level, and the lower laser level is virtually empty, so population
inversion can be achieved from pump photon number one. In a three-level
system, many atoms have to be pumped to the upper laser level just to de-
populate the lower laser level. Comparison of the pump rates necessary for
population inversion in the 3 and four-level system can be seen in Fig.(3.4)
[4].

Figure 3.4. A schematic showing the differences in pumping to achieve
population inversion in three-level and four-level systems.

As seen in the figure, much less pumping is needed in a four-level system to
achieve population inversion than in a three-level system.
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4 Tree-level Er and Yb-Er lasers

In this section a three-level system consisting of an Er3+-doped and an Er3+

- Yb3+-co-doped solid-state laser will be considered. Er is a member of
the lanthanide group in the periodic system. Generally, rare-earth elements
have a suitable laser transition in the inner shells, which are shielded from
the surrounding host material. This limits quenching and thus a stable long-
lived upper laser level can be found in numerous rare earths. The energy
level diagram for Er is presented in Fig.(4.1) where the dashed lines represent

Figure 4.1. Energy level diagram of the Er system.

non-radiative transitions. This is a three-level system, and can be pumped
to the 4S3/2 level and then use 4I11/2 as the upper laser level. However there
is a quite large energy difference between the pump level and the upper
laser level, which means that a large portion of the pump energy will be
converted into heat. This energy difference is referred to as the quantum
defect, and sets the limit on the power efficiency of the laser. If there are
no other losses in the system, the maximum power efficiency would be the
ratio of laser to pump photon energy. The remaining energy is absorbed
by the host material through phonon transitions or emitted as fluorescence.
If the host material in which Er3+ is doped is sensitive to heat this could
effectively limit the pump power used, and hence the output power of the
laser. This is the case for many Er3+ glass lasers, for which the maximum
average output power is limited due to the poor thermal conductivity of the
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glass host.
It is also possible to pump the system at 980 nm to the 4I11/2 level. The

absorption cross section for Er3+ at this wavelength is unfortunately quite
poor, so to counter this, a much higher doping concentration is needed. As
the 4I15/2 is both the ground state level and the lower laser level, increasing
the doping concentration will also have the detrimental effect of raising the
laser threshold pump power, again needing a higher pump power which also
generates more heat to the surrounding host material.

4.1 Er-Yb system

One way to circumvent this problem is to add a sensitizer ion, which has
a significantly higher cross section at the desired pump wave length. The
excited sensitizer ion can then transfer its energy to an Er3+ ion, increasing
the pumping efficiency. For this purpose the Yb3+ ion is often used:

Er3+ + ∗Y b3+ → ∗Er3+ + Y b3+, (4.1)

where the asterisk represents an ion in the excited state. Fig. 4.2 shows the

Figure 4.2. Energy level diagram of the Er-Yb system.

energy level diagram for the Er3+ - Yb3+ system. FT is short for forward
transfer, the process in which an Yb3+ ion transfers its energy to a nearby
Er3+ ion. BT , back transfer, is the reverse process, in which an excited Er3+

ion transfers its energy to a neighbouring Yb3+ ion. Upconversion (UC) is
a process in which two excited ions interact and exchange energy. There
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are two main types of upconversion processes, although more upconversions
have been suggested, [5]; the cumulative upconversion, UC1, and the coop-
erative upconversion, UC2. In the cumulative process one Yb3+ transfers
its excitation energy to an Er3+ ion in the 4I11/2 state, resulting in an Er3+

in the 4F7/2 state and an Yb3+ in the ground state. In the cooperative
upconversion process two Er3+ ions in the 4I11/2 redistributes the excitation
energy so that one falls down to the ground state and one is bumped up
to the 4F7/2. Of course the reverse processes are also theoretically possible;
however the 4F7/2 state is very short-lived, so the probability for an up-
conversion process occurring “backwards” is very small. The upconversion
processes are detrimental to the laser, since one pump photon is wasted for
every upconversion event.

4.1.1 Rate equation analysis of the Er-Yb system

The following section will outline the theory presented in the Doctoral thesis
”Diode pumped rare-earth-doped quasi-three-level laser” by Stefan Bjursha-
gen.

To properly investigate the dynamics in the Er-Yb system the rate equa-
tions for the relevant levels are presented:

dNY b,2

dt
= ΓNY b,1 −

NY b,2

τY b
− kFT NY b,2NEr,1 − kUC,1NY b,2NEr,3(4.2)

+kBT NY b,1NEr,3,

dNEr,6

dt
= γnr,6NEr,6 −

NEr,6

τEr,6
+ kUC,1NY b,2NEr,3 − kUC,2N

2
Er,6, (4.3)

dNEr,3

dt
= −γnr,3NEr,3 −

NEr,3

τEr,3
− kBT NY b,1NEr,3 (4.4)

+kFT NY b,2NEr,1 − kUC,1NY b,2NEr,3 − 2kUC,2N
2
Er,6

+γnr,6NEr,6 + β63
NEr,6

τEr,6
,

dNEr,2

dt
= −

NEr,2

τEr,2
+ γnr,3NEr,3 + β32,

NEr,3

τEr,3
+ β62

NEr,6

τEr,6
, (4.5)

NY b = NY b,1 + NY b,2, (4.6)
NEr = NEr,1 + NEr,2 + NEr,3 + NEr,6, (4.7)

where NY b1−2 and NEr1−6 are the energy levels of Yb and Er shown in
Fig.(4.2). Γ is the pump rate; kFT and kBT are the forward and back
transfer coefficient respectively. τY b and τEr,2−6 are the radiative lifetimes
from the indicated levels, γnr,3 and γnr,3 are the non-radiative lifetimes from
levels Er, 3 and Er, 6 respectively. kUC,1 and kUC,2 are the upconversion
coefficients, and βij is the branching ratio from level i to level j, i.e. the
probability that an atom spontaneously decaying from level i ends up in
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level j. NEr and NY b are the total doping concentrations in the material.
In order to investigate the forward transfer and back transfer processes under
rapid, short pulsed excitation, some approximations can be made. At low
excitations the population in the ground state will be almost unaffected,
allowing the transfer rates WFT = kFT NEr and WBT = kBT NY b to be used.
Further, the upconversion processes are relatively weak, and are therefore
ignored, as is the radiative decay from Er, 3, since the non-radiative decay is
much faster. The rate equations for NY b,2 and NEr,3 can now be expressed
as:

dNY b,2

dt
= WBT NEr,3 −

(
1

τY b
+ WFT

)
NY b,2, (4.8)

dNEr, 3
dt

= WFT NY b,2 − (γnr,3 + WBT ) NEr,3. (4.9)

This is a linear system which can be solved for NY b,2 and NEr,3:

NY b,2 (t) = C11e
−Weff,1t + C12e

−Weff,2t, (4.10)
NEr,3 (t) = C21e

−Weff,1t + C22e
−Weff,2t, (4.11)

where Weff,1 and Weff,2 are

Weff,1 =
WFT + WBT + 1/τY b + γnr,3

2
(4.12)

+
1
2

√
(WFT −WBT + 1/τY b − γnr,3)

2 + 4WFT WBT ,

Weff,2 =
WFT + WBT + 1/τY b + γnr,3

2
(4.13)

−1
2

√
(WFT −WBT + 1/τY b − γnr,3)

2 + 4WFT WBT ,

and the constants Cij are given by the initial conditions at t = 0:

C11 = NY b,2 (0)
WFT + 1/τY b −Weff,2

Weff,1 −Weff,2
, (4.14)

C12 = NY b,2 (0)− C11, (4.15)

C21 = C11
WFT + 1/τY b −Weff,1

WBT
, (4.16)

C22 = −C21. (4.17)

Weff,1 can be interpreted as both the effective decay rate for Y b, 2 and the
effective rise rate for Er, 3 at the initial time. At later times the slower effec-
tive decay rate Weff,2 dominates,which leads to an equal single exponential
decay from Y b, 2 and Er, 3, see Fig.(4.3). If 1/τY b and γnr,3 are of the same
order, a Taylor expansion around 1/τY b = γnr,3 for Weff,2 yields

Weff,2 ≈ 1/τY b +
γnr,3 − 1/τY b

1 + (WFT /WBT )−1 . (4.18)
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Apparently, the effective decay rate is dependent of the ratio WFT /WBT ,
and thus also the [Er3+]/[Y b3+] concentration.

Figure 4.3. Rate dynamics of the Er-Yb system.
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5 Non-radiative energy transfer

As seen in previous chapters, there are a number of different processes in
which closely positioned atoms exchange energy; the forward and back trans-
fer processes as well as upconversion are examples of these. In this chapter
these processes will be examined and a theory to explain these processes will
be presented.

In the simplest approximation the interaction between atoms and light
can be considered as a dipole interaction between the electric field and the
atomic dipole moment, the so-called dipole approximation. In quantum
mechanics, the probability of a transition from an initial state Ψi to a final
state Ψf is given by

P =
〈
Ψf

∣∣∣Ĥed

∣∣∣ Ψi〉 , (5.1)

where Ĥed is the electric dipole Hamiltonian, Ĥed = −e
∑
i

r̂i, simply the

dipole moment between the final and initial state. If now considering two
atoms so close to each other that the atomic dipole moments can interact
directly with each other there will be a possibility of a direct, non-radiative
transfer of energy from one atom to the other. This interaction was first
considered by the German chemist Theodore Förster. He showed that the
rate in which a set of donor atoms transfers energy to a set of acceptor atoms
is proportional to the absolute square of the interaction Hamiltonian, in this
case a dipole-dipole interaction Hamiltonian:

WDA ∝
∣∣∣Ĥdip−dip

∣∣∣2 , (5.2)

where the dipole-dipole interaction Hamiltonian is given by the expression

Ĥdip−dip =
1

4πε0
[(µ̂D · µ̂A − 3 (µ̂D · r̂) (µ̂A · r̂))]

1
R3

, (5.3)

where R is the distance between the dipoles, r̂ is the unit vector, µ̂D is the
donor dipole moment and µ̂A is the acceptor dipole moment, see Fig.(5.1).

Figure 5.1. A schematic of the dipole-dipole interaction.

Generally, the donor atom and the acceptor atom are of different species,
however there is also a possibility for a donor atom to transfer its energy
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to an atom of the same species, i.e. donor-donor interactions. This process
is usually referred to as energy migration in the case of the acceptor atom
being of the same species as the donor atom (D-D interactions), and energy
transfer if they are different (D-A interactions). The rate for these processes
can be shown to be [6]:

WDX =
1

τrad

(
RDX

r

)6

, (5.4)

where X can be either an acceptor, A, or another donor, D. τrad is the
radiative life time of the donor in absence of this process, and RDX is the
Förster radius, the distance in which the rate of energy transfer by dipole-
dipole coupling equals the fluorescence decay rate. This can be calculated
through the cross section overlap function [6]:

R6
DX =

3cτrad

8π4n2

∫
σem

D (λ)σabs
X (λ) dλ, (5.5)

where c is the speed of light, n is the refractive index in the material, σem
D (λ)

is the emission cross section of the donor atom and σabs
X (λ) is the absorption

cross section of the donor or acceptor atom. The total rate of decay from
the donor ensemble in the excited state in absence of other processes is

Wtot = Wrad + WDA =
1

τrad
+

1
τrad

∑
i

∑
j

(
RDA

rij

)6

, (5.6)

where rij is the distance from the donor i to acceptor j. Assuming a system
of only one donor, Eq.(5.6) simplifies to

Wtot =
1

τrad
+

1
τrad

∑
i

(
RDA

ri

)6

. (5.7)

To investigate the probability of the donor atom relaxing through energy
transfer the ratio WDA/Wtot is taken:

P =

∑
i

(
RDA

ri

)6

1 +
∑
i

(
RDA

ri

)6 . (5.8)

As seen this is independent of the fluorescence life time, it varies only with
the distance between interacting atoms and the Förster radius. Since this
interaction decreases with r−6 it will have practically no significance if the
average distance between neighbouring atoms is more than two Förster radii,
as can be seen in Fig (5.2).
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Figure 5.2. The graph shows how probable the energy transfer is, de-
pending on the distance to a neighbouring atom.

5.1 McCumber theory

Measuring the emission cross section σem
D needed in Eq.(5.5) can be quite

difficult when the absorption and emission wavelengths are very close. How-
ever under certain conditions it is possible to calculate the emission cross
section from the absorption cross section [7, 8]. Consider Fig.(5.3) which
shows an energy level diagram for two Stark level manifolds. The individ-
ual Stark levels of the upper manifold are labeled i and the Stark levels of
the lower manifold are labeled j. The energy difference between the lowest
Stark level of the upper manifold and the lowest Stark level of the lower
manifold is labeled E0, the energy difference between the Stark level i and
the lowest level in the upper manifold is labeled ∆i, and the energy differ-
ence between the Stark level j and the lowest level in the lower manifold is
labeled ∆j . The individual Stark levels are assumed to be thermally popu-
lated. Each transition between two Stark levels are connected with a cross
section σij (ν) = σ0ijgij (ν − Eij/h) where gij (ν) is related to the Lorentzian
line shape function, normalized so that gij (0) = 1, and σ0ij is the peak cross
section at ν = Eij/h. By summing the cross sections of all transitions from
the upper to the lower manifold and weighting them by their thermal pop-
ulation distribution, an expression for the total emission cross section from
the upper to the lower manifold can be determined:

σem (ν) =
∑

i

∑
j

σij (ν) e−β∆i

Zup
, (5.9)
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Figure 5.3. Two Stark level manifolds and their defined transition ener-
gies.

where Zup is the partition function of the upper manifold and β = (kT )
−1

.
With the same reasoning the absorption cross section can be written

σabs (ν) =
∑

j

∑
i

σji (ν) e−β∆j

Zlow
, (5.10)

where Zlow is the partition function of the lower manifold. Note from
Fig.(5.3) that ∆i can be expressed in terms of the other defined energy
differences:

∆i = ∆j + Eij − E0. (5.11)

Inserting this in Eq.(5.9) gives:

σem (ν) =
∑

i

∑
j

σij (ν) e−β(∆j+Eij−E0)

Zup

=
∑

i

∑
j

σij (ν) e−β∆je−β(Eij−hν)eβ(E0−hν)

Zup
. (5.12)

The exponent in the middle term in the last expression in Eq.(5.12),
β (Eij − hν), can be neglected under the condition that the energy width of
each individual Stark level is small compared to kT , i.e.

β |Eij − hν| � 1, (5.13)
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which means that Eq.(5.12) simplifies to

σem (ν) ∼=
1

Zup

∑
i

∑
j

σij (ν) e−β∆j

 eβ(E0−hν) =
Zlow

Zup
σabs (ν) eβ(E0−hν),

(5.14)
where in the last step σij = σji is used, so the expression in the brackets
can be identified as the absorption cross section multiplied by the lower
manifold partition function. Thus under the assumptions that the energy of
the individual Stark levels are small compared to kT and that the manifolds
are thermally populated, the absorption cross section can be calculated from
the emission cross section by:

σem
∼=

Zlow

Zup
σ (ν)abs eβ(E0−hν). (5.15)

5.2 Application

When doing calculations on the energy transfer efficiency, it is very impor-
tant to know the Förster radius as accurately as possible. Note that the
Förster radius is not connected to one atom species, but is related to both
the donor and acceptor atom cross sections. This means that in order to
accurately simulate the energy transfer and migration, four radii has to be
calculated, RDD, RDA, RAD and RAA. Also this means that RDA and RAD

will not necessarily be the same. For the system studied in the thesis, the
Yb atoms are the donors, since only they are being pumped, and hence the
Er atoms are the acceptors. To calculate the radii needed, the absorption
cross sections of Er and Yb doped in KLuW were acquired 2, see Fig.(5.4).
Note that the Er atoms have almost one order of magnitude smaller cross
section than Yb, which is why Yb atoms are used as sensitizer ions. The
cross sections provided to us were actually three cross sections per crystal,
one for each of the optical axes; p, n, and g, in the crystal. In the simulations
described in section 8, the polarisation of the fluorescence is assumed to be
random and isotropic, so an average of the three cross sections are taken,
for simplicity. The emission cross sections of Er and Yb are calculated with
Eq.(5.15), and the result can be seen in Fig.(5.5).

A curios detail that can be seen in the Er emission spectrum is the be-
haviour at the longer wavelengths, where the cross section goes up, it looks
a bit like amplified noise. This is in fact precisely what it is. When deriving
the McCumber relation, Eq.(5.15), the assumption in Eq.(5.13) had to be
made. If this assumption does not hold, every term will be multiplied by a
factor eβ(Eij−hν), which means that everything to the right of the peak in
Fig.(5.5) will be exponentially growing with wavelength, and everything to

2Thank you M. C. Pujol, Universitat Rovira i Virgili, Tarragona, Spain
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(a) The average Yb absorption cross sec-
tion.

(b) The average Er absorption cross sec-
tion.

Figure 5.4. The average absorption cross section of Yb and Er atoms in
KLuW.

Figure 5.5. The graphs show the emission cross section, bold lines, and
absorption cross section, thin lines, for Yb, to the left, and Er, to the
right.

the left of the peak will decay with wavelength [8]. This will cause some
problems, since a distorted emission cross section will cause bad values when
the Förster radii are calculated. To completely overcome this problem, mea-
sured values should be used for the emission and absorption cross section,
alternatively, another way of calculating the emission cross section from the
absorption cross section should be used.

However, ignoring this error in the emission cross section, the Förster
radii can be calculated, using Eq.(5.5) and Eq.(5.15):
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RY bEr = 10.95Å,

RY bY b = 14.63Å,

RErY b = 15.36Å,

RErEr = 12.19Å.

The shortest interaction length seems to be the Yb-Er interaction, which
is not so good, since that is the interaction of most interest. There are
however other factors that determine the efficiency of the transfers, not just
the interaction lengths. A large amount of non-radiative decay, for example,
will reduce the rate of non-radiative energy transfers, something seen in the
Er system with phonon transitions between 4I11/2 and 4I13/2, see Fig.(4.2).
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6 Nonlinear optics

In this section the basic principles of nonlinear optics will be presented,
along with the applications to this thesis.

6.1 Basic theory of nonlinear optics

When an electromagnetic wave propagates through a dielectric medium it
will induce a polarisation in the medium. For most situations and media,
this can be described by [9]:

P = ε0χE, (6.1)

where E is the electric field, ε0 is the electric permittivity, χ is the suscep-
tibility of the medium and P is the polarisation, i.e. the induced dipole
moment. However, if the electric field is sufficiently strong, the relation be-
tween E and P is no longer linear, so P can be expressed as a power series
in E [9]:

P = ε0

(
χ(1)E + χ(2)E2 + χ(3)E3 + · · ·

)
. (6.2)

The terms χ(2) and χ(3) are known as the second and third order nonlin-
ear susceptibilities, respectively. Assuming there are no free charges in the
medium, and that the electromagnetic wave is an infinite plane wave, the
wave equation in this dielectric medium has the form:

∇2E − 1
c2

∂2E

∂t2
= µ0

∂2P

∂t2
, (6.3)

where µ0 is the permeability of free space and c is the speed of light in
vacuum. If Eq.(6.1) is substituted into Eq.(6.3) and using c = (ε0µ0)

− 1
2 the

result is the wave equation in a linear optical medium:

∇2E − 1 + χ

c2

∂2E

∂t2
= 0, (6.4)

where 1+χ can be identified as the squared refractive index of the medium.
However, if higher order terms of the electric field are considered the results
will not be so simple. In this thesis only second order effects have been used,
so only the theory for second order nonlinear optics will be presented, which
means that the first and second order terms in Eq.(6.2) are considered, and
higher order terms are ignored. Assuming that the incident light in the
medium is an infinite plane wave, the electric field takes the form E (r, t) =(
E0e

i(ωt−k·r) + c.c.
)
, where c.c. is short for the complex conjugate. Using

this in Eq.(6.3), together with the new expression for P :

P = ε0

(
χ(1)E + χ(2)E2

)
, (6.5)
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and solving for P result in three terms. One term is just the linear polari-
sation, but the other terms are new:

P (r, t) = 2χ(2)E0E
∗
0 + χ(2)

(
E2

0ei(2ωt−2k·r) + c.c.
)

, (6.6)

where E∗
0 is the complex conjugate of E0. The first term in Eq.(6.6) de-

scribes a phenomenon known as light rectification; there will be a static
field created by the polarisation. The expression in the brackets describes a
phenomenon in which the polarisation oscillates with the angular frequency
2ω. This oscillation will, according to Larmor’s theorem, generate an elec-
tromagnetic field with the same frequency, thus light with twice the angular
frequency of the incident light will be generated. This process is known
as second-harmonic generation. Without losing generality the problem can
be simplified to one dimension by letting ∂/∂x = ∂/∂y = 0, and solving
Eq.(6.3) for E in the case of a monochromatic field will yield a set of cou-
pled wave equations:

∂E01

∂z
=

iω1

n1c
χ(2)E03E

∗
02e

−i∆kz, (6.7)

∂E02

∂z
=

iω2

n2c
χ(2)E03E

∗
01e

−i∆kz, (6.8)

∂E03

∂z
=

iω3

n3c
χ(2)E01E02e

i∆kz, (6.9)

where E0i is the amplitude of the i:th wave, ni is the refractive index ex-
perienced by wave i and ∆k = k1 + k2 − k3 is the phase mismatch, the
momentum difference between the different waves. This is a three-photon
process, and depending on the phase matching condition, different processes
can be observed in a general non linear material, see Fig.(6.1)

Figure 6.1. Two general non-linear processes; two incoming waves mix-
ing, resulting in SHG, SFG, and DFG; or energy from one wave dividing
between two generated output waves resulting in OPO and OPG.

These processes can be divided into two categories, one in which two in-
coming waves interact to generate a third wave with a frequency of the sum
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or difference of the incoming waves; ω3 = ω1 ± ω2. These processes are
known as sum frequency generation, SFG, and difference frequency gener-
ation, DFG. A special case of SFG is where ω1 = ω2, ω3 = 2ω1, which is
known as second harmonic generation, SHG, also described above. The sec-
ond category is where one incoming wave generates two waves with frequen-
cies ω1 + ω2 = ω3. This process is known as optical parametric generation,
OPG, or optical parametric oscillation, OPO, depending on the nature of
the set-up. In this thesis an OPO has been used extensively in experimental
set-ups, and will be described in more detail below.

6.2 Optical parametric oscillator

The process of optical parametric generation can be described as the process
in which energy from an incoming beam, the pump, is distributed between
two new beams, the signal and the idler, in a nonlinear process. If looking
at this process in a photon perspective, the energy of one pump photon is
divided into two photons. Energy conservation then states that ωpump =
ωsignal + ωidler. It is common to name the higher of the two frequencies
signal and the lower idler. To improve the efficiency of this process one can
place the set-up in a resonator. This set-up is referred to as an OPO, an
optical parametric oscillator. In the most common set-up, the cavity is set
up in such a way that the signal or idler is resonated, see Fig.(6.2)

Figure 6.2. The energy diagram representing an OPO, together with a
schematic of the set-up.

The OPO can be very useful when specific wavelengths are needed, and
other laser sources are incapable of producing them. It is also tunable,
which means that any wavelength within a certain interval can be generated.
Depending on the application of the output, either the signal or idler can be
resonated. By resonating the signal, a better beam quality is achieved, but
also a lower power output. If the output power is more important the idler
could be resonated, however the beam quality of the signal is then worse.
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7 Accurate lifetime measurements in tungstate
crystals

Knowing the lifetimes of the energy levels involved in a laser is imperative
when designing a laser system. Different host materials affect the lifetimes
of the energy levels, so choosing a host material is not just about choosing
the material with the highest thermal conductivity or the highest thermal
damage threshold, one also has to consider how the dopant behaves in the
host material. For example, the 4I11/2 level in Er3+, see Fig.(4.2), has a
lifetime of around 2 µs in glass but in the crystal KGW it has a lifetime of
around 150 µs, making back transfer from Er to Yb much more likely. To
properly know the different lifetimes, multiple set-ups were made to measure
relevant lifetimes in different crystals and doping concentrations.

7.1 Avoiding radiation trapping

When taking measurements it is important to try and eliminate and min-
imize as many sources of errors as possible. The process that seriously
affects the result in these measurements is radiation trapping, i.e. reabsorp-
tion and re-emission of fluorescence within the crystal. The fluorescence gets
”trapped” inside the crystal, it does not exit the crystal right away, but is
absorbed by another dopant before it reaches the crystal surface. This means
that when a fluorescence photon finally leaves the crystal, it is delayed by
the reabsorption and re-emission process, so the measured lifetime appears
longer than it really is. This process is especially strong in quasi-three-level
lasers, since the fluorescence arises from the transition from the upper to
the lower laser level. Since the lower laser level is also the ground state, it
will always be populated, and re-absorption will be much more likely than
in the case where the lower laser level is continuously depopulated, as in
three-level or four-level lasers.

There are several ways to circumvent this error. Measuring lifetimes in
samples of low doping concentrations lessen this effect, since fewer atoms
can re-absorb the emitted fluorescence. Also, the crystals used have a high
refractive index, around n = 2, allowing photons with a relatively large in-
ternal incidence angle to be reflected back into the sample instead of trans-
mitted out to the detector. To avoid this, one can use a surrounding medium
other than air with a matching refractive index, effectively reducing the in-
ternal reflections within the crystal.

7.2 Measurements

To properly investigate the Er-Yb system there are a number of lifetime mea-
surements that have to be made. To investigate the forward/back transfer
efficiency it is important to only pump the Yb system. That way, all fluores-
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cence detected from the Er atoms is known to originate as absorbed pump
radiation by the Yb atoms. By measuring the lifetimes of 4I11/2 in Er and
2F5/2 in Yb it is possible to estimate the forward transfer efficiency. Ideally,
the 2F5/2 lifetime should be long compared to the 4I11/2 lifetime, making
forward transfer more likely than back transfer, since the 4I11/2 depopulates
quickly. First, crystals doped only with Er or Yb were studied, to measure
their intrinsic properties. Later, co-doped Er-Yb samples were studied to
investigate the fluorescence dynamics.

7.3 The measurement set-up

The set-up for measuring the Yb, Er and co-doped crystals are very similar,
so only the Yb and co-doped measurement set-up will be described in detail
(since they are identical), whereas only the changes from the Yb set-up will
be described for the Er measurement set-up.

The Yb and co-doped systems were pumped at around 935 nm, gener-
ated by an OPO pumped by a frequency doubled Nd:YAG at 532 nm. Since
there are only two electronic levels in the Yb system, the pump wavelength
is roughly the same as the measured fluorescence wavelength, so filters can-
not be used to separate the fluorescence from the strong pump signal. To
overcome this problem the fluorescence was measured perpendicular to the
pump direction. A schematic of the set-up can be seen in Fig.(7.2). The
pump for the OPO is a frequency doubled Nd:YAG so there are both 1064
nm and 532 nm components in the pump light, however the 1064 nm com-
ponent is absorbed by a filter. The measured power of the 532 nm beam
was 40 mW. A lens then focuses the pump into the OPO, which outputs a
signal at 935 nm with a power of 10 mW, and consequently an idler at 1234
nm, and a measured power of around 2.5 mW. The OPO is tunable by ei-
ther rotating or changing the temperature of the nonlinear crystal, PPKTP,
inside the cavity. In all set-ups used in this thesis the PPKTP was rotated
at an angle with respect to the pump beam. Due to phase-matching con-

Figure 7.1. By changing the refractive index in the surrounding medium
internal reflections can be reduced.
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Figure 7.2. The set-up used when measuring the Yb lifetime.

ditions inside the PPKTP crystal, the signal and idler will exit the crystal
at slightly different angles. This makes it easy to block the idler and let the
signal pass. After the OPO there is a filter to absorb the remaining 532 nm
pump, and an aperture to block the idler, but let the signal through. The
signal is then focused to a 160 µm diameter spot in which the doped crystal
is placed. Fluorescence is detected perpendicular to the pumping, where
light is gathered and collimated by a microscope objective, after which it
is focused onto a photodetector connected to an oscilloscope. The pump is
pulsed with a frequency of 20 Hz and a pulse length of 3 ns. When measur-
ing the Er doped samples, 532 nm was used to pump the system, because
of the small cross section of Er at around 1 µm. Hence, the aperture and
filter absorbing 532 nm was removed, as well as the PPKTP crystal.

Using Beer Lambert’s law, the intensity is approximately halved after
passing the crystal, which means that half the photons are absorbed in the
crystal. For one pulse this corresponds to roughly 1015 excited ions, which
is approximately one thousandth of the total ions in the crystal.

First, a test series of measurements were taken to ensure that the set-
up worked properly. Only fluorescence around 1 µm was measured in this
series, and the results can be seen in table 7.1. The results were in agreement

Figure 7.3. The signal and idler will exit the crystal at different angles.
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Table 7.1. Measurements

Host crystal Er conc. Yb conc. Lifetime [µs]
KGW 0.5% 5% 281

0.5% 2.5% 237
2.5% 7.5% 206
5% 5% 158
1% - 118
3% - 136
5% - 146

KYW 0.5% 5% 291
0.5% 2.5% 265
5% - 124

KLuW 5% - 116
3% - 101

0.5% - 107

with previously measured lifetimes of the same crystals [10], so the set-
up was assumed to be producing reliable results. However, no measures
had been taken to reduce the effect of radiation trapping, which could be
influencing the results. To get reliable results this also had to be taken into
account. However, the methods of reducing radiation trapping previously
described is not easily applicable to this set-up. Immersing the crystals
in an index matching medium is not practical, and since measuring the
fluorescence dynamics of the different crystals is the goal, it is not possible
to measure crystals with low doping concentrations only. Another way of
reducing radiation trapping had to be used.

7.4 Reducing radiation trapping by using a confocal micro-
scope

In a paper produced by Petermann et.al. [11], it was mentioned that an
aperture was used to reduce the effect of radiation trapping. There was no
description of exactly how this was done, but since apertures and pinholes
were available in the lab this could be a nice way to reduce radiation trap-
ping. Through consultation with my supervisors, a few modifications were
made to the set-up, which can be seen in Fig.(7.4).

By pumping the crystal at an angle, a major part of the excited dopants
will be very close to or on the surface of the crystal. Fluorescence emitted
in the direction of the detection system will have a much shorter distance to
travel inside the crystal, if any, making re-absorption much less likely. The
aperture is placed in the image plane of the two gathering lenses, whereby
it is possible to choose the area from which the fluorescence is detected.
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Figure 7.4. The new set-up, employing a confocal microscope to reduce
radiation trapping.

This is the basic principle of confocal microscopy.3 Fluorescence that is
reabsorbed, re-emitted and then detected most often seem to have another
point of origin than from the site where the pump photon was first absorbed,
see Fig.(7.5). By placing the aperture in the image plane, see Fig.(7.4), it
is possible to decrease the area from which fluorescence is detected with-
out blocking the pump beam at the same time, which would reduce pump
power. (Note that the effective aperture size is achieved by dividing the
measured aperture diameter with the magnification factor of the detection
system, since the aperture is placed in the image plane.) So, by measuring
the lifetime for different aperture diameters, by extrapolating down to zero
diameter it should be possible to get an estimate of the true lifetime, with-
out any radiation trapping. To test whether this set-up would work at all,
a test series of measurements was taken on a KYW crystal, doped with 5%
Yb. In previous measurements, lifetimes around 440 µs has been reported
for the very same sample [10], however other groups have reported lifetimes
of 240–280 µs [11, 12], suggesting that radiation trapping is very prominent
for this crystal and dopant, so this would make a suitable first test of the
set-up. Nine measurements were made at aperture diameters ranging from
2–10 mm, and the result can be seen in Fig.(7.6).

As can be seen, there is a clear dependence between the aperture diam-
eter and the measured lifetime. This set-up seems to reduce the radiation
trapping, and can be used to get better estimates for all the doped crystals.

The original set-up was adjusted as described above and new series of
measurements were taken. The procedure for this is outlined below:

3Confocal microscopy is primarily used to generate 3D or hi-resolution 2D images.
Only imaging one point at a time by blocking light not in focus, or from other points in
the focal plane, means that only information that ”belongs” in a certain image point will
reach it. However, the process of constructing an image is slow, since constructing the
image point-by-point can be time consuming.
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Figure 7.5. A photon is absorbed at position 1, and the fluorescence
therefrom is absorbed at position 2. The fluorescence from position 2 is
then detected. If the fluorescence had been detected from position 1, it
would have had a different point of origin than the re-absorbed fluorescence.
The aperture blocks beams coming from a position off-centre. The smaller
the diameter of the aperture is, the closer to the centre point the origin of
the beams must be.

Figure 7.6. The lifetime plotted against the aperture diameter for
Yb5%:KYW, the first attempt using confocal microscopy.

For every crystal 12 measurements were taken, with aperture values 10
mm – 3 mm in steps of 1 mm, and 2.5 mm – 1 mm in steps of 0.5 mm. Each
measurement was taken on a digitized oscilloscope with a sampling rate of
2 GHz. An example of a lifetime measurement can be seen in Fig.(7.7).
In Fig.(7.7) a comparison showing the results when the lifetime is measured
with different aperture settings can be seen.
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7.5 Theory

Using a confocal microscope to reduce radiation trapping in measurements
seems work, but what factors affect the function and applicability of this
method was still not fully understood. For example, the measurements
from two different crystals can be seen in Fig.(7.8). The method seems to
reduce radiation trapping, but the behaviour is different for the two crystals,
even though the same set-up has been used to reduce radiation trapping. To
gain an insight to the processes at work, a model of how radiation trapping
actually works was constructed and studied.

7.5.1 A random walk

As described above, the radiation trapping process is the absorption and re-
emission of fluorescence photons by the dopants in the crystal. In a photon’s
perspective this can be thought of as a random walk in 3D, with a variable
step size and delay between steps. However, to get a qualitative picture of
the behaviour of this random walk, some simplifications were made to the
model.

As will be discussed in section 8, the distance a photon travels in a
medium is random, following an exponential distribution given by Beer-
Lambert’s law. To easily calculate the distance a certain photon has trav-
eled, the Beer-Lambert law can be seen as the cumulative distribution func-
tion for the event of photon absorption. The probability density function
describing the distance a photon travels in a medium of absorption cross
section σ and doping concentration ρ can then be described as

(a) Linear scale (b) The same measurements in semi-log
scale.

Figure 7.7. A comparison of two measurements from Yb5%:KYW taken
with aperture diameters 10 mm (dashed line) and 2 mm (solid line). The
shorter lifetime measured with the 2 mm diameter is apparent.
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Figure 7.8. The lifetime plotted against the aperture diameter for two
different crystals, Yb5%:KYW and Er5%:Yb:5%:KGW.

f (z) = σρe−σρz.

From this, the average distance traveled by the photons in the medium can
be calculated:

〈z〉 =

∞∫
0

zσρe−σρz dz =
1
σρ

.

The random walk can thus be simplified by letting the step size be constant,
with a value 1/σρ. Also, the time delay for every step is set to one lifetime,
τ .

To study the behaviour of this random walk, a simple program was con-
structed in MATLAB to simulate the outcome and results of many such
events. A pump beam that is infinitely narrow travels in the positive z di-
rection, and hits the crystal at the position

(
0, 0, 0

)
. It will travel a distance

1/σpρ inside the crystal, where σp is the dopant’s cross section for the pump
wavelength. The random walk starts inside the crystal, after the pump pho-
ton has been absorbed the first time, see Fig.(7.9). For generality, all lengths
are given in units of a fluorescence photon’s step size, 1/σρ. The starting
point is then the ratio of the pump and fluorescence photon’s average step
size,

1/σpρ

1/σρ
=

σ

σp
.

The simulation traces a photon at a time, and stops it when it leaves the
crystal, or after it has taken too many steps to be interesting. If the photon
leaves the crystal at the surface, i.e. the plane z = 0, the point at which
it crossed the surface is saved, as well as the number of steps taken. The
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simulation was run for 100 000 photons, and the data from it is presented
below.

7.5.2 Results from the simulation

The exact position of where the photons excited the crystal is not so impor-
tant, but rather the distance from the origin, so when analyzing the results,
the coordinate system is converted to cylindrical coordinates:

r =
√

x2 + y2,

θ = arctan
∣∣∣y
x

∣∣∣ ,

z = z,

see Fig.(7.10). Note that the θ angle is the angle in the first quadrant. If
the point is not in the first quadrant a multiple of π/2 must be added.

A histogram showing how far from origin the photons exited the crystal
in the plane z = 0 can be seen in Fig.(7.11). Since radiation trapping is
caused by photons that have taken more than one step to get to the surface,
it is of interest to see how the photons are distributed with the number
of steps taken, since this effectively determines the amount of radiation
trapping at different distances from the centre. The histogram in Fig.(7.11)
is thus divided into sections, depending of the number of steps taken, which
can be seen in Fig.(7.12). In this example, a little more than half of the
photons that cross the surface z = 0 have done so in just one step. The
curious hump that appears in the histogram is explained by the photons
that have traveled to the surface in two steps. Their distribution from the
origin can be seen in Fig.(7.13). The characteristics of this plot can be
understood by looking at how the photon exits the crystal. In Fig.(7.14)
a schematic of the photon paths that result in them crossing the surface
in two steps is shown. Naturally, a photon that takes two steps and exits

Figure 7.9. A schematic of the model used in the random walk simula-
tion.
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Figure 7.10. A schematic showing the coordinate systems as defined in
the simulation.

the crystal cannot be farther away than two steps from the origin, and
depending on the direction the photon took in its first step, it can exit the
crystal in the interval indicated by the dashed lines in Fig.(7.14). A large
number of photons cannot exit the crystal near the origin, or at a distance
close to two step sizes, but most of them have a definite chance of leaving
the crystal at around one step size from the origin, hence the slightly odd
looking histogram.

The equivalent of radiation trapping in this model is thus how many
steps it takes for a photon in its random walk to exit the crystal. The in-
teresting thing to look for is then the average number of steps taken by the
photons, since this will represent the measured radiation trapping. First,
the average number of steps is plotted as a function of distance from the
centre, which can be seen in Fig.(7.15). There seems to be a near linear
dependence between the average steps taken and the distance from the cen-

Figure 7.11. A histogram showing how the photons leaving the crystal
(at z = 0) are spatially distributed.
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Figure 7.12. The histogram again, now divided into number of steps
taken by the photon when it hits the surface, starting with one step in the
bottom layer and increasing.

tre. In Fig.(7.16) a cumulative average is taken, so that the height of the
graph at distance r represents the average steps taken by the photons that
hit the crystal surface within a distance r from the centre. This is what is
measured using the confocal microscopy set-up. The measured lifetime is
proportional to the number of times the photons have been absorbed and
re-emitted inside the crystal, so this curve answers some questions.

The plots in Fig.(7.6) show different behaviour when the same set-
up has been used to try to limit the radiation trapping. However, in

Figure 7.13. The distribution of photons that crossed the plane z = 0 in
two steps.
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Figure 7.14. A schematic showing how the photon can cross the surface
in two steps. The dashed lines indicate in what interval the photon can
hit the surface in two steps depending on the direction it took in the first
step.

Figure 7.15. The average number of steps taken as a function of dis-
tance from centre. The average steps taken seem to have a near linear
dependence with distance.
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Figure 7.16. The average number of steps taken within r as a function
of r.

light of the results from the simulation this can be accounted for. In
Fig.(7.16), the distance from the centre is given in units of step-sizes, which
is different for different crystals. In the crystal that is Er and Yb co-
doped, Er5%:Yb5%:KGW, the average step size for a fluorescence photon
is 1/ (σErρEr + σY bρY b), which is shorter than for the crystal doped with
only Yb, Yb5%:KYW, where the step size is 1/σY bρY b. As a consequence,
when using an aperture with a radius in the range of 1 mm to 5 mm for
differently doped crystals, different parts of the graph in Fig.(7.16) will be
obtained, see Fig.(7.17). For example, assume that the step size for the
Er5%:Yb5%:KGW crystal is 1 mm, and 2 mm for the Yb5%:KYW crystal.
When using an aperture with a radius in the range 1 mm – 5 mm, it is pos-
sible to see around five step sizes from the centre for the Er5%:Yb5%:KGW
crystal, but only a little more than two step sizes for the Yb5%:KYW crys-
tal. Thus, even if the graph would look the same if aperture radii were taken
in the same interval with regards to step sizes for the two crystals, when
the used aperture radii is in the same interval given in mm, the graphs look
different.

Note that the measurements shown in Fig.(7.8) utilize different aper-
ture diameter intervals, due to the fact that the signal was too low for any
measurements to be taken at aperture diameters smaller than 2 mm for the
Yb:KYW crystal. Also, since this model is just a crude first approxima-
tion, no real values should be calculated from this example. However, the
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Figure 7.17. The portions of the graph that can be seen in the lifetime
measurements of Fig.(7.6).

qualitative results still hold and seem to give the answers to some of the
questions that arose when the results from the aperture measurements were
first analyzed.

For this basic first simulation there are two variables that affect the out-
come, the starting position and the number of steps taken before the photon
is terminated by the program. As mentioned above, the starting position
is just the ratio of the absorption cross sections for the pump and fluores-
cence photons. The maximum number of steps allowed before a photon is
terminated is basically determined by the amount of radiation trapping in
the crystal. When a lifetime measurement is taken in the lab, the time span
after the pump pulse has excited the dopants is set to about 2–3 lifetimes,
see Fig.(7.18), in order get reliable data. At large apertures and with high
radiation trapping, the apparent lifetime could be twice or three times the
real lifetime, so in some cases a photon might take up to nine steps be-
fore hitting the detector and being detected. These variables determine the
shape of the cumulative average curve seen in Fig.(7.16), and the effect of
these properties when taking measurements are outlined below.
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Figure 7.18. A measurement of the fluorescence dynamics in
Er0.5%:Yb2.5%:KYW, with time given in units of lifetimes.

7.5.3 The starting point

The staring point determines how far from the surface the random walk
starts. The farther into the crystal the pump photon is first absorbed, the
more radiation trapping will affect the results. The result different starting
points will have on the general shape of the cumulative average curve can be
seen in Fig.(7.19), where the starting point rages between 0.1 and 1.1 step
sizes, in steps of 0.2 step sizes. As can be seen, if the starting point is close to
the surface, i.e. if the step size of the fluorescence photon is large compared
to the pump photon, a linear extrapolation from the measured values closer
than about one step size to the centre can give a decent estimate of the
true lifetime. However, if the starting point is deeper inside the crystal, this
method will not yield a good result and should not be used. The closer to
the surface the pump beam is absorbed, the less radiation trapping there
will be, and the easier it will be to estimate the true lifetime. One way of
achieving this is by letting the pump beam hit the crystal at an angle, as
described in section 7.4.

7.5.4 Number of steps taken

The other variable that determines the general shape of the cumulative
average curve is the number of steps taken before the simulation terminates
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Figure 7.19. A comparison of curves with different starting points, rang-
ing from 0.1 1/σρ in the bottom, to 1.1 1/σρ at the top.

the photon. If the amount of radiation trapping is high, there will be more
steps taken by photons, on average. A comparison of curves with a constant
starting point, and number of steps allowed for a photon before termination
ranging from 2 to 8 steps, can be seen in Fig.(7.20). As can be seen, a linear
extrapolation down to zero radius will give good results if the number of
steps taken is within a measurement is five steps or more.

7.6 Interpreting the measured results

As explained above, a linear extrapolation down to zero radius will give a
decent estimate of the true lifetime in some situations, but not all. The
crucial factor here seems to be the starting point, or to be more accurate
the depth at which the pump beam is absorbed and the random walk starts.
When analyzing the results from the measurements, for most crystals there
seemed to be a linear dependence between the aperture radius and the mea-
sured lifetime. An example of this is the Er0.5%:Yb5%:KYW, which can
be seen in Fig.(7.21). The linear regression suggests a lifetime of 229 µs,
and comparing this to the result achieved without the confocal microscope
of 291 µs, see table 7.1, means a 21% decrease of the measured lifetime, due
to elimination of radiation trapping.

However, some of the results did not show a simple linear behaviour, like
the crystals in Fig.(7.7). These results had to be given some further analy-
sis to properly determine the true lifetime. Three examples of measurement
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Figure 7.20. A comparison of curves where the maximum number of
allowed steps taken before a photon is terminated ranges from 2, the lowest
curve, to 8, the one on top.

data compared to the basic random walk simulation are presented below,
where the simulation result has been fitted to the sampled data. Fig.(7.22)
shows the measurements taken on the Er5%:KGW crystal, pumped at 532
nm, and the measured fluorescence at 1 µm. This curve shows a somewhat
different behaviour, with a steep drop at large apertures, which level out
as the aperture size decreases. This behaviuor seems very similar to a ran-
dom walk where the photon is terminated after just two steps, and with
a quite shallow starting point, see the bottom graph in Fig.(7.20). Fitting
the simulation result with the measured data show good agreement, and by
studying the behaviour of the simulation one can draw the conclution that
the true lifetime will be close to the lifetimes measured at small apertures.
In Fig.(7.23) the measurements from Er1.4%:Yb2.5%:KGW can be seen, to-
gether with a random walk simulation in which the photons are terminated
after eight steps, and have shallow starting position. A similar curve can be
seen in Fig.(7.24), in which a random walk simulation of maximum five steps
have been fitted to the measurements from the Er5%:Yb5%:KGW crystal.

The curves that are generated from the random walk simulations show
a strong resemblance to the acquired data, implying that the random walk
model works well. However, the simplifications made when implementing
the model to simulations are of such nature that no quantitative results
should be drawn from the results. I.e. the step size used in the simula-
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Figure 7.21. Lifetime measurements of Er0.5%:Yb5%:KYW using a
confocal microscope to reduce radiation trapping. A least squares linear
approximation has been performed, which is presented as the line in the
graph, and the equation is given.

Figure 7.22. Measurements from the Er5%:KGW crystal, compared to
a random walk simuation.
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Figure 7.23. Measurements from the Er1.4%:Yb2.5%:KGW crystal,
compared to a random walk simulation.

Figure 7.24. Measurements from the Er5%:Yb5%:KGW crystal, com-
pared to a random walk simulation.
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tions should not be calculated for the crystals for a direct comparison, but
the simulations should only be used to study the general behaviour of the
radiation trapping. The simplifications that step size and time delay are
constant, the direction of the emitted photons is isotropic, together with
the neglecting of other optical properties in the crystals such as internal
reflection and refraction at the boundaries will make numerical comparisons
erroneous. The simulation results that are fitted to the measured data in
Fig.(7.22) to Fig.(7.24) are simply overlaid to show the good resemblance
and the accuracy of the predicted behaviour of the results, not to get numer-
ical values for the simulation variables or precise values for the true lifetime
in the measurements. Still, conclusions can be drawn from the behaviour of
the simulations, and can suggest ways of estimating the true lifetime from
the measurements.

7.7 Results

Table 7.2 shows the lifetimes obtained when the means of reducing radiation
trapping described in this section have been used, and a comparison to the
results obtained when no measures were taken are made. The lifetimes
are reduced by 10 – 40%, depending on the crystal and dopant. Table 7.3
shows the lifetimes obtained when using the confocal microscopy set-up to
measure the 4I13/2 transition in Er, with a fluorescence wavelength of around
1.5 µm. Very little radiation trapping was expected for this wavelength, so
no reference measurements were taken in the initial set-up. To still be
able to make som kind of comparison, the maximum value obtained in a
measurment series was taken as reference, usually the value obtained at
maximum aperture. However, the value obtained at maximum aperture is
not necessarily the value obtained when no aperture is used at all, so the
percental decrease is a lower limit of the true value. The measurment series
showed the same type of behaviour as measurement series in the 1 µm region
suffering from radiation trapping, so the same methods for calculating the
true lifetime were applied.

In section 4, a relation connecting the lifetimes, forward- and back-
transfer rates and the doping concentrations was derived, Eq.(4.18):

Weff,2 ≈ 1/τY b +
γnr,3 − 1/τY b

1 + (WFT /WBT )−1 ⇒ (4.18)

1/τ ≈ 1/τY b +
1/τEr − 1/τY b

1 +
(

kFT
kBT

[Er]
[Y b]

)−1 . (7.1)

Eq.(4.18) has been clarified in Eq.(7.1), where τ is the measured lifetime in
the co-doped crystals. τEr is the lifetime measured for the 4I11/2 level, this
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decay is principally governed by the non-radiative decay rate γnr,3, since it
is much quicker than the fluorescence decay rate, which is why it can be
substituted into Eq.(7.1). Similarly, τY b is the measured lifetime of the Yb-
doped crystal. By making a least-squares fit of this equation, an estimate
of the ratio kFT /kBT can be made. In Fig.(7.25) two graphs showing the
measured lifetimes plotted against the [Er]/[Yb] ratio can be seen, together
with the least-square fit of Eq.(7.1). The resulting ratio of the forward and
back transfer was kFT /kBT = 4.2 for the KGW crystal, and kFT /kBT = 1.9
for the KYW crystal. Previous calculations based on measurements where
no attempts to reduce radiation trapping were made, see table 7.1, yield a
similar result for the KGW crystal, kFT /kBT = 4.2, but a higher value for
the KYW crystal was achieved, kFT /kBT = 2.3 [10].

In the least-squares fit, the lifetime of the Er5%:Yb5%:KGW was omit-
ted. This is due to the unreasonably low lifetime value of 124 µs, which
is actually lower than the Er:KGW lifetime of 142 µs. As can be seen in
Eq.(7.1), the curve tends asymptotically to the Er:KGW lifetime. This is
because the upper Yb level, from which the detected fluorescence is emitted,
will be depleted both through fluorescence and forward transfer. The rate of
forward transfer is principally set by the decay rate of the corresponding Er
level, 4I11/2, and since this decay is faster, the upper Yb level lifetime will
tend towards this value as the [Er]/[Yb] ratio increases. The reason for the
low lifetime values measured for the Er5%:Yb5%:KGW crystal is unclear.

(a) Lifetimes in KGW. (b) Lifetimes in KYW.

Figure 7.25. Measured lifetime vs. doping concentration ratio [Er] / [Y b]
in KGW, (a), and KYW, (b).

7.8 Summary and discussion

In this section, the problems of radiation trapping when performing lifetime
measurements of energy levels in Er and Yb ions have been presented, along
with ways of reducing them. One method, using a confocal microscope, has
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Host
crystal

Er conc. Yb conc. Lifetime, no
aperture [µs]

Lifetime,
aperture [µs]

Difference

KGW 0.5% 5% 281 244 13%
0.5% 2.5% 237 192 19%
2.5% 7.5% 206 175 18%
1.4% 2.5% 212a 165 22%
5% 5% 158 124 22%
1% - 118 -
3% - 136 -
5% - 146 142 3%

KYW 0.5% 5% 291 229 21%
0.5% 2.5% 265 216 18%
1.5% 2.5% 177a 143 19%
5% - 124 105 15%
- 5% 440a 257 42%

aValue taken from measurements by Stefan Bjurshagen [10]

Table 7.2. Lifetime measurements of fluorescence around 1 µm, which
results from transitions from 2F5/2 to the ground state in Yb and 4I11/2

to the ground state in Er.

Host
crystal

Er conc. 4I13/2 lifetime,
max. value [ms]

4I13/2 lifetime,
calc. value [ms]

Difference

KGW 1% 3.12 2.92 6%
3% 3.07 2.86 7%
5% 2.67 2.39 10%

KYW 5% 3.16 2.16 32%

Table 7.3. Lifetime measurements of fluorescence around 1.5 µm.
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been investigated and evaluated, both experimentally and theoretically us-
ing computer simulations, and the results from both the experiments and
simulations indicate that the method is valid and reduces the effect of ra-
diation trapping, whereby lowering the measured lifetimes with 10 – 40%.
The method is simple to use and applicable to all host materials as well as
dopants, which makes it suitable for characterization of crystals that is to
be used in other set-ups. By analyzing the results from the simulations, the
effect of using a confocal microscope to reduce radiation trapping can be
studied and conclusions can be drawn as how to treat the measured data.
For most crystal samples where the method was used, the results showed
a linear depencece between the aperture radius and the measured lifetimes,
where an extrapolation of the measurements down to zero aperture radius
should give a rather good estimate of the true lifetime, without radiation
trapping. A few crystals did not show a simple linear behaviour, and the
result from these measurements have been presented together with simu-
lations showing very similar behaviour, from which conclusions of how to
estimate the lifetime without radiation trapping can be drawn. Even with-
out the simulations infering how to treat the measured data, the raw data
alone improves the result, reducing the measured lifetime with around 7 –
15% when comparing the results from the smallest aperture to the result
where confocal microscopy was not used at all. Two crystals, Er1%:KGW
and Er3%:KGW did not show a simple exponential behaviour in the mea-
surements, so no clear conclusion can be drawn from these results, which is
why they are omitted in table 7.2.

To understand the processes at work in greater detail, another simulation
should be constructed where more factors and physical properties have been
taken into account, increasing the accuracy of the results. Thus, a Monte
Carlo simulation of the processes at work in radiation trapping was per-
formed and compared to results from measurements. This will be described
in the next section.
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8 The Monte Carlo method

8.1 The basic ideas

The Monte Carlo method is a set of algorithms used in numerical simulations
that use random numbers or pseudo-random numbers to simulate stochas-
tic processes. In this thesis a Monte Carlo simulation is used to simulate
the radiation trapping and energy migration/transfer processes in different
crystals. In order to do this the simulation generates a photon at a time,
and for every ”choice” of events the photon encounters, like absorption, re-
flection, energy transfer and energy migration, a (pseudo) random number
determines the outcome. Pseudo-random numbers are numbers which are
statistically random, but which are generated by a deterministic process.
I.e. a sequence of numbers appear to be random; there are no patterns
or regularities, but it can be reproduced so the sequence is not truly ran-
dom. Throughout this thesis, only pseudo-random numbers are used, but
for simplicity they are referred to as ”random numbers”.

8.2 Modeling with random numbers

The random numbers ξ generated by the computer is uniformly distributed
in the range 0 < ξ < 1, however most processes are not uniform in their
distributions. Take for example the task of randomly generating a distance
of which a photon travels in a medium before it is absorbed. This is certainly
not a value between 0 and 1, and it is not uniformly distributed either. There
must be a way to convert a uniform distribution of numbers to the desired
distribution for this to work. For a continuous distribution, the probability
for an event to occur in the interval (a1, b1) is given by

P (a1 ≤ x ≤ b1) =

b1∫
a1

f (x)dx, (8.1)

where x is the random variable, e.g. the distance a photon travels before
being absorbed, or the direction of which a fluorescent photon is emitted
after being absorbed. f (x) is known as the probability density function,
or pdf , which defines the distribution of x over the interval (a, b). The pdf
must fulfill two conditions:

• f (x) must be greater than or equal to 0 for all x, f (x) ≥ 0 ∀ x,

• The area under the graph should be unity,
∫ b
a f (x)dx = 1.

Similarly, the cumulative distribution function, cdf , is defined as

F (χ) = P (a < x ≤ χ) =
∫ χ

a
f (x) dx, (8.2)
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and gives the probability that x in the interval a < x < χ.
In order to simulate a process, like the distance a photon travels, x should

be randomly generated in (a, b), corresponding to (0,∞) for the photon. To
use the randomly generated numbers ξ, a non-decreasing function g (ξ) must
be found that maps ξ ∈ (0, 1) onto x ∈ (a, b) one-to-one, i.e. x = g (ξ) , ξ =
g−1 (x). This means that

P (g (0) ≤ x ≤ g (ξ1)) = P (0 ≤ ξ ≤ ξ1) . (8.3)

But from Eq.(8.2) this is just the cdf for the two different distributions, so
it can be expressed

P (a ≤ x ≤ x1) = P (0 ≤ ξ ≤ ξ1) ⇒ Fx (x1) = Fξ (ξ1) , (8.4)

where Fx represents the cdf for the variable x and Fξ represents the cdf
for the ξ variable. The random numbers ξ are uniformly distributed, which
means that the pdf is 1, and thus the cdf is F (ξ1) = ξ1. Using this in
Eq.(8.4) yields:

Fx (x1) = ξ1 ⇒
∫ x1

a
f (x)dx = ξ1. (8.5)

So, to randomly generate x within a probability density function f (x), it is
possible to generate a random number ξ1 and then solving for x1 in Eq.(8.5).
This process has been clarified in Fig.(8.1) [13].

8.3 Photon propagation

In this section a brief overview of the rules and arguments for photon prop-
agation using the Monte Carlo method will be presented.

8.3.1 The coordinate system

In order to do a proper simulation, a coordinate system must be defined. In
the simulations all photons start at the crystal surface, inside the crystal.
This is the X marked in Fig.(8.2), and has the coordinates (0, 0,−1). The
position of the photon inside the crystal is always given in this coordinate
system, however it is not the only system used. To express the direction of
the photon, a spherical coordinate system and a cartesian coordinate system
are used, with the origin at the last position occupied by the photon.

8.3.2 Launching a photon

The photon is represented with a structure array, storing its position, di-
rection and time inside the crystal, among other things. When a photon is
launched, these values are set to their initial states, being position: (0, 0,−1)
and direction:

(
0, π

2 , 0
)

in a (θ, φ, r) coordinate system. Note that MATLAB
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Figure 8.1. The process of mapping a uniform distribution to another
distribution, by setting the cdf ′s equal.

Figure 8.2. The coordinate system in the simulation. The X marks
where the simulation starts the photons.
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Figure 8.3. The spherical coordinate system as defined in MATLAB.

defines the spherical coordinate system as shown in Fig.(8.3), so the carte-
sian coordinates are defined as:

x = r cos (θ) cos (φ) ,

y = r sin (θ) cos (φ) ,

z = r sin (φ) .

The photons are initiated inside the crystal, as a fraction of them would
otherwise be reflected when hitting the crystal surface (11% or 1

9 to be exact,
if n = 2 in the crystal). This would only take up time and not contribute
anything to the result.

8.3.3 Photon step size

After the photon has been initiated, the step size is calculated in the follow-
ing way:

the intensity I of a beam traveling in the z direction that has traveled
a distance l in a medium with particle density ρ, cross section σ and initial
intensity I0 is given by

I = I0e
−ρσl, (8.6)

which is a form of Beer Lambert’s law. Since the intensity is proportional
to the number of photons, Eq.(8.6) can be rewritten as

Φ = Φ0e
−ρσl ⇒ Φ

Φ0
= e−ρσl, (8.7)

where Φ0 is the initial number of photons and Φ is the number of photons
after length l. The fraction Φ

Φ0
is then the fraction of photons which has not

been absorbed after distance l, or equally, the probability that a photon has
not been absorbed after the distance l in the medium. The probability that
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a photon has been absorbed is then:

Pabs (0 ≤ z ≤ l) = 1− Φ
Φ0

= 1− e−ρσl. (8.8)

As can be seen from Eq.(8.2) this is just the cdf for this event to occur.
From Eq.(8.5) it is then possible to randomly generate a distance l traveled
by the photon before being absorbed:

1− e−ρσl = ξ ⇒ l = − ln (1− ξ)
ρσ

≡ − ln (ξ)
ρσ

. (8.9)

In the last step it it recognized that 1 − ξ is equivalent to ξ, since ξ is
uniformly distributed in (0, 1). Eq.(8.9) is used every time a step size is
calculated for a photon. The pdf can be calculated to be f (z) = σρe−σρz by
differentiating Eq.(8.8), and can be recognized as an exponential distribution
with rate parameter λ = σρ, which could be expected. An example of
a mapping from a uniform to an exponential distribution can be seen in
Fig.(8.4), where ρσ = 1 m−1 and χ = ρσl.

(a) A uniform distribution of random num-
bers...

(b) ...mapped onto an exponential distribu-
tion.

Figure 8.4. The two histograms show 1000 random numbers mapped
from a uniform to an exponential distribution. The height of the bars
represent the amount of numbers; or for (b) photons, in the interval of the
bar width.

8.3.4 Absorption

After the photon has traveled the distance given by Eq.(8.9) it is absorbed
by a dopant. This is no more dramatic than a decision of the next event
and a time delay. The time delay is computed depending on the outcome,
when the rate for the selected event is known. This is naturally also an
exponential distribution, and the delay time is calculated as:

t = − ln (ξ) τ, (8.10)
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where τ is the lifetime. The derivation is virtually the same as for the photon
step size so it will be omitted.

There are two general ways for the photon to continue, it can be re-
emitted as fluorescence or it can be transferred to a neighboring atom
through a non-radiative process, see section 5. The rate of decay is given by
Eq.(5.7):

Wtot =
1

τrad
+

1
τrad

∑
i

(
RDA

ri

)6

. (5.7)

To use this equation the distances to the neighboring atoms must be known
or estimated, and two different approaches have been made to do this.

8.3.4.1 Closest neighbour The first approach, which has some
shortcomings, uses only the closest neighbour.

Since the non-radiative transfer falls off to the sixth power, only neighbours
very close to the excited atom will be affecting the outcome. As a first
approximation, only one atom will be considered, and its distance from
the excited atom is randomly set using the nearest-neighbour distribution
function H (r), first considered by Hertz [14, 15]. He found that the
distance to the nearest neighbour in a randomly Poisson distributed set of
particles can be expressed as [14]:

H (r) = ρ
dυD (r)

dr
e−ρυD(r), (8.11)

where ρ is the particle density and υD is the volume of a D-dimensional
sphere. For the 3-dimensional case υD = 4πr3

3 , so the expression for the
closest neighbour becomes:

H (r) = ρ
d

dr

(
4πr3

3

)
e
−ρ

(
4πr3

3

)
= 4πr2ρe−

4πρr3

3 . (8.12)

A graph of Eq.(8.12) can be seen in Fig.(8.5). The most probable distance
for a neighbour to be found is

d

dr
(H (r)) = 0 ⇒

(
1− 2πρr3

)
8πρre

(
− 4πr3

3

)
= 0 ⇒

1− 2πρr3 = 0 ⇒ r = (1/2πρ)1/3 . (8.13)

By integrating by parts it can be shown that the cdf is

F (d) =

d∫
0

H (r) dr = 1− e
4πρd3

3 . (8.14)
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Figure 8.5. The pdf for the nearest neighbour distribution. The distance
r is given in the units of (8πρ)−

1
3 and H (r) is given in units of ρ

1
3 .

By again using Eq.(8.5) a randomly generated closest distance to a neighbour
is given by

d = − 3 ln (ξ)

(4πρ)1/3
. (8.15)

However, this model is not quite accurate in this situation; there are two
main problems using this approach. Firstly, it only considers one neighbour.
If the particle density ρ is high, there might be several neighbours within a
Förster radius. If calculations are made on the assumption that only two
events compete, fluorescence and energy transfer to one neighbouring atom,
the fluorescence outcome will be erroneously favored. Eq.(8.16) describes
the probability of the fluorescence event to occur in this model, whereas
Eq.(8.17) describes the true probability.

Pfluor =
1

1 +
(

RDA
ri

)6 , (8.16)

Pfluor =
1

1 +
∑
i

(
RDA

ri

)6 . (8.17)

As can be seen in Fig.(5.2), if there are several neighbours with a distance
ri > RDA the true probability given in Eq.(8.17) can be significantly less
than if only one neighbour is considered.
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Secondly, this approach assumes that any distance to the closest neigh-
bour is possible. However, the dopants are placed in a crystal lattice, so the
distances between neighbouring atoms is a discrete set, whereas the closest
neighbour approach assumes a continuous set. If the simulation was made
for a glass host where the dopants are not constrained to lattice points,
this would be the better suited model, under the condition that the doping
concentration is sufficiently low that only one neighbour could be considered.

8.3.4.2 Array approach To address the shortcomings of the previous
model, a second approach to this problem was made. To more accurately
model the surrounding environment of the excited atom, a tree-dimensional
array is generated, and each element represents a crystal lattice point. For
simplicity the lattice can be assumed to be a simple cubic lattice, with
a lattice constant a. By randomly placing atoms in the lattice points
and then count the number of neighbours and their respective distance
to the excited atom, the limitations of the first model are resolved. The
implementation of this approach in the simulation is as follows:

When the photon is absorbed after a step size described above, a
7× 7× 7 array of random numbers ξijk is generated, where i, j, k ∈ {1 . . . 7}
represent the position of the random number in the array. Setting the
excited atom in the (4, 4, 4) position it is in the middle of the array, and
the other elements represent neighbouring and close-by lattice points.
By setting the doping concentration, the lattice points occupied by a
dopant can be determined in the following way: assume that the doping
concentration is 5%. This means that 5% of the acceptor sites are occupied
by a dopant. From the 7 × 7 × 7 array of random numbers, the elements
fulfilling the condition that ξijk < 0.05 are assigned as sites where dopants
are present. By setting a value of the lattice constant a it is now possible
to calculate the sum in Eq.(8.17) and thus getting a much more accurate

Figure 8.6. A simplified example, showing a 3 × 3 × 3 array, with the
atom in position (2, 2, 2) being the excited atom in question. There is one
neighbour at distance a and one close-by atom at distance

√
2a.
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estimate of the outcome at each event. A simplified schematic can be seen
in Fig.(8.6)

There are, however, some factors that need to be considered. Depending
on the relative size of the lattice constant and the Förster radius, the size of
the array may vary. If the Förster radius is smaller than the lattice constant,
only the first or possibly two neighbouring ”shells” can be considered, hence
only a 3× 3× 3 or 5× 5× 5 array of random numbers have to be generated,
whereas if the lattice constant is small compared to the Förster radius, more
points will have to be considered in order to properly model the situation. In
Fig.(8.7) the closest neighbour in units of lattice constants a can be seen for
10 000 randomly generated arrays, at a doping concentration of 1% and 15%.
From Fig.(8.7b) it can be seen that the closest neighbour is at a distance

(a) Closest neighbour at doping concentra-
tion 1%.

(b) Closest neighbour at doping concentra-
tion 15%.

Figure 8.7. The distance to the closest neighbour for 10 000 randomly
generated environments at a concentration of 1%, (a), and 15%, (b). The
height of the bars represent the relative abundance. The most probable
distance to the closest neighbour is

√
5a with around 17% at 1% doping

concentration and 1a with around 60% at 15% doping concentration.

of 1a in about 60% of the time. It is also worth mentioning that at 1%
doping concentration there is statistically only about 2 other dopant atoms
present in a 7× 7× 7 lattice configuration. When doping concentrations are
so low it is possible to see the multiplicities of the different lattice distances.
For example, there are six sites at a distance 1a from the centre atom, but
12 sites at a distance of

√
2a which can be seen in Fig.(8.7a), where the

probability of the closest atom being at a distance
√

2a is about twice as
high as 1a.
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8.3.5 Emission

Using the expression for the different rates, the probability for each event
to occur can be computed, and using a random number an event is cho-
sen. When the outcome is determined, the delay time is generated, and the
photon is moved. If the photon is emitted as fluorescence a new step size
is determined, if energy transfer occurs the step size is already determined,
and a new set of events has to be evaluated. The fluorescence emission is
assumed to be isotropic, the direction is randomized. In order to separate
the direction and the step size, the direction is generated in spherical coor-
dinates. Generating a random direction in spherical coordinates is done by
setting θ = 2πξ1 and φ = arcsin (2ξ2 − 1), where ξ1 and ξ2 are two random
numbers. The θ-coordinate is straight forward, but the φ-direction needs
some explanation. From Fig.(8.3) it can be seen that φ ∈ [−π/2, π/2]. To
obtain a random number in [−1, 1] one can use ξ[−1,1] = 2ξ− 1, so to obtain
a random number in [−π/2, π/2] one can just multiply ξ[−1,1] by π/2. How-
ever, just letting φ be uniformly distributed in [−π/2, π/2] generates a set
of coordinates distributed over a sphere as can be seen in Fig.(8.8a). There
seems to be a tendency for directions being generated in the polar regions,
so it is not isotropic. To properly generate random directions, it is not φ

(a) A uniform distribution of φ. (b) Correctly distributed φ.

Figure 8.8. A comparison of how two distributions of φ result in
anisotropic and isotropic distribution of directions.

that should be uniformly distributed, but rather the z-direction, which is
given by z = sin (φ). Since z is in the range [−1, 1], a uniform distribution
of z is then given by z = 2ξ − 1 and thus φ can be generated as

2ξ − 1 = sin (φ) ⇒ φ = arcsin (2ξ − 1), (8.18)

see Fig.(8.8b).
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8.3.6 Reflection and transmission at boundaries

During a step, the photon may hit the surface of the crystal. In this case it
will be transmitted or reflected, based on the incident angle and the Fresnel
equations [16]:

R⊥ =
[
sin (θt − θi)
sin (θt + θi)

]2

, (8.19)

R‖ =
[
tan (θt − θi)
tan (θt + θi)

]2

, (8.20)

where R⊥ and R‖ are the reflection coefficients for light perpendicular and
parallel to the plane of incidence, respectively. By using Snell’s law Eq.(8.19)
and Eq.(8.20) can be rewritten in terms of θi:

R⊥ =

n1 cos (θi)− n2

√
1−

(
n1
n2

sin (θi)
)2

n1 cos (θi) + n2

√
1−

(
n1
n2

sin (θi)
)2


2

, (8.21)

R‖ =

n1

√
1−

(
n1
n2

sin (θi)
)2
− n2 cos (θi)

n1

√
1−

(
n1
n2

sin (θi)
)2

+ n2 cos (θi)


2

. (8.22)

No polarisation of the light is assumed in the simulation, so the total reflec-
tion coefficient is given as a mean of R⊥ and R‖:

R =
R⊥ + R‖

2
.

When a photon hits a surface, the total reflection coefficient is calculated.
A random number ξ is generated, and if ξ < R the photon will be reflected.
Otherwise it will be transmitted through the surface, and its direction is
changed according to Snell’s law. If it passes the aperture and hits the
detector it is registered as a detected photon. If not, the photon is killed
and a new photon is generated.

8.3.7 Photon termination

There are a two ways in which a photon can be terminated in the simulation.
First, it is killed when it exits the crystal. If it hits the detector it is
registered first, then killed. The second way to end a photon is by a process
called the roulette.
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8.3.7.1 The roulette This process is used so that no photon lives for-
ever, stuck reflecting between surfaces in a never-ending loop. Each photon
is assigned a certain property called weight, with the initial value of W = 1.
For every time the photon is reflected, the weight of the photon is multi-
plied with the reflection coefficient. After a certain number of reflections the
weight will have decreased below a user defined threshold, e.g Wth = 0.005.
To simply terminate the photon after a certain number of reflections would
not be right, since it would not be done in an unbiased way. However, when
it reaches the threshold, the photon enters a game of russian roulette. The
game gives the photon one chance in m to survive, with a weight mW , else
it is terminated. This way the photons are terminated in an unbiased way,
yet they do not live forever.

These are the main processes that are the basis for the Monte Carlo sim-
ulation. In section 9 the implementation of these processes will be outlined,
together with the construction of the programs and the data handling.
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9 The implementation

The language chosen for the simulation was MATLAB, because of its ease of
use and since my own experience in other languages are somewhat limited.
With MATLAB one does not have to worry about memory allocation etc,
and sub-routines and smaller functions can be constructed and tested sepa-
rately in the command window. Also, the data output is very easily handled,
and graphs can readily be produced to quickly see the results. Also, MAT-
LAB’s unique way of handling vectors and arrays greatly aided in the ease
and simplicity of the coding process.

9.1 Model set-up

A few simplifications have been made from the experimental set-up used,
see section 7.4. The photons come in at a right angle with the surface, and
the detector is right in the virtual beam, see Fig.(9.1).

Figure 9.1. A schematic of the set-up used in the simulation. The left
figure shows where the photon enters the crystal. The right figure shows
how photons might exit the crystal. There are two photons exiting the
crystal at the top surface. Both pass the aperture, however only one hits
the detector.

For simplicity the optical system is neglected, and the detector is placed
just after the aperture. The aperture is actually placed right on the surface
of the crystal, but for clarity it is a separate entity in Fig.(9.1). Placing it
on the surface is in effect the same as placing it in the image plane of the
optical system.

9.2 Data handling

The central element in the simulation is the propagation of a photon, and
how it interacts with the crystal. In the simulation the photon is represented
with a structure array, storing the photon’s necessary properties such as time
inside the crystal, position, direction, wavelength etc. Every time a photon
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is generated, a subroutine produces a structure representing a photon in the
starting position, see Fig.(8.2). As the photon progresses in the simulation,
the different posts in the structure are updated accordingly. In table 9.4 two
structures representing photons in different stages are shown.

time: 0 time: 8.326844104103665e-004
weight: 1 weight: 0.16585955362095
dead: 0 dead: 0
host: ’Yb’ host: ’Yb’
pos: [0 0 -1] pos: [0.84999 0.20956 0.20215]
dir: [1x1 struct] dir: [1x1 struct]

bounce: 0 bounce: 3
node: 0 node: 1

wavelength: 935 wavelength: 1000

Table 9.4. Two structures as they appear in the simulation. The initial
photon to the left, and a photon in the middle of the simulation to the
right

Some post are self explanatory, but a brief summary of every post will be
presented.

time gives the time the photon spent inside the crystal.
weight gives the weight of the photon, see section 8.3.7.
dead is a boolean variable. If one subroutine terminates the photon it will
not be processed by other subroutines.
host stores the species of the host atom, Er or Yb.
pos stores the position in cartesian coordinates.
dir stores the direction of the photon in cartesian and spherical coordinates.
bounce counts how many times the photon has changed direction.
node counts how many hosts the photon has had.
wavelength gives the wavelength of the photon in nm, which can be either
935 for a pump photon, 1000 for a fluorescence photon from the 2F5/2 in
Yb or 4I11/2 in Er, or 1550 from 4I13/2 in Er.

9.3 Detection

When a photon hits the detector a number of variables are stored for ana-
lyzing the results and checking the simulation for bugs. The crucial variable
here is the time variable. One method of storing the time information is to
divide the time line into intervals or bins, and check in which bin the time
from a certain photon would fall. Every bin holds an integer value, and at
the end of the simulation the integers from every bin are collected, and a
histogram can be made of how the photons were distributed over time. The
output data would then be a vector of integer values, representing the bins.
This approach is not very practical to use when many different simulations
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are run and the lifetimes vary. The risk is that the temporal resolution
would be too low, so that a majority of the photons would fall into one or
a few bins, leaving little data to perform any calculations on. The method
used in this simulation is simply to store the exact time of each photon’s
arrival at the detector. The output data is then a vector of floating points
numbers. With this original data, a suitable resolution can be chosen and
the data can be divided into appropriate time intervals to be analyzed.

9.4 Flowchart

Fig.(9.2) shows a basic flowchart of the simulation program. Many events
describe processes already discussed in section 8. The first four boxes after
the ”Launch photon” box describes the event chain of the pump photon,
which differs somewhat from the fluorescent photons that appear further
down in the chart. The pump photon will not be detected if it leaves the
crystal, as it is uninteresting for the result.

The ”Launch photon” event launches a photon in the simulation,
with the initial values as described above. The distance the photon travels
in the crystal is determined in the ”Set distance” box, based on Eq.(8.9).
If the photon hits the crystal boundary it will either be reflected or transmit-
ted. If it is reflected it goes through a game of russian roulette, if the weight
of the photon is small enough. If it terminates there, or is transmitted, a
new photon will be launched.

If the pump photon does not hit a boundary it is absorbed by a dopant.
The absorption cross section, σabs, is changed, as is the photon property
”wavelength”, since they are different for pump photons and fluorescent
photons. Before the photon leaves its host atom, the process in which it does
so is determined, symbolized by ”Decay process” in the flowchart. Based on
the species of the host atom, as well as the proximity to other neighbouring
and close-by atoms, the outcome is determined. If the photon is transferred
through energy migration, a time constant is added, and the new position is
stored in the structure representing the photon. If the photon is re-emitted
as fluorescence, the decay time, direction and distance traveled before being
absorbed is calculated, see section 8 for a description of how these values
are determined If the photon is transmitted and hits the detector it will be
registered as a detected photon.

9.5 Running the simulation

When running the simulation there are a number of input variables that
need to be given to the program, which include the number of photons
to be tracked, the aperture diameter, the cut-off time, Er and Yb doping
concentration.

73



9 THE IMPLEMENTATION 9.5 Running the simulation

Figure 9.2. The flowchart of the simulation, outlining the basic events.

74



9 THE IMPLEMENTATION 9.5 Running the simulation

The number of photons is the amount of photons that are detected by the
simulation, not the amount of launched photons. This is a better approach,
since the number of detected photons would otherwise vary with aperture,
giving simulations for different aperture values different accuracies. By set-
ting the detected number of photons to a specific value for all apertures
gives the same amount of data for any aperture. For most simulations, the
detected photons have been set to 2000.

The cut-off time gives the time interval in which the photons will be
tracked, and detected. This is very similar to the temporal resolution set on
the oscilloscope when taking measurements.

There are variables that are set within the simulation, and are the same
for crystals of different doping concentrations. These include absorption and
emission cross section, Förster radii, lifetimes of the different energy levels
and crystal dimensions.

The results from the simulations described here will be presented in the
next section.
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10 Simulation results

The results from the Monte Carlo simulations are presented here, and com-
pared to the measurements as well as the simulations described in section
7.5.1.

10.1 Yb 5%:KYW — a comparison

The crystal that was first used when testing the confocal microscopy set-
up described in section 7.4, Yb 5%:KYW, was the crystal that became the
benchmark when comparing the results from the Monte Carlo simulation
to the measurements. There were two reasons for this: first, there were
pronunced radiation trapping in this crystal, making it a suitable first crystal
to simulate since the effects would be easily seen if the simulation worked
well. Secondly, the crystal is not co-doped, which means that the simulation
could be tested without the energy transfer process fully implemented.

In order to simulate the radiation trapping process, the true lifetime of
the transition must first be assumed, see Eq.(8.10), where the lifetime τ must
be assigned a value in order to generate a delay time at all. This makes the
Monte Carlo simulation a little different from the random walk simulation
in section 7.5.1 in that the true lifetime must be guessed, and the results
will indicate whether this guess is valid or not. The results from a series
of simulations using a confocal microscope to reduce radiation trapping can
be seen in Fig.(10.1), along with a comparison to measurements taken from
the very first attempt using confocal microscopy.

(a) The result from the Mote Carlo simula-
tion.

(b) The results of the measurements.

Figure 10.1. A comparison between the measurements and the results
from the Monte Carlo simulation.

Apparently, the simulation seems to reproduce the results from the mea-
surements quite well, even though the aperture diameters differ somewhat.
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The discrepancies can be explained by slightly incorrect values of the dopant
particle concentration, cross section and lifetime.

For even larger apertures, the lifetimes levels out in the same manner as
the graphs from the random walk simulation in section 7, further confirming
the models used.

10.2 Non-radiative energy transfers

In this simulation, the non radiative energy transfers were turned off for
three reasons. First, this process will not contribute anything to the effect
of radiation trapping, and since this is the main interest for a singly doped
crystal, the process can be turned off. Second, a simulation takes about
ten times longer when this process is tuned on. Third, the results are very
different when this process is turned on, and do not at all resemble the
results from measurements, so something is wrong in the implementation or
the model itself.

The energy migration in Yb is a competitive process to the fluorescence.
In the simulation, every time a photon is absorbed there are two main events
that can occur, see the flowchart in section 9, Fig.(9.2), fluorescence or en-
ergy transfer/migration. Every time a photon is transferred from one host to
another in this process, it means that is is not emitted as fluorescence. When
the lifetime is measured, this delay can be quite significant, and can thus
increase the measured lifetime by a significant amount. This would imply
that a high degree of energy migration could be seen in the measurements
as it would increase lifetime. To test this, a series of lifetime measurements
of the 2F5/2 level in Yb were taken on a KYbW crystal. The KYbW crys-
tal is a KYW crystal, where all Y atoms have been replaced by Yb atoms,
i.e. a Yb100%:KYW. Since every Yb ion has a neighbour at every adjacent
lattice point, the amount of energy migration would be a lot higher than in
Yb5%:KYW. If this would reflect in a longer measured lifetime, the model
implemented in the Monte Carlo simulation would be correct, otherwise it
would have to be adjusted. The results of the measurements can be seen in
Fig.(10.2)

The lifetimes obtained in the measurements are about a factor two higher
than for the Yb5%:KYW, so at a first glance, lifetimes seemed to increase
with the amount of energy transfer in the crystal. However, as doping
concentration increases, so does radiation trapping; and at these very high
concentrations the photon step size is very small, so the confocal microscopy
set-up used might not reduce the radiation trapping nearly enough to see the
true lifetimes. To investigate how much the set-up would reduce radiation
trapping at this high concentration, a Monte Carlo simulation was run with
the aperture diameter set to 2 mm and an Yb doping concentration of 100%.
The resulting lifetime predicted by the simulation was 570 µs, very close to
the measured lifetime of 500 µs. Thus, the long lifetime measured at high
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Figure 10.2. A measurement series from the KYbW crystal.

concentration is due to radiation trapping; it seems that the lifetime is not
dependent on the amount of energy migration within the sample.

In order to properly simulate a co-doped crystal, the energy trans-
fer/migration must be properly modeled to get reliable results, since this
is the way energy is shared between the different ion species. Consequently,
the Monte Carlo simulation cannot yet be applied to co-doped crystals.

Another possible source of error in the non-radiative energy model might
be the values of the Förster radii, calculated in section 5. As mentioned
there, an error in the calculated emission cross section in Er might result in
a higher value of the Förster radii, which will result in erroneous outcomes
in the simulations.
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11 Summary and discussion

In this thesis, lifetimes measurements of Er and Yb doped crystals have
been taken and analyzed. A method of reducing radiation trapping has been
tested and evaluated, and a basic theory for explaining the results have been
developed. Further, a Monte Carlo simulation has been constructed to sim-
ulate the processes of radiation trapping and non-radiative energy transfers,
and to study their behaviour and effect on the crystals’ lifetimes and trans-
fer efficiencies from Yb to Er, in order to optimize doping concentrations.
The most important results for each part will be summarized below.

11.1 A method of reducing radiation trapping

The method developed and analyzed in this thesis reduce the measured life-
times with 10–40% depending on host crystal and doping concentration. The
set-up for taking these measurements was relatively easy to build and works
for practically any crystal. However, as the aperture diameter decreases, so
does the signal to the detector, which means that it can be difficult to get
reliable data for small apertures, or for crystals of low doping concentration
where the fluorescence is weak to begin with. Also, care has to be taken
when building the set-up so that the aperture sizes are in the right region, so
that there will be any reduction of radiation trapping at all. If the apertures
chosen are too large, there will be no difference in the measured lifetimes as
the aperture diameter is changed, and the method will then not yield any
results at all. The maximum aperture used in these measurements was 10
mm, and the magnification of the imaging system was a factor of 10, so the
real maximum aperture size, was about 1 mm. If crystals with much higher
doping concenrations are used, the apertures must be even smaller. The
simplest way to achieve this is to increase the magnification of the imaging
system.

By seeing the radiation trapping process as a random walk for the pho-
tons in the crystal, a simulation was constructed and compared to the mea-
surements data. Using this approach it was possible to explain the behaviour
of the results in a simple and yet effective way. Even though too many sim-
plifications were made for any numerical predictions, the qualitative results
were enough to suggest how to treat the measured data and approximate
the true lifetime.

11.2 The Monte Carlo Simulation

By constructing a more complex and realistic model of the set-up, numerical
predictions could be achieved. The Monte Carlo simulation had two main
purposes, to simulate radiation trapping, and to simulate the redistribution
of energy among the Yb and Er ions.
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When simulating radiation trapping, the results from the Monte Carlo
simulation were in fair agreement with the measurements taken, confirming
the source and behaviour of the effect of the confocal microscopy set-up.
When simulating the non-radiative energy transfer process however, the
results were not so good. This is most likely due to an incomplete imple-
mentation of the processes at work.

11.3 Future work

To improve the accuracy of the simulation, both for radiation trapping and
energy migration, further adjustments can be made.

11.3.1 Non-radiative energy transfers

By resolving the issues in this part of the simulation, a very handy way of
studying the energy redistribution and transfer efficiencies between Er and
Yb is obtained. Since the doping concentrations determine the efficiency
of the laser output, it is of importance to know the optimum doping before
building the laser. When simulating radiation trapping and the confocal mi-
croscopy set-up of reducing it, the number of photons simulated before 2000
detected photons was achieved could be as high as 7 000 000 for a crystal
with low doping concentration and a small aperture. To run a simulation se-
quence where the aperture diameters range in 2–15 mm could take 16 hours.
When simulating the non-radiative energy transfers, the radiation trapping
can be turned off, and the aperture and detector as they are implemented
in the simulation can be ignored. In order to detect 5000 photons it would
only be necessary to trace 5000 photons, which takes a few seconds, so high
accuracy is very easy to achieve when radiation trapping is ignored.

11.3.2 A finite beam size

The simulation assumes an infinitely narrow pump beam, instead of a gaus-
sian beam. There are two ways of adjusting this. First, the photon starting
positions could be randomly generated, within a normal distribution. This
is simple to implement, but in order to get good results, the number of
photons simulated must be increased quite a lot, so to get accurate results
the simulations would take a lot longer to perform. The second option is
to use the results from an infinitely narrow beam and adjust it in a proper
way. The simulation results using a narrow beam can be seen as the im-
pulse response for the system in question. The response for a system of a
finite size beam can be obtained by convoluting the impulse response with
the intensity profile of the beam in question [17]. Using this approach, the
same number of photons can be traced for the same accuracy. There is one
thing that must be changed if this approach is chosen. In order to use the
convolution, the system must be linear and invariant. The system as it is
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implemented is linear, but not invariant. That is, if the intensity of the
beam is multiplied by a factor, the response will be multiplied by the same
factor. It is not invariant, since a translation of the beam would result in a
different response of the system, due to the finite size of the crystal. In order
to utilize this method, the crystal would have to be infinitely wide, which
is not difficult to change so it does not impose a great problem. There is a
very good description of how to perform this calculation in an article by L.
Yang and L. S. Jacques. [17]
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[1] C. Nordling and J. Österman. Physics handbook, 6th ed. Studentlitter-
atur, Sweden, 2002.

[2] R. C. Hilborn. Einstein coefficients, cross sections, f values, dipole
moments, and all that. American Journal of Physics, 50(11):982–986,
1982.

[3] William T. Silfvast. Laser Fundamentals. Cambridge University Press,
New York, 1996.

[4] A. E. Siegman. Lasers. University Science, Mill Valley, Calif., 1986.

[5] S. Bjurshagen, J. E. Hellström, V. Pasiskevicius, M. C. Pujol,
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