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Abstract

In this master thesis a method for manufacturing a two-dimensional nonlin-
ear photonic crystal in KTiOPO4 has been presented followed by an anal-
ysis of the frequency conversion properties. Two crystals, each of different
two-dimensional period, 6.09×6 µm2 and 6.09×30 µm2, were realized by a
lithographic patterning step and electric field poling. The two-dimensional
lattice supports second harmonic generation of a cw laser at different wave-
lengths, using multiple reciprocal lattice vectors. These results were in very
good agreement with a theoretical calculation of the phase-matching prop-
erties. The acceptance bandwidth properties has been measured and we
found that the bandwidth is up to 3 times larger for non-collinear propaga-
tion compared to a one-dimensional collinear interaction. Finally we report
on a pulsed duo-line narrowband (∼0.2 nm) coherent light source with tun-
able wavelength separation (0 − 5 nm) and center wavelength (±1 nm), in
the blue spectral region, using a broadband pump.

Sammanfattning

I detta examensarbete har en metod för att tillverka en tv̊adimensionell icke-
linjär fotonisk kristall presenterats och möjligheten för frekvenskonvertering
av ljus har undersökts. Tv̊a kristaller, var och en med olika tv̊adimensionell
period, 6.09×6 µm2 och 6.09×30 µm2, har tillverkats genom en litografisk
mönstringsteknik följt av elektrisk fältpolning. Det tv̊adimensionella git-
tret genererar frekvensfördubbling av ljus fr̊an en kontinuerlig laser vid
olika v̊aglängder genom att nyttja multipla reciproka vektorer. Dessa re-
sultat stämde mycket väl med de teoretiska beräkningarna av fasmatchn-
ingsvillkoren. Acceptansbandbredden har mätts och vi noterade att band-
bredden är upp till 3 g̊anger större för icke-kolinjär propagering jämfört
med det endimensionella kolinjära fallet. Slutligen demonstrerade vi en
pulsad smalbandig (∼0.2 nm), tv̊alinje koherent ljuskälla med avstämbar
v̊aglängdsseparation (0− 5 nm) och centerv̊aglängd (±1 nm) i det bl̊a spek-
tralomr̊adet, pumpad av en bredbandig källa.
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1 Introduction

Since the invention of the laser, they have found use in a wide variety of appli-
cations. They are found in every day life situations, ranging from your CD and
DVD player to barcode scanning in the food store, as well in more specific appli-
cations such as material processing, biomedical analysis or range-finding, just to
mention a few. These diverse applications demand different properties in terms
of wavelength, emitted power, efficiency and package size. The range of accessible
wavelengths are limited due to the discrete energy levels in the lasing medium,
govern by quantum mechanics. Because of this limitation there is an apparent
need for means to access other wavelengths.

If we restrict us to compact, efficient and high beam quality lasers in the
spectral range from infrared to ultra violet, there is mainly one candidate of
lasers. These are diode-pumped solid state lasers (DPSSL), consisting of a high
power laser diode, pumping a medium with a lasing host material. However they
are lasing in a number of discrete wavelengths, all around 1 micron, which is a
very limited part of the desired spectrum. A way to reach other wavelengths
is to make use of a nonlinear frequency conversion process. The basic idea is
to generate light at another frequency than that of the original light entering
the medium. This can, for example, be achieved in a nonlinear crystal with
either second harmonic generation (SHG), sum frequency generation (SFG) or
parametric down conversion. Those lasers find applications in many different
areas where a efficient, high beam quality and compact lasers are desired, often
as a replacement of expensive, bulky and inefficient gas lasers.

Due to dispersion in the material, waves at different wavelength will travel at
different velocities and become out of phase, thus reducing the efficiency. Tradi-
tionally, birefringent phase-matching (BFM) has been used to obtain the required
momentum conservation. BFM suffers from certain inherent limitations while on
the other hand the concept of quasi-phase matching (QPM) has proved to have
several benefits. In the QPM approach, the interacting waves are brought in
phase when they have travel a certain distance and become out of phase. In a
ferroelectric crystal, it can be achieved by adding an artificial momentum vector,
originating from a periodic modulation of the nonlinear coefficient. This is done
by periodically inverting the spontaneous polarization and thus altering the sign
of the nonlinearity. This is known as periodic poling (PP) in ferroelectrics, and
has been widely used to achieve efficient frequency conversion processes, both
in research and in commercial applications, after it was first demonstrated in
1993 [1]. With this technique it is possible to phasematch any conversion in the
transparency range of the nonlinear crystal, usually from mid-infrared to near
ultra-violet.

However, these one dimensional QPM crystals have some limitations; the
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1 INTRODUCTION

wavelength acceptance bandwidth is relatively small and the tunability is lim-
ited. It means that a given QPM crystal will only work for a certain fundamental
wavelength with a fixed bandwidth of the generated light. A way to circum-
vent these limitations is to employ a two-dimensional structure where the sign of
the nonlinearity is periodically varying in two dimensions, known as a nonlinear
photonic crystal.

1.1 Nonlinear photonic crystals

Photonic crystals will first be described as a logic introduction to nonlinear pho-
tonic crystals. Photonic crystals have been a subject of considerable research
interest for more than a decade [2]. A photonic crystal consists of a periodic op-
tical structure that is designed to affect the motion of photons, in a similar way
that electrons are affected in a semiconductor. This opens up for a wide range of
applications such as optical switches, optical transistors and optical diodes, pos-
sibly leading to a revolution in information technology. A photonic crystal has a
periodic variation of the linear susceptibility χ(1), which is related to the index
of refraction, in one, two or three dimensions. This can be done by combining
high refractive index and low refractive index building blocks in a periodic struc-
ture, which is usually a challenging experimental task. An important feature is
that these structures will exhibit a frequency range of incident light where they
are totally reflective. In other words, no light can propagate in this forbidden
frequency band gap.

If instead, the second-order susceptibility χ(2) is periodically modulated and
the first order susceptibility χ(1) is space-independent (constant), it is referred to
as a nonlinear photonic crystal (NPC), originally suggested by Berger [3]. Usually
this is done by modulating the sign of the second-order susceptibility, where the
building blocks are (+χ(2)) and (−χ(2)). Strictly speaking they do not fit the
classical definition of a photonic crystal since they do not possess a photonic
bandgap [2].

A NPC offers phase matching in two dimensions with the possibility to sup-
port several conversion processes simultaneously. This is an important advantage
that makes a NPC more versatile compared to a 1D QPM structure. A theoretical
work by Lifshitz et al. [4] propose a design of a nonlinear photonic quasicrys-
tal that can be utilized for simultaneous phase matching of arbitrary optical
frequency-conversion processes.

Another very interesting branch of application arises when nonlinear mate-
rials are combined with a photonic crystal. For example, an all optical transistor
can be realized by incorporating a nonlinear material in a photonic crystal, theo-
retically shown by Yanik et al. [5]. It works very similar to an electrical transistor;
the signal input is not transmitted as long as there is no light present on the con-
trol input. But when the control input is present the signal input is transmitted.
The combination of the light guiding properties of a photonic crystal and a non-
linear response medium can possibly lead to an all-optical computer. However,
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1.2 The objective

the drawback is that this approach requires high optical powers in order to obtain
a nonlinear interaction [6].

1.2 The objective

The objective of this master thesis was to pursue the possibilities to manufacture
a second-order nonlinear photonic crystal in the material potassium titanyl phos-
phate KTiOPO4 (KTP) by means of electric field poling. The work was divided
into two parts, where the first aimed to manufacture the NPC by a conventional
lithographic step followed by electric field poling and the second part focused on
optical characterization of the fabricated structures. The emphasis of the char-
acterization work was to examine the performance offered by a two-dimensional
structure, both experimentally and theoretically. Several different experimental
setups were used where measurements on phase-matching processes and efficien-
cies were carried out.

1.3 Outline of the thesis

The work is presented as follows: The second chapter deals with a basic theory
of nonlinear optics at a level suitable for describing the experimental part. The
main results are the coupled wave equations and the description of second har-
monic generation. Chapter three describes the requirement of phase matching
in order to achieve an effective frequency conversion process. It also describes
concepts from solid state physics that are necessary tools in order to understand
the phase-matching process. Chapter four is presenting the nonlinear material
KTP used in this work. Both crystal structure and ferroelectric properties as
well as the optical properties of the crystal are described. Chapter five is ex-
plaining the fabrication method, periodic electric field poling, that was used to
realize the structures. Here the results of the optical microscope evaluation of
the poled structures are presented. Chapter six is the main chapter describ-
ing frequency conversion processes in several different experimental setups. It
is divided into two parts; narrowband pumping and broadband pumping, where
the first aims to determine the phase-matching processes and the second focuses
on simultaneously generation of multiple wavelengths. Following that, the last
chapter seven, concludes the work and discusses possible improvements and other
continuations.
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2 Nonlinear optics

In order to understand the interaction between light and matter, it is necessary
to introduce a model that is able to describe the phenomena that are observed.
The simplest model is the electron oscillatory model or the Lorentz model of an
atom, proposed by H. A. Lorentz [7]. In this model, the electron is assumed to
be attached to the atom by a spring. When a dielectric medium is subject to an
electromagnetic field, it will induce a displacement of the electron cloud in the
material.

Linear optics explains the phenomenon observed when the intensity of the
light is sufficiently low. This includes the optical properties that we observe
in every day life, for example, the rainbow or the colorful oil films on water.
However, after the invention of the laser in 1960, much higher intensities are
available. These resulted in completely new possibilities for research in the field
of nonlinear optics (NLO). Many interesting properties, due to the nonlinear
effects, have been discovered since second harmonic generation was observed for
the first time in a quartz crystal.

The nonlinear effects arising in nonlinear material can be understood by
using the Lorentz model. A monochromatic oscillating electric field will induce
a dipole oscillation at the same frequency as the field. This displacement of
the electrons is referred to as the polarization of the dielectric material. The
oscillating electric dipole will, in turn, radiate a new electromagnetic field, which
is described in standard textbooks on electromagnetic theory, see ref [8].

To a first approximation, the displacement or the polarization is a linear
response of the electric field, which explains the linear optical effects. However,
with a stronger electric field, the displacement will start to ”saturate”. This
gives a nonlinear response with a distortion of the waveform for the polarization.
This distorted polarization can be modeled by higher-order harmonics of the
fundamental frequency of the electric field. Hence the radiated electromagnetic
field will contain multiples of the fundamental frequency. This is an intuitive
way to explain the origin of second- and higher order harmonic generation. The
presence of the nonlinear effects does not solely depend on the intensity of the
light, but also on the ability of the material itself to generate a nonlinear response.
Therefore, it is not possible to give a certain fixed number of the intensity where
the nonlinear effects will start to take place.
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2 NONLINEAR OPTICS

2.1 Linear optics

In linear optics, the electromagnetic wave induces a separation of the charges in
the material, i.e., a polarization, which is directly proportional to the electric
field. In crystals, the polarization induced by an electric field and the field itself
are not necessarily parallel. Therefore, the relation between the linear electric
polarization and the electric field is given by a tensor relation:

PL = ε0χ
(1)E , (2.1)

where the subscript L refers to the linear polarization, ε0 is the permittivity of
vacuum, and χ(1) is the linear dielectric response tensor, or susceptibility. This
relation can also be written as a sum of the scalar elements of the tensor,

PL,i = ε0

∑
j

χ
(1)
ij Ej , (2.2)

where the indices ij signify the cartesian coordinates, (i, j) = (x, y, z). It can
be shown that the susceptibility tensor is symmetric and, therefore, it can be
diagonalized [9]. This means that the electric field and the induced polarization
can be oriented in a coordinate system such that the susceptibility tensor has
only diagonal, nonzero elements:

χ(1) =

 χ
(1)
11 0 0
0 χ

(1)
22 0

0 0 χ
(1)
33

 . (2.3)

The components χii are related to the index of refraction according to,

ni =
√

1 + χ
(1)
ii . (2.4)

This is the physical description of birefringence; light polarized in different direc-
tions will experience different indices of refraction.

2.2 The constitutive relations

When the intensity of the light is sufficiently large, the material will have a
nonlinear response and then it is necessary to modify the above relation between
the electrical field and the electric polarization. One way to describe this is to
make a series expansion in the applied field,

P = ε0χ
(1)E + ε0(χ(2)E2 + χ(3)E3 + . . . ) = PL + PNL , (2.5)

where PL is the linear part of the polarization and PNL, correspondingly, is the
nonlinear part, ε0 is the permittivity of vacuum, and χ(m) is the susceptibility
tensor of m:th order and rank (m + 1). It is important to note that the field
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2.2 The constitutive relations

in Eq. (2.5) is the total applied field, which can be a superposition of many
different frequencies. From now on, the treatment presented here will only deal
with second-order nonlinear processes, known as χ(2)-processes.

A suitable way to analyze the problem is to write the Fourier components of
the nonlinear polarization. Assume that there are only two electric fields present
oscillating at frequencies ω1 and ω2 and the 2:nd order polarization oscillating
at ω3. This will give the following frequencies for the 2:nd order polarization:
2ω1, 2ω2, ω1 + ω2, ω1 − ω2 and a DC term at zero frequency, a mathematical
result of the squared electric field. To pursue the symmetry properties of the
susceptibility tensor, it is common to write the i:th cartesian component of the
complex polarization as follows,

P
(2)
i (ω3) = ε0D

(2)
∑
jk

χ
(2)
ijk(−ω3;ω1, ω2)Ej(ω1)Ek(ω2) . (2.6)

The sum will run over the cartesian coordinates, namely (j, k) = (x, y, z). And
the degeneracy factor is given by,

D(2) =
{

1 for indistinguishable fields
2 for distinguishable fields

. (2.7)

All fields are distinguishable except when the two fields have the same frequency
and traveling in the same direction. The second-order polarization, P (2), is oscil-
lating at the frequency ω3, given by the energy conservation ω3 = ω1 + ω2 which
gives rise to a set of different processes.

When two photons at different frequencies, ω1 and ω2, travel through the
nonlinear medium they can either add or subtract in frequency and hence create
a new photon at either higher or lower energy. Sum-frequency generation (SFG)
is defined as the case when they add in frequency, ω3 = ω1 + ω2, and difference-
frequency generation (DFG) is defined as when they subtract in frequency, ω3 =
ω1 − ω2. Second harmonic generation (SHG) is a special case of the nonlinear
frequency mixing where the two input photons have the same frequency, ω1 =
ω2 = ω, and the generated photon will thus have twice the frequency, ω3 = 2ω.
See figure (2.1) for a schematic description. In this master thesis, only the case of
2:nd order nonlinear interaction, i.e. second harmonic generation will be studied.

The first symmetry aspect derived from Eq. (2.6) is that there is no phys-
ical difference between interchanging the order of the product of the fields,
Ej(ω1)Ek(ω2). Therefore it is possible to write the nonlinear susceptibility in
a contracted form according to the following subscript transformation:

i; x 1 jk; xx l; 1
y 2 yy 2
z 3 zz 3

yz = zy 4
xz = zx 5
xy = yx 6

7



2 NONLINEAR OPTICS

Figure 2.1. Schematic description of the interactions in second-order nonlin-
ear processes.

This is called the intrinsic permutation symmetry and the result is that the non-
linear coefficient is reduced from a 3×3×3 tensor to a 3×6 tensor. When dealing
with second-order nonlinearities it is common to introduce the d-tensor, with con-
tracted elements according to, dil = 1

2χ
(2)
ijk. The tensor can be further contracted

if the Kleinman symmetry holds [10]. It requires two conditions to be fulfilled.
Firstly, the material is assumed to be essentially lossless (i.e., the interacting fre-
quencies are far from the material resonances) and, hence, the susceptibility is a
real entity. Secondly, the material is assumed to have no absorption lines between
the interacting frequencies. Imposing these symmetries will reduce the d-tensor
to 10 unique elements weakly depending on the frequency [11]. However, in the
literature, the d-tensor is usually written with its 18 elements in the following
equation: P

(2)
x (ω3)

P
(2)
y (ω3)

P
(2)
z (ω3)

 = 2ε0D
(2)

 d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36



×



Ex(ω1)Ex(ω2)
Ey(ω1)Ey(ω2)
Ez(ω1)Ez(ω2)

Ey(ω1)Ez(ω2) + Ez(ω1)Ey(ω2)
Ex(ω1)Ez(ω2) + Ez(ω1)Ex(ω2)
Ex(ω1)Ey(ω2) + Ey(ω1)Ex(ω2)

 , (2.8)

where D(2) is the same as in Eq. (2.7).
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2.3 The coupled wave equations

Only noncentrosymmetric crystals will exhibit even order of nonzero susceptibil-
ity. A centrosymmetric crystal can be understood by considering an electron’s
motion. It will experience a symmetric (with respect to the electron displacement)
potential well whereas in the noncentrosymmetric crystal, the potential well is
not symmetric. Depending on the symmetry of the crystal class, the number of
nonzero elements in the nonlinear tensor can be less than the 18 independent
ones in Eq. (2.8). For a given physical geometry, it is possible to reduce the
vectorial form of Eq. (2.8) to a scalar relation via the effective d-coefficient, deff .
It is calculated as a weighted average of the different components depending on
the direction of propagation and the polarization of the electric field relative to
the crystallographic axes:

P (2)(ω3) = ε0D
(2)deffE(ω1)E(ω2) . (2.9)

This contracted notation will be used in the following sections.

2.3 The coupled wave equations

Maxwells equations are the fundamental description of electric and magnetic fields
interacting with a medium. Eliminating the magnetic fields in Maxwells equa-
tions lead to the wave equation for the transverse electric field. In the following
derivation, it is assumed that the fields are monochromatic infinite plane waves.
In the case of a loss-less, neutral dielectric medium (one with no free charges)
and with a low magnetic permeability, Maxwells equation can be written as:

∇2E = µ0ε0
∂2E
∂t2

+ µ0
∂2P
∂t2

, (2.10)

where µ0 is the permeability of vacuum. This equation governs the evolution
of the electric field due to the driving polarization. The polarization term in
Eq. (2.10) is the total polarization consisting of a linear and a nonlinear term
according to the right hand side of Eq. (2.5).

Let the total field be a set of monochromatic plane waves propagating along
the x-direction,

E(x, t) =
1
2

∑
n

[En(x) exp(i(knx− ωnt)) + c.c.] ,

P(x, t) =
1
2

∑
n

[
Pn(x) exp(i(k′nx− ωnt)) + c.c.

]
,

(2.11)

where the sums extend over all positive frequencies. The specific frequency com-
ponent is denoted ωn with the corresponding wave vector, kn = ωnn(ωn)

c , where
n(ωn) is the index of refraction. The envelopes of the propagating waves are given
by En and Pn, respectively.

9



2 NONLINEAR OPTICS

Substituting the frequency components into Eq. (2.10) yields:

∂2E(x, t)
∂x2

+ µ0ε0ω
2
n(1 + χ(1)) ·E(x, t) = −µ0ω

2
nP

(NL)(x, t) . (2.12)

It can be seen that the polarization has been split into its linear and nonlinear
parts where the linear part defines the dielectric tensor, ε = 1 + χ(1). And the
index of refraction is given by the real part, n = Re

√
1 + χ(1). This index is in

general a tensor, but, in the case of a isotropic medium, it reduces to a scalar. In
the case of a nonisotropic crystal, it gives rise to birefringence.

The envelope of the wave, En, varies when propagating through the medium.
If we assume that this variation is slow, both in amplitude and in phase, over
distances of the order of the wavelength, then:∣∣∣∣∂2En

∂x2

∣∣∣∣ � ∣∣∣∣kn
∂En

∂x

∣∣∣∣ . (2.13)

This is known as the slowly varying envelope approximation (SVEA) and is al-
most always valid in nonlinear processes. By invoking this approximation on Eq.
(2.12), using the frequency components of the fields shown in Eq. (2.11) the
wave-equation will now reduce to a first-order differential equation:

∂En

∂x
=

iµ0ω
2
n

2kn
PNL

n exp(−iknx) . (2.14)

Here, the relation k2
n = ω2

nµ0ε0(1 + χ(1)) has been used. This equation describes
the evolution of the electric field due to the nonlinear polarization as a source
term in a general, nonlinear optical process.

For the case of a second-order, nonlinear interaction, there are three different
interacting fields and hence, three equations describing the system. These are
obtained by using the deff description of Eq. (2.9) together with the wave-
equation, Eq. (2.14), and we obtain the following:

∂E1

∂x
=

iω1

n1c0
deffD(2)E3E

∗
2 exp(i∆kx) ,

∂E2

∂x
=

iω2

n2c0
deffD(2)E3E

∗
1 exp(i∆kx) ,

∂E3

∂x
=

iω3

n3c0
deffD(2)E1E2 exp(−i∆kx) ,

(2.15)

where the degeneracy factor, D(2), is given in Eq. (2.7). The energy conserva-
tion is then given by the relation ω3 = ω1 + ω2 and ∆k = k3 − k2 − k1 is the
phasemismatch between the interacting waves. This set of equations is known as
the coupled-wave equations which is the natural starting point in the analysis of
second-order nonlinear processes.
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2.4 Second harmonic generation

2.4 Second harmonic generation

First demonstrated in 1961, second harmonic generation is the most simple non-
linear process. It is often convenient to look at this process in the photon picture.
Two identical incoming photons at frequency ω are added in the nonlinear ma-
terial and will create one outgoing photon at twice the frequency, ωSH = 2ω.
The coupled-wave equations, Eq. (2.15), will then describe the evolution of the
generated field, E2ω = E3. In most cases, one can assume that the pump beam
is not depleted during the propagation through the crystal. In a mathematical
description, this would read, E1(0) = E1(L) and E2(0) = E2(L), where L is the
interaction length of the nonlinear crystal. This can be motivated by the fact that
the intensity of the generated beam is much smaller than the pump beam. The
material is also assumed to be essentially lossless in the range of the interacting
frequencies. Integrating the last equation in Eq. (2.15) over the crystal length L
and using the definition of the field intensity, Ii = 1

2ε0c0ni|Ei|2, yields,

I2ω =
2ω2d2

effL2I2
ω

n2
ωn2ωc3

0ε0
sinc2

(
∆kL

2

)
, (2.16)

∆k = k2ω − 2kω . (2.17)

The subscripts ω and 2ω refer to the fundamental and the second harmonic
beams, respectively. The sinc-function is defined as sinc(x) = sin(x)/x and ∆k is
the phasemismatch expressed in wave vectors for the fundamental and the second
harmonic beams, respectively. As a consequence, the efficiency is proportional to
L2 and the fundamental intensity squared, I2

ω. In figure 2.2 the sinc2-function is
plotted. It can be seen that the intensity will drastically decrease when ∆kL 6= 0,
with minima at ∆kL = 2πm, (m = ±1,±2, ...).
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Figure 2.2. Plot of the sinc2-function as a function of phasemismatch
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2 NONLINEAR OPTICS

The intensity of SH generation does also depend on the nonlinear material. This
is often summarized in a parameter known as the figure of merit, d2

eff/(n2
ωn2ω),

which depends on the d-coefficient and the indices of refraction.
In general, the fundamental and the second harmonic waves will travel at

different phase velocities due to dispersion in the medium. The phase differ-
ence, ∆k, will therefore oscillate during the propagation through the medium
and therefore, it is impossible to generate any considerable amounts of second
harmonic intensity. There are several different ways to achieve phase matching
and they will be discussed in the next chapter.
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3 Phase-matching techniques

A nonlinear frequency conversion process is in general not efficient unless both
the energy conservation and momentum conservation are fulfilled. Figure 3.1
illustrates the intensities of the fundamental and second harmonic waves as well
as the intensity curve for perfect phase matching, (∆k = 0). Due to dispersion the
interacting waves will become out of phase after a certain distance defined as the
coherence length, Lc = π/|∆k|, (not to be confused with the statistical coherence
of light). After one coherence length the intensity of the second harmonic field
will start to convert back to the fundamental field, a process known as back
conversion. However, if the interacting waves can be kept in phase, the intensity
will grow quadratically with the interaction length L (dotted curve and upper

horizontal scale). The factor G2 =
2ω2d2

eff

ε0c30n2
ωn2ω

Iω(0), is introduced to make it
possible to plot Eq. (2.17). The results are only true in the regime where the
pump is negligibly depleted, for the more extensive analysis of pump depletion,
see [11].
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Figure 3.1. Plot of intensity dependence for perfect phasematch (dotted curve
and upper horizontal scale), and finite phasematch (continuous curves and lower
horizontal scale).

To summarize, the goal is to minimize the phase mismatch between the interact-
ing waves. A few different methods will be shortly reviewed with main focus on
the concept of quasi-phase matching, which has been employed in this thesis.
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3 PHASE-MATCHING TECHNIQUES

3.1 Birefringent phase-matching

A popular way to achieve phase matching is to take advantage of the birefringency
of a crystal. Birefringence means that the index of refraction will depend upon
the polarization of the incoming wave. Consider Eq. (2.17) rewritten in terms of
index of refraction,

∆k =
2ω

c0
(n2ω − nω) . (3.1)

It is evident that the waves will be in phase whenever nω = n2ω. This can
be achieved by letting the incoming wave have a polarization different of the
generated wave. For a certain geometry of the crystal relative to the propagating
waves, they will possibly experience the same index of refraction.

One should note that it is not always easy to fulfill all the requirements for a
given frequency conversion process. First of all the material has to be transparent
in range of the frequencies used. Furthermore the birefringence has to be large
enough to satisfy the phase-matching requirements. As a consequence of material
choice and geometry of propagation, the nonlinear coefficient attainable is usually
not the largest available. In most of the cases the fundamental beam cannot
be aligned along a principal axis of the crystal because of the phase-matching
condition, and hence the fundamental and second harmonic waves will quickly
diverge from each other. This is known as spatial walk-off which will greatly limit
the effective interaction length. However, the greatest advantage of birefringent
phase matching is the simplicity of the method. It is possible to grow large
crystals of good quality without any post-processing steps after the growth.

3.2 Quasi-phase matching

The idea of quasi-phase matching was suggested already in 1962 by Armstrong
et al. [12], shortly after the first experiment on second harmonic generation.
However it was not until three decades later the technique proved to be useful.
The concept is to introduce a periodic modulation in the material that will reset
the phasemismatch after each coherence length. The first experiments utilizing
QPM was based on a stack of thin quartz plates rotated 180 degrees relative to
the one before, each of thickness of many coherence lengths. By doing so the
sign of the second order nonlinear coefficient is altered and thereby resulting in
a reset of the phase. A major problem was the reflection losses at each layer
boundary. As we will see there are other ways to approach the problem that have
been proven to be more convenient.

Ideally, the modulation is done after each coherence length, Lc, and is then
referred to as first order QPM, see figure 3.2. One can also use higher order QPM
where the material is modulated with a period of several coherence lengths. The
drawback is that the efficiency is reduced for higher orders.

A theoretical description of QPM has been provided by Fejer et al. [13]. To
understand the generalization to two-dimensional phase matching it is necessary
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Figure 3.2. Second harmonic generation in a material with different phase-
matching conditions. Line (a): Perfect phase matching. Line (b): First order
QPM where the sign of the nonlinearity is flipped every coherence length. Line
(c): Finite phase matching. The dotted curve is the perfect phase-matching
curve reduced by a factor (2/π)2 for first order QPM.

to start with a mathematical framework for the one-dimensional case. Consider
the nonlinear coefficient varying with position, d = d(z). The results of the
coupled wave equations are not valid since deff is no longer constant along the
crystal. In most cases the modulation is done such that the sign of the nonlinear
coefficient is altered every coherence length. The normalized form of d(z) can
then be written,

g(z) = d(z)/deff , (3.2)

with range −1 < g(z) < 1. Since g(z), is a periodic function of period Λ ≡ 2Lc

it can be expressed as a Fourier series,

g(z) =
∞∑

m=−∞
Gm exp (iKmz) , (3.3)

with, so called, m:th-harmonic grating vector,

Km =
2πm

Λ
. (3.4)

Assuming SHG again and integrating the last equation in Eq. (2.15) over the
crystal length and replacing deff by the spatially varying d(z) in Eq. (3.2)-(3.3)
yields,

E2ω =
iωE2

ωdeff

n2ωc0

∫ L

0

∞∑
m=−∞

Gm exp (i (Km − k2ω + 2kω) z) dz , (3.5)
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3 PHASE-MATCHING TECHNIQUES

where ∆k′ = k2ω − 2kω. The main contribution to this integral will be for
Km − ∆k′ ≈ 0, since all other terms are oscillating harmonics that vanish in
the integration. The new nonlinear coefficient will be reduced by the Fourier
coefficient according to, dQPM = Gmdeff . These coefficients will depend on the
periodic function g(z). The most common QPM structures are those where the
sign of g(z) switches between −1 and 1 with a period of Λ. The duty cycle is
defined as, D = l/L, where l is the length of the sections with positive sign.
Figure 3.3 shows a crystal of 50 % duty-cycle.

Figure 3.3. Illustration of a 1D QPM crystal where the d-coefficient is peri-
odically switched between positive and negative value.

The Fourier coefficients for this rectangular function, g(z), is given by a standard
transform pair,

Gm =
2

mπ
sin(mπD) . (3.6)

Hence, the most efficient phase matching will be for first order QPM (m = ±1)
and duty-cycle of 50 % (D = 1/2). In this configuration the effective nonlinear
coefficient for the intensity (squared electric field) will be reduced by a factor
(2/π)2, as expected from figure 3.2. Note that only odd orders of QPM will be
present for a duty-cycle of 50 %.

Typically the coherence length is in the order of a few microns, depending
on the nonlinear process and the material present. That is mainly the reason
why it took so long time until QPM proved to be a useful technique; it was not
possible to produce a material with such a short period. Another requirement
for efficient frequency conversion is that the modulation is done consistently over
a distance of several millimeters.

A disadvantage of QPM is the extra processing steps related to the manu-
facturing, compared to BFM. However, while implementing phase matching in
multiple directions in two-dimensional nonlinear crystals, QPM is the sole option.
The theoretical derivation of two-dimensional QPM is presented in next section.
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3.3 Two-dimensional quasi-phase matching

3.3 Two-dimensional quasi-phase matching

A natural generalization of the one-dimensional QPM scheme is to extend the
phase-matching possibilities to two or three dimensions. This thesis will only
deal with two-dimensional QPM for SHG in nonlinear crystals. One usually
refers to χ(2) photonic crystals for engineered structures in which the second
order nonlinearity varies periodically. The first to propose a NPC was Berger,
[3], and his theoretical work will be the basis for the analysis presented here. The
essential features of the two-dimensional theoretical description is very similar to
QPM in one dimension, presented in the previous section.

Figure 3.4 shows an example of a nonlinear photonic crystal where the
second-order nonlinearity switches periodically between positive and negative
value, with a translation symmetry in the 2D lattice.

Figure 3.4. Schematic picture of a 2D χ(2) crystal. It shows a rectangular
lattice with translation invariance perpendicular to the figure. The unit cell is
defined by the primitive vectors a1 and a2.

3.3.1 Reciprocal lattice

The concept of reciprocal lattice (RL) is introduced since it will greatly simplify
the theoretical description of nonlinear photonic crystals. The similarity with
models developed in solid state physics is striking. In the frame of a χ(2) crystal,
the lattice will be built up by a periodic array of positive and negative valued d-
coefficients. Whereas in solids the lattice consist of atoms or molecules arranged
in a periodic structure.

It is known that a set of periodic layers of atoms in a solid will scatter x-
rays according to the Bragg law. This happens due to interference between the
different scattered rays. It can be used to gain information about the crystalline
structure of the material. Unfortunately the pattern of diffracted beams is not a
direct image of the crystal structure. The most common way to explain diffraction
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3 PHASE-MATCHING TECHNIQUES

experiments is to link the real crystalline structure, or real lattice to the reciprocal
lattice.

It is constructed from the real lattice according to a explicit relation. Let
a1, a2 and a3 be primitive vectors of the real lattice. Then the reciprocal lattice
is generated by the following primitive vectors,

b1 = 2π
a2 × a3

a1 · (a2 × a3)
,

b2 = 2π
a3 × a1

a1 · (a2 × a3)
,

b3 = 2π
a1 × a2

a1 · (a2 × a3)
.

(3.7)

In this thesis only the rectangular two-dimensional lattice will be discussed, which
have a simple relation between the real and reciprocal lattice. Let the primitive
vectors be orientated along a cartesian coordinate system, a1 = a1x̂ and a2 = a2ŷ.
Then the reciprocal lattice vectors are given by,

b1 =
2π

a1
x̂ ,

b2 =
2π

a2
ŷ .

(3.8)

Figure 3.4 and 3.5 show the real and reciprocal lattices, respectively, of a rect-
angular lattice. Note how the longer primitive vector in the real lattice becomes
the shorter in the reciprocal lattice.

3.3.2 The coupled wave equations in 2D

The electric field and polarization field is again assumed to be a superposition of
monochromatic waves,

E(r, t) =
1
2

∑
n

[En(r) exp(i(kn · r− ωnt)) + c.c.] ,

P(r, t) =
1
2

∑
n

[
Pn(r) exp(i(k

′
n · r− ωnt)) + c.c.

]
,

(3.9)

where r = (x, y) is the 2D spatial coordinate. As previous, En and Pn are the
wave envelopes and subscript n refer to a individual frequency component. The
vectorial form of the SVEA reads,∣∣∇2En(r)

∣∣ � |kn · ∇ [En(r)]| . (3.10)

By invoking this approximation and using the frequency components of Eq. (3.9)
in the wave equation, Eq. (2.12), yields the vectorial wave equation for frequency
component n,
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3.3 Two-dimensional quasi-phase matching

∇ [En(r)] =
iµ0ω

2
n

2kn
PNL

n exp(−ikn · r) . (3.11)

Again, it is convenient to use the deff description similar to Eq. (2.9). And
since the evolution of the second harmonic field is of main interest, only the last
equation of the coupled wave equations, Eq (2.15), will be considered.

∇ [E2ω(r)] =
iωE2

ω

n2ωc0
deff (r) exp(−i∆k · r) , (3.12)

where ∆k = k2ω − 2kω is the phasemismatch between the second harmonic and
fundamental waves. The explicit spatial dependence of deff is written to stress
that a periodic modulation in the medium is already assumed.

Similarly to the 1D QPM method, the second order nonlinearity is peri-
odically modulated, but now in two dimensions. As before, the sign of the
d-coefficient switches between positive and negative value and the first order
susceptibility (index of refraction) is constant. A convenient way to describe this
2D mesh of modulation is to transform the real lattice to the reciprocal lattice.
The lattice points, involved in the phase matching are specified by a reciprocal
lattice vector (RLV) K. This enables us to write the normalized form of d(r) as
a Fourier series,

g(r) =
∑

K∈RL

GK exp(iK · r) , (3.13)

where the sum is extended over the whole 2D reciprocal lattice. Similarly to
the ordinary QPM, we integrate the right hand side (RHS) of Eq. (2.14) over
the crystal area and replace deff with the spatially periodic Fourier series in Eq.
(3.13). The left hand side (LHS) is evaluated via a line integral along a path that
bounds the area A in the real lattice. The interesting result is that the LHS of
Eq. (3.13) is proportional to E2ω, for more information, see [14].

RHS =
iωE2

ω

n2ωc0

∫
A

∑
K∈RL

GK exp (i (K− k2ω + 2kω) · r)dr . (3.14)

The growth of the second harmonic field will be maximized when the exponent
is zero, with the same arguments following Eq. (3.5). Hence the phase-matching
condition in 2D QPM reads,

K− k2ω + 2kω = 0 . (3.15)
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3 PHASE-MATCHING TECHNIQUES

In this thesis, the RLV Kmn is labeled by two subscripts, m and n, specifying
the incremental step in x- and y-directions, respectively. Figure 3.5 shows the
reciprocal lattice for two different phase-matching processes. Two angles are in-
troduced to describe the geometrical configuration. The internal spatial walk-off
angle is denoted 2θ and the internal incidence angle of the fundamental beam is
φint. The lattice is arranged such that the x- and y-axis is aligned with the crys-
tallographic a- and b-direction, respectively. Therefore the left part of the figure
illustrates normal incidence. One should note that the intensity of SHG becomes
weaker for increasing index n, or equivalently increasing angle θ. This is due to
the shorter effective interaction length which is given by the length i x-direction
where the fundamental and SH beams overlap. Efficient frequency conversion
will only take place where the beams physically overlap. The interaction length
will not only depend on the angle θ but also on the beam waists and, hence, the
focusing condition.

Figure 3.5. Reciprocal lattice of a rectangular structure with the 2D QPM
processes of order [1,1] and [1,2] shown schematically. 2θ is the internal walk-
off angle and φint is the internal incidence angle of the fundamental beam.

Using some geometry one can relate the the SH wavelength to the walk off angle
for the case of normal incidence,

λ2ω

n2ω
=

2π

|Kmn|

√(
1− nω

n2ω

)2

+ 4
nω

n2ω
sin2 θ , (3.16)

where λ2ω is the SH vacuum wavelength and Kmn is the RLV used. As usual,
the indices of refraction nω and n2ω refer to the fundamental and SH beam,
respectively. This equation gives the direction of radiation at wavelength 2λ
and can be seen as the nonlinear Bragg law. If the medium has no dispersion,
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3.3 Two-dimensional quasi-phase matching

nω = n2ω, Eq. (3.16) is reduced to the well known Bragg law,

λ =
4π

|K|
sin θ = 2d sin θ , (3.17)

where d is the distance between atomic layers.
The nonlinear Bragg law does not give any information about the intensity

of the generated SH radiation. It suggests that a continuum of angles should
exist for a continuous range of wavelengths. This is of course not the case since
the QPM condition (∆k = 0) should be fulfilled. Therefore some directions will
be phasematched while others not. The way to picture the QPM condition in 2D
is the Ewald construction

3.3.3 Ewald construction

With the concept of the reciprocal lattice it is possible to easily analyze the geom-
etry of the diffracted beams thanks to the Ewald construction. That is a simple
geometrical construction used in x-ray experiments for interpreting diffraction
patterns. The modified Ewald construction used in 2D QPM was suggested by
Berger [3], and follows the same principle as the usual Ewald construction. More
information on the Ewald construction used in crystallography can be found in
a standard book in solid state physics, see Ashcroft [15] for example.

Consider a two-dimensional crystal with its corresponding reciprocal lattice.
Given the incident wave vector kω, draw an arrow along the direction of propa-
gation ending at the origo, ORL, of the reciprocal lattice with length |2kω|. Then
draw a circle of radius |k2ω| with its center located where the 2kω vector begins.
This is the Ewald ”sphere” (in the 2D case a circle). If the circle intersects a
lattice point there will be a SH peak generated with corresponding RLV Kmn.
In figure 3.6 the [1, 1] SH peak is shown. It can be seen from the figure that two
peaks will always be generated simultaneously if the pump beam impinges under
normal incidence.

As in the case of x-ray diffraction, there will be no phase matching for a
general incident pump beam. Generation of SH peaks can be obtained by either
varying the wavelength or the angle of propagation of the pump. Both of these
alternatives are thourougly examined in the experimental part of this thesis.
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3 PHASE-MATCHING TECHNIQUES

Figure 3.6. Nonlinear Ewald construction. SH beams will be generated wher-
ever the Ewald sphere intersects a lattice point.

When the sample is rotated and the wavelength is kept fixed, it is possible to
write an analytical expression equivalent to the Ewald construction. It is simply
a projection of the vector components in x- and y-directions. The system of
equations that has to be fulfilled for SH generation is given by,{

k2ω cos(2θ + φint)− 2kω cos φint = mKx

k2ω sin(2θ + φint)− 2kω sinφint = nKy
, (3.18)

where the variables are given in figure 3.5. Solutions to these equations will only
give values of variables when the SHG is most efficient, i.e. the central value of
a certain SH bandwidth. The variables here are the pump angle relative to the
lattice and the pump wavelength.
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4 KTP properties

The choice of nonlinear material will greatly depend on the fabrication method
and the desired properties of the engineered structure. A nonlinear photonic crys-
tal can be manufactured by periodically inverting the spontaneous polarization
in two dimensions in a ferroelectric crystal, which is the approach that has been
used in this thesis work.

A crystal has to fulfill several requirements in order to be suitable for nonlin-
ear optics. First of all, it has to have high intrinsic nonlinearity. The term high
is of course a vague quantification. What it means is that it should be possible
to generate frequency conversion from a laser source, and the higher the better.
Below I will list further important properties for being a candidate.

� Wide transparency range

� Large size with optical and structural homogeneity

� Chemical and mechanical stability

� Low cost and easy fabrication

� High resistance to optical damage

Of course, the crystal has to be transparent in the range of the interacting wave-
lengths. This is mainly a problem for wavelengths in UV or far-IR range. The
available size of the crystal can also be a limitation, depending on application
and processing steps. Chemical and mechanical stability mean that the crystal
has to stand the light intensities and environmental conditions, without changing
its properties.

KTP is a promising candidate because of its high resistance to optical dam-
age, excellent mechanical stability and high nonlinearity. The crystal does not
exist naturally and it has to be synthesized. Crystals used in this work were
manufactured by the flux grown method. All the necessary components are con-
tained in a molten flux in which KTP crystallizes when the flux is cooled. An
advantage of the flux growth method, compared to other methods, is that it can
be operated under quite simple conditions which makes it a fast and relatively
inexpensive process.

4.1 Crystal structure

Potassium titanyl phosphate belongs to the orthorhombic crystal class, acentric
point group mm2 and the space group Pna21. The principal axes, x, y and z
correspond to the crystallographic directions a, b and c of the crystal, where c
is the polar axis which is the direction of spontaneous polarization. The lattice
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constants are a = 12.819 Å, b = 6.399 Å and c = 10.584 Å. The crystal struc-
ture is composed of chains of TiO6 octahedra, which are corner-linked by PO4

tetrehedra, see figure 4.1. The TiO6 octahedra is slightly distorted, consisting
of short and long Ti−O bonds, which build up a helical chain along the c-axis.
The K+ ions are located in these channels, weakly bonded to both the octahedra
and tetrahedra. In case of a electric field applied at the polar faces of the crys-
tal, these K+ ions can move, with low activation energy, along the helical chain,
which causes the high ionic conductivity. They can occupy two non-equivalent
sites; either eight-fold coordinated (K1) or nine-fold coordinated (K2). A net
spontaneous polarization along the c-axis is induced due to the arrangement of
alternating Ti−O bond-lengths. Domain inversion takes place by shifting the K+

ions in the c-direction, from the eight-fold coordinated cation to the nine-fold
coordinated cation, and vice versa [16]. At the same time the short Ti−O bonds
turn into long bonds and vice versa. Domain inversion is discussed in the follow-
ing sections, from a macroscopic point in the ferroelectricity section and more in
detail in the domain inversion section.

Figure 4.1. Crystallographic structure of KTP. [17]
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4.2 Ionic conductivity

4.2 Ionic conductivity

The conductivity is an important fact to take into account when it comes to
domain switching. Higher conductivity will make it more difficult to switch the
domains since the energy in the applied field will mainly be wasted to ohmic
losses instead of actually switching the domains. KTP has a high ionic conduc-
tivity compared to most of the ferroelectric crystals, because of the helical chain
structure in the polar direction. The conductivity along the polar axis can be up
to four orders of magnitude larger than perpendicular to the polar axis [18]. Due
to temperature variations in flux growth process vacancies of K+ ions are built
into the structure, thus increasing conductivity. The conductivity usually varies
as a parabolic function along the y-axis, increasing by a factor 2 from the edge
to the center [17].

Figure 4.2. Typical conductivity variation of a flux grown KTP wafer. The
100 µA level corresponds to a conductivity of 8.5× 10−7 S/cm [17].

4.3 Ferroelectricity

A ferroelectric crystal is a material with a nonzero spontaneous polarization, due
to a non-symmetric arrangement of positive and negative ions. The spontaneous
polarization, Ps, is defined as the sum of all the individual dipole moments per
unit volume.

A further constraint is that a ferroelectric crystal should have two or more
stable equilibrium states in the absence of an electric field and can be shifted
from one to another by applying an electric field. Most ferroelectrics undergo a
structural phase transition at a temperature known as the Curie temperature,
Tc. At this temperature they undergo a transition from a low temperature ferro-
electric state to a non-ferroelectric state of higher symmetry, see figure 4.3. The
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spontaneous polarization is decreasing with increasing temperature and finally
vanishes at the Curie temperature.

Figure 4.3. Ferroelectric structural phase transitions.

4.4 Domain switching

Domain switching of the spontaneous polarization Ps, in an area A, can be
achieved by delivering a charge, Q = 2APs. The electric field that is needed
to switch half of the spontaneous polarization in a certain region is defined as
the coercive field. A region with a uniform polarization is called a ferroelectric
domain. However, the coercive field is not a precise quantity describing domain
switching, it only gives an approximate value of the electric field in which to ex-
pect domain switching. It is difficult to define since it depends on temperature,
measuring frequency and waveform of the applied voltage.

The domain velocity in KTP, defined as the average length of the formed
domains divided by the length of the pulse, is different in different crystal direc-
tions. The velocity along the b-axis is ∼ 30 times larger than in the a-direction
and the velocity along the c-axis is at least two orders of magnitude larger than
in the ab-plane. [17]. These growth properties are in general beneficial when
manufacturing 1D QPM structures, whereas they become a problem for a 2D
structure. This has also been seen experimentally where the domain merging is
more pronounced along b-axis compared to the a-direction.

4.5 Optical properties

KTP has been extensively used for frequency conversion both in optical para-
metric oscillators (OPO) and SHG with spectral range from UV to near IR. The
transmission window is shown in figure 4.4(a) which extends from 0.365 µm up
to around 4.3 µm. The sudden drop in transmission at 2.8 µm is due to the
absorption line of OH groups grown into the crystal.

To be able to determine the exact QPM period Λ, it is essential to have
accurate values of the index of refraction as a function of wavelength. KTP is
a biaxial crystal with different index of refraction for the principal axes of the
crystal. Light has been polarized along the z-axis for all measurements conducted
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in this thesis. The dispersion relation is usually expressed as a two-pole Sellmeier
equation. But in the case of fundamental wavelength < 1 µm it is sufficient to fit
a one-pole Sellmeier equation of the form,

n2
z = A +

B

1− C
λ2

+ Dλ2 . (4.1)

where λ has to be in µm. Several different fits of this equation to experimental
values has been done where the values by Fan et al. [19], given in table 4.1,
have proved to be accurate for wavelengths below 1 µm, which is the case for
wavelengths used in this work (400− 950 nm). A plot of the dispersion for these
Sellmeier coefficients for nz is given in figure 4.4(b).

A (−) B (−) C (µm2) D (µm−2)

2.25411 1.06543 0.05486 0.02140

Table 4.1. The Sellmeier coefficients for KTP for λ < 1 µm, [19].
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Figure 4.4. Optical properties of KTP.

The index of refraction is also temperature dependent due to the thermo-optic
effect. This is a fortunate property since it gives the possibility to temperature
tune phase-matching processes. In order to predict the tuning characteristics
it is necessary to have knowledge about the thermal dispersion. This is often
described by a Laurent series,

∂nz

∂T
=

a

λ3
+

b

λ2
+

c

λ
+ d , (4.2)
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4 KTP PROPERTIES

where the z-component of the dependence is considered. The dispersion coeffi-
cients have been measured by Wiechmann et al. [21] and fit well for wavelengths
< 1 µm. The thermal expansion coefficient will also affect the QPM condition
due to a change in grating period, but this effect is much smaller than the thermal
dispersion.

a (µm3K−1) b (µm2K−1) c (µmK−1) d (K−1) Thermal exp. (K−1)

12.415× 10−6 −44.414× 10−6 59.129× 10−6 −12.101× 10−6 11× 10−6

Table 4.2. The thermal coefficients for KTP, [21, 22]

To give a numerical example of the tunability, consider SHG at fundamental
wavelength 946 nm. A temperature change, ∆T = 80 deg gives a change in
wavelength, ∆λ ≈ 5 nm for the fundamental beam.

KTP belongs to the orthorhombic crystal class, mm2, which will give only 5
nonzero elements in the d-tensor,

d =

 0 0 0 0 d15 0
0 0 0 d24 0 0

d31 d32 d33 0 0 0

 . (4.3)

The values of these coefficients were measured by Vanherzeele and Bierlein [23]
at 1.064 µm and are given in table 4.3.

d15 (pmV−1) d24 (pmV−1) d31 (pmV−1) d32 (pmV−1) d33 (pmV−1)

1.9 3.6 2.5 4.4 16.9

Table 4.3. The nonlinear coefficients for KTP at 1.064 µm [23]

It is evident that d33 is the preferred coefficient to use since it is the largest. That
corresponds to all interacting fields polarized along z-direction.

4.6 Comparison of nonlinear materials

Lithium niobate LiNbO3 (LN) has been extensively used for 1D QPM during the
past 20 years. After Berger suggestion of a nonlinear photonic crystal Broderick
et al. [24], were the first to report on fabrication of a 2D NPC in LN. To the best
of our knowledge, a 2D QPM device has never been realized in any other crystal
than lithium niobate and lithium tantalate [25].
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4.6 Comparison of nonlinear materials

KTP has many advantageous properties that makes it an attractive non-
linear material. Besides properties similar to LN it has several very important
advantages. Although LN has larger nonlinearity compared to KTP, KTP pos-
sesses much lower sensitivity to photorefractive damage and the coercive field is
considerably lower. This makes it much easier to fabricate QPM devices that
can be used in room temperature. Due to the crystal structure of KTP, domain
broadening is limited, at least in one direction, which facilitates the manufactur-
ing process.
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5 Poling of two-dimensional structures

It is a challenging task to achieve a uniform 2D QPM structure inside a crystal
where every domain has an opposite spontaneous polarization to its neighbors.
For the structures designed in this work it means roughly 500 000 inverted do-
mains over an area of 7 × 3 mm2. We have manufactured two nonlinear 2D
QPM crystals of different periods, by a lithographic patterning process together
with electric field poling. Both samples have a rectangular lattice with the same
period, 6.09 µm in x-direction but different periods in y-direction, 6.00 µm and
30.00 µm, respectively.

5.1 Processing steps

The as-purchased wafers were cut into smaller pieces, appropriate for the appli-
cation and to get pieces of homogeneous conductivity. Crystals used in this work
were cut to a size of 11 × 7 mm2 (x × y) and polished on the x-faces since the
light will propagate along the x-axis.

After the cutting and polishing the crystal is prepared for a standard litho-
graphic step conducted in a cleanroom environment. The purpose is to generate
a 2D insulating layer with openings that allow for electrical contact to the crystal
in the poling step. To begin with, the sample is carefully cleaned in different
steps with acetone and deionized water. After that a 2 µm thick layer of positive
photoresist (Shipley Microposit S1818) is spun onto the c−-face. Then the sample
is pre-baked on a hotplate at 105 deg C for 90 s in order to harden the resist.
Now the crystal is ready for illumination in a mask-aligner (Karl-Suss MJB3)
using the g-line of a Hg lamp at 436 nm. The mask consists of a aluminum-raster
pattern with rectangular openings of 50 % duty-cycle, on top of a glass plate.
The mask-aligner is used to align the mask direction of 6.09 µm period parallel
to the x-axis of the crystal and illuminate the uncovered area of the photoresist.
The size of the patterned area is approximately 8× 4 mm2 (x× y).

Following the illumination, the sample is ready for development, using a de-
veloper (Shipley Microposit MF351) diluted with water. Two important param-
eters that have to be optimized for a successful patterning work are illumination
time and development time. As was described in chapter 4.4, the domains will
broaden, mainly in y-direction. Therefore it is important to find a duty-cycle of
the openings for the photoresist that will give a 50 % duty-cycle for the final,
poled, domains. A typical duty-cycle used in this work has been 15 % in both
directions for the 6.09×6 µm2 sample, and in x-direction for the 6.09×30 µm2

sample, whereas it was considerably larger in y-direction.
The final step before poling is evaporation of a aluminum film (50-100 nm

thick). This is done on top of the developed photoresist which means that the
aluminum makes contact with the crystal at the openings. Nucleation starts

31



5 POLING OF TWO-DIMENSIONAL STRUCTURES

preferentially in the c−-side and a metal contact enhances the nucleation density
[17]. It is only evaporated on the c−-side and not on the opposite side since it is
advantageous with nucleation and growing tips from only one side to the other.
Hopefully this will limit the domain propagation to one single direction along the
z-axis.

5.2 Electric field poling

The basic idea of electric field poling is to deliver a certain amount of charge
to the crystal that will periodically switch the spontaneous polarization. There
are many variables that can be varied in the poling process and there are by no
means a well developed scheme for a successful periodic poling, especially not for
2D QPM in KTP. Therefore we tried to vary three of them; pulse length, pulse
amplitude and the number of pulses. The first pulse is always a probe pulse in
the low field regime (∼800 V/mm), not to invert the polarization. The purpose
is to get a hint about the conductivity of the specific sample before poling. As
was mentioned before, edge samples will have a much lower conductivity, which
in turn, means lower poling voltage. The probe pulse together with the sample’s
original position on the wafer will give information about suitable poling settings.

5.2.1 Poling circuit

A signal generator (Agilent model 33120A) was used to give a pulse of chosen
amplitude and length which is amplified to the kV range by a high voltage am-
plifier (Trek model 20/20C), see figure 5.1. Pulse lengths from 500 µs to 6 ms
has been used in this work. The voltage across the sample and the current are
monitored through the voltage drops, U1 and U2 across the resistance R3 and R4,
respectively. The voltage divider consists of a large resistance R2 (100 MΩ) to
make the voltage measurement passive while the value of R3 (100 kΩ) is chosen
to give a suitable voltage for the oscilloscope. Similarly R4 (10 kΩ) is chosen to
give a suitable voltage for the current measurement. The voltages were measured
by an oscilloscope (Textronix TDS2014).
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5.2 Electric field poling

Figure 5.1. Schematical description of the poling setup. Components and
values are explained in the text.

5.2.2 Periodic domain inversion

The poling voltage can be divided into tow regimes; low field regime, if it is
below or close to the coercive field and, high field regime if it is above. It has
been observed that the domain inversion will behave differently depending on
the poling voltage [17]. Phenomenologically the domain growth, for a 1D QPM
structure, can be described in four steps depicted in figure 5.2. First the domain
inversion takes place by nucleation of new domains, most pronounced at the
edge of the electrode where the electric field is largest (a). After that the tips
will grow towards the opposite crystal surface (b). Afterward the domains will
broaden horizontally (c), to finally merge under the electrodes (d). In this work
we have used a field value very close to the coercive field in order to prevent
domain broadening in y-direction.

Electrical contact to the external circuit was provided by a copper electrode.
It consists of silicone, wrapped by a thin copper film which provided the contact
between the external circuit and the crystal. The non-patterned side of the crystal
was coated by electrode gel (Spectra 360 Electrode gel, Parker Laboratories INC.)
in order to make a uniform contact between the sample surface and the Cu foil.

5.2.3 Poling settings

Two samples, each of different period, were poled with satisfactory quality with
the poling settings given in table 5.4. A probe pulse refers to a pulse that is used
to get information about the conductivity while the intention of the poling pulse
is to invert the domains in the sample. Vsample is the voltage over the sample
calculated by measuring U2. One should note that a higher voltage Vsample,
for the probe pulse, means lower conductivity of the sample. The progress of
the poling was monitored in situ by observation of a non-collinear SHG QPM
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5 POLING OF TWO-DIMENSIONAL STRUCTURES

Figure 5.2. Model describing periodic domain inversion in KTP. (a) Nucle-
ation. (b) Domain propagation. (c) Domain broadening. (d) Domain merging
under the electrodes [17].

peak excited by a cw Ti:Sapphire laser tuned to the appropriate phase-matching
wavelength. By moving the sample in z-direction and at the same time observing
the intensity it was possible to know how deep the domains had propagated. We
terminated the poling when no further increase of the non-collinear SHG intensity
was observed. As was mentioned before, the pulse length was also varied. Too
few samples have been poled in order to draw some conclusive remarks about
optimal pulse length. However, we found out that short pulses (1 ms) limited the
domain broadening, mainly in y-direction. Therefore, there is a certain window
of process parameters where the poling can be expected to be successful.

In summary, both of the samples have been poled with a relatively low
voltage, compared to 1D QPM poling [17], and many pulses. The intention
of applying several pulses was to propagate the domains towards the c+-side,
without merging them.

5.3 Evaluation of the poled structure

This section will deal with the results of the optical microscope characterization
of the two different NPCs. A easy and fast way to reveal the inverted domain
structure on the surface of the crystal is to etch it. The sample is placed in
a warm (80 deg C) solution of KNO3, KOH (2:1 mole ratio) and water for a
time typically between 5-15 min. The etchant will attack the c−-surface while
the c+-surface is left essentially untouched, thus revealing the domain structure.
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5.3 Evaluation of the poled structure

Crystal pulsetype Vsample (kV) # pulses pulse length (ms)

6.09×6 probe 0.84 1 5
poling 1.92 1 1

2.1 13 1

6.09×30 probe 0.82 1 5
poling 2.22 16 1

Table 5.4. Poling characteristics for the two fabricated samples. The pulse
length was 1 ms for all pulses used for these two samples.

Figure 5.3 shows a typical part of the etched, patterned side of the two samples.
The pattern is uniform over the grating area, which manifests the high quality
of the manufactured crystal. However, no faithfully reproduced 2D pattern has
been observed on the non-patterned side. Figure 5.4 shows an image of the non-
patterned side of the 6.09×6 µm2 sample. It can be clearly seen that the domains
have merged in y-direction, for those that have propagated all the way through.
The reason for this domain merging can be explained by the different domain
growth speeds discussed in section 4.4. However one should remember that this
is the first time that a 2D QPM structure has been realized in KTP, hence there
are possibilities of optimization of the poling process.

(a) Micrograph, 6.09×6 µm2 (b) Micrograph, 6.09×30 µm2

Figure 5.3. Micrograph images of the etched pattern, former c−-side of the
crystals. Characteristic growth striaes can be seen on the non-inverted domains.
The scale bar is 20 µm.
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5 POLING OF TWO-DIMENSIONAL STRUCTURES

Figure 5.4. Micrograph image of the etched pattern, former c+-side of the
6.09×6 µm2 crystal. Note that domains have merged in y-direction and the
structure is no longer a 2D modulation of the nonlinearity. The scale bar is 20
µm.

Another way to determine the uniformity of the pattern is to analyze the far field
diffraction. A 532 nm laser beam was aligned perpendicular to the sample, allow-
ing light to propagate along the z-direction. The selective etching process created
a small difference in thickness between the positive and negative domains. Hence,
the phase of the light will be periodically modulated and its far field diffraction
pattern is proportional to the reciprocal lattice. Figure 5.5(a) represents, a al-
most square, diffraction pattern for the 6.09×6 µm2 sample whereas figure 5.5(b)
represents a rectangular diffraction pattern which is expected from the 6.09×30
µm2 sample.
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5.3 Evaluation of the poled structure

(a) Far-field diffraction, 6.09×6 µm2 (b) Far-field diffraction, 6.09×30 µm2

Figure 5.5. The etched structure will introduce a modulation of light propagat-
ing along the z-axis of the crystal. This far-field diffraction pattern is directly
proportional to the reciprocal lattice. The image is a negative, where dark area
represents high intensity.

By scanning the beam over the pattern it was possible to provide information
about the homogeneity of the etched structure. However, this method will only
give knowledge about the surface structure but not about the switched domains
in the bulk. Basically the same information can be retrieved by using an op-
tical microscope, but the diffraction pattern gives a nice demonstration of the
reciprocal lattice.
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6 Optical characterization

A traditional SHG in a 1D QPM structure is limited to a single wavelength with
a narrow acceptance bandwidth. Tuning can be achieved in a narrow interval
by either rotating the crystal or changing the phase-matching temperature. To
circumvent these limitations and to support several different phase-matching pro-
cesses in one crystal, a 2D QPM structure is introduced.

6.1 Narrowband pumping

The narrowband pumping enables studies of all accessible phase-matching con-
ditions with a tunable laser, or a specific process with a fixed wavelength laser.
A narrowband source in this context refers to a bandwidth < 0.5 nm. The
lasers that were used were a continuous wave (cw) Ti:Sapphire laser and a pulsed
Nd:YAG laser (946 nm).

6.1.1 Wavelength tuning

In this section the results of SHG of a cw laser source will be presented. We
demonstrate a NPC that can support SHG in a discrete set of wavelengths from
a Ti:Sapphire laser. To the best of our knowledge, this is the first time SHG
is demonstrated in a NPC from a cw laser. Not only the fact that SH light
can be generated is important, but also the powers of that light. Therefore, we
also measure the power of the generated light. As can be seen from Eq. (2.17)
the intensity of SH light is proportional to the square of the fundamental light.
Therefore, it is customary to define a normalized conversion efficiency in order
to be able to compare different materials and experimental conditions,

ηnorm =
P2ω

P 2
ωL

. (6.1)

L is the length of the crystal and P2ω and Pω are the powers of the SH and
fundamental beams, respectively. On should remember that this is a simplified
expression for the intensity (originating from plane wave analysis resulting in Eq.
(2.17)), that does not take a gaussian beam shape into account. The full analysis
of gaussian focusing conditions is govern by an extensive work developed by Boyd
and Kleinman [26].

A CW Ti:Sapphire laser (Spectra Physics Model 3900S pumped by 10 W
Milennia Xs) was used for all of the temperature tuning measurements. A half
wave plate (λ/2) was used to rotate the polarization 90 deg to a z-polarized
state appropriate for the d33 coefficient. Following the half wave plate, a linear
polarizer (LP) was used to control the intensity of the light. A convex lens (L)
f = 300 mm was used to focus the light to a beam waist of w0 = 50 µm (1/e2
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6 OPTICAL CHARACTERIZATION

intensity). A screen, perpendicular to the fundamental beam, was used to observe
the phase-matching angles. Figure 6.1 demonstrates the necessary parts in this
simple setup for SHG.

Figure 6.1. Schematical description of the setup used for wavelength tuning
measurements. The different parts are explained in the text.

The fundamental wavelength was swept over a range, 850− 950 nm, where SHG
was observed. For every peak, the wavelength was measured by a spectrum
analyzer (HP 86140 A), and the output angle was recorded on the screen. The
result is presented in figure 6.2 and agrees very well with the theoretical values.
The theoretical calculation is directly based on a numerical solution of the Ewald
construction in chapter 3.3.3 together with the Sellmeier equation. The intensity
was measured with a power meter for the most efficient directions (i.e. collinear
and non-collinear of low order) as well as the intensity of the fundamental beam.
The calculated conversion efficiency is presented in table 6.5 for both of the
samples and for the four lowest order of phase-matching directions.
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Figure 6.2. Graph of the experimental (circles) and theoretical (squares) out-
put angles for the SH light as a function of wavelength. The angles are mea-
sured in air and relative to the fundamental input beam where 0 degrees indicates
collinear propagation. The values in parentheses are the indices specifying the
RLV Gmn involved in the phase matching.
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6.1 Narrowband pumping

Crystal RLV [m,n] ηnorm (%/(Wcm))

6.09×6 [1,0] 0.06
[1,1] 0.006
[1,2] 0.0002
[1,3] 0.0004

6.09×30 [1,0] 0.07
[1,1] 0.002
[1,2] 0.0002
[1,3] 0.0014

Table 6.5. Result of the efficiency measurements in terms of normalized con-
version efficiency for different RLVs.

It can be seen that the efficiency is substantially lower for non-collinear interaction
compared to collinear. The reason is a combination of both a reduced interaction
length and a smaller Fourier coefficient Gmn, discussed in chapter 3.3.2.

However, the focusing conditions used in this experiment are not optimal for
maximum conversion efficiency, since the Boyd-Kleinman focusing analysis has
not been considered. In another experiment with a cw Ti:Sapphire laser the light
was focused by a f = 50 mm lens to a spot size of w0 = 8 µm (1/e2 intensity).
The maximum normalized conversion efficiency reached 1.5 %/(Wcm) for the
6.09×6 µm2 sample, in collinear propagation. In our case, a relatively large focus
was chosen to aviod beam divergence and the possibility of extra, unexpected,
phase-matching conditions.

6.1.2 Angular rotation

In this section we demonstrate all the accessible phase-matching directions limited
by the aperture of the crystal. This measurement will give information about
which Fourier orders that are available. It is done in a way very similar to X-ray
diffraction in crystallography. In solid state physics the method is referred to as
the rotating crystal method where the crystal is illuminated under monochromatic
X-ray radiation. Here, the monochromatic source is a pulsed Nd:YAG laser and
the sample is rotated around the polar axis (z-axis), see figure 6.3. The laser
is a passively Q-switched 946 nm Nd:YAG pumped by a fiber-coupled 808 nm
diode, for more information see [27]. Under the conditions used in this setup the
pulse repetition rate was 25 kHz with a pulse length of 13 ns. A convex lens (L1)
f = 100 mm was used to focus the light to a beam waist of w0 = 35 µm (1/e2

intensity). This corresponds to a maximum peak intensity of 50 MW/cm2. It
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6 OPTICAL CHARACTERIZATION

was possible to adjust the intensity by the linear polarizer (LP) and the half wave
plate (λ/2). The sample was mounted on a rotational stage and kept at a stable
temperature by a peltier element. Since the laser is not tunable, the temperature
tuning of the crystal was employed and phase matching was achieved at 26 deg
C.

Figure 6.3. Schematical description of the setup used for the angular rotation
measurement. The different parts are explained in the text.

Next we measured the angular dependence of external output angle as a function
of external input angle. The output angle of the SH beam is measured relative to
the fundamental beam and is directly observed on screen 1. A flat mirror on the
screen was used to align it perpendicular to the fundamental beam. The input
angle is defined as the angle between the fundamental beam and the length axis
of the crystal (x-axis). Since the angular resolution scale of the rotational stage
was not precise enough we used a HeNe laser as an angular probe beam. It was
focused by a lens of long focal length (L2, f = 300 mm) to get a narrow spot size
on both the reflector and on screen 2. The reflector consisted of a piece of polished
glass, which gave a specular reflection. An angle was observed on screen 2 which
is related to the external input angle through some simple geometry. When the
sample was rotated, sharp SH peaks of varying intensity appeared on screen 1.
The position of each peak was noted on both screens which gave the external
input and output angles. Both of the samples were characterized in this way
and the experimental result is presented as circles in figure 6.4. The theoretical
data is numerically calculated by solving the Ewald construction, which in the
angular rotation case, is reduced to two coupled equations, Eq. (3.18). There is a
good overall agreement between the theoretical and experimental results even for
higher order Fourier coefficients which indicates the high quality of the crystals.
The inversion symmetry of the angular relation is expected since the rectangular
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6.1 Narrowband pumping

lattice exhibits inversion symmetry.
The conversion efficiency will reach much higher values for a pulsed system

compared to cw, since the peak energy is considerably higher. In this case, the
pump depletion has to be taken into account and the second-harmonic conversion
efficiency is given by [18],

η =
P 2ω

Pω

. (6.2)

The SHG power was measured for collinear propagation for both samples and
first non-collinear for the 6.09×6 µm2. It was not possible to access other orders
of phase-matching since the laser wavelength was fixed and the phase-matching
wavelength could just be slightly tuned by changing the temperature of the crys-
tal.

Crystal RLV [m,n] η (%)

6.09×6 [1,0] 32
[1,1] 8

6.09×30 [1,0] 29

Table 6.6. Results of the efficiency measurements in terms of conversion
efficiency for pulsed light and different RLVs.
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Figure 6.4. Graph of the experimental (circles) and theoretical (squares) out-
put angles for the SH light as a function of input angle. The angles are measured
in air and relative to the fundamental input beam and 0 degrees indicate collinear
propagation. The values in parentheses are the indices specifying the RLV Gmn

involved in the phase matching.
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6.2 Bandwidth issues

6.2 Bandwidth issues

It is interesting to investigate the bandwidth issues for the 2D QPM scheme,
from a fundamental point of view. A 1D QPM crystal has a narrow acceptance
bandwidth, which makes it impossible to generate broadband SH. Different al-
ternative concepts has been suggested in the 1D QPM case, such as quasicrystals
and chirped gratings (i.e. the period increases linearly with distance). The accep-
tance bandwidth is also an important parameter since it gives a upper value, from
a efficiency point of view, for the bandwidth of the fundamental laser source. As
it will be explained, temperature and wavelength tuning in collinear propagation
can also give information about the quality of the QPM structure.

6.2.1 Thermal bandwidth

The thermal bandwidth is measured by sweeping the temperature while measur-
ing the intensity. When the temperature is tuned, two processes will contribute
to the phasemismatch. Firstly, the thermal dispersion of the refractive indices
will cause a change in ∆k and secondly, the thermal expansion will alter both
the period Λ and the total length of the structure L. Following Fejer et al. [13]
a first order expansion in ∆k will give the following expression for the full width
at half maximum (FWHM) thermal bandwidth for the SHG light,

∆TFWHM =
0.4429λω

L

∣∣∣∣ ∂

∂T
(∆n) + α∆n

∣∣∣∣−1

, (6.3)

where α is the thermal expansion coefficient in x-direction and ∆n = n2ω − nω

is the difference in index of refraction. The derivative is given by Eq. (4.2)
evaluated at the wavelengths λ2ω and λω, respectively. The change of ∆k implies
that the intensity should have a sinc2 dependence on temperature, which it indeed
had. L is the length of the structure containing uniform periods. This bandwidth
expression is based on a analysis of a 1D QPM structure, but it should be valid
for a 2D QPM in the case of collinear propagation.

A CW Ti:Sapphire laser (Spectra Physics Model 3900S pumped by 10 W
Milennia Xs) was used for all of the bandwidth measurements. The fundamental
beam was polarized in z-direction by a half wave plate (λ/2) and a linear polarizer
(LP). The beam was focused by a f = 200 mm lens (L1) to a beam waist of
w0 = 30 µm (1/e2 intensity) into the crystal. The fundamental power of 550 mW
correspond to a intensity of 19 kW/cm2 in the focus. An imaging system was
used to image the spot of SH light at the facet of the crystal onto a photodiode
(PD) (Thorlabs DET-200). This setup was chosen to get accurate measurements
since the external output angle of the SH beam will change with temperature and
thereby the position of the spot at the photodiode, if only one focusing lens is
used. As a numerical example, the external output angle for the RLV G11 peak
is increasing with 1.3 degrees when the temperature is increased 70 deg C, for
the 6.09×6 µm2 sample. By using the one to one imaging system consisting of
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6 OPTICAL CHARACTERIZATION

the lenses L2 (f = 100 mm) and L3 (f = 100 mm) the angular variation will
be minimized and hence the spot will be steady at the center of the photodiode.
Measurement values of the intensity were taken by an oscilloscope (Textronix TDS
5104) together with a chopper (Stanford Research System SR 540). The chopper
was used in order to minimize detection of stray light from the surrounding,
rotating at a frequency of 75 Hz, not to coincide with multiples of 50 Hz power line
interference. A peltier element was used together with a temperature controller
(ILX Lightwave LDT-5525) of PID-type in order to achieve the temperature
tuning. Figure 6.5 illustrates the experimental setup.

Figure 6.5. Schematical sketch of the setup used for temperature tuning mea-
surements. The different parts are explained in the text.

46



6.2 Bandwidth issues

The result of the temperature tuning in collinear direction is presented in figure
6.6.
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Figure 6.6. SH intensity around 473 nm as a function of temperature. Mea-
sured for collinear propagation, RLV G10. The solid line is a sinc2 fit.

The intensity dependence follows the expected sinc2 behaviour. It is customary
to calculate an effective length Leff from Eq. (6.3) by solving for L and plug
in the measured thermal bandwidth. A specific crystal is poled with expected
good quality if the effective length is comparable with the physical one. This was
calculated for both of the samples along the RLV G10 and the values are given
in table 6.7.

Crystal ∆T (K) L (mm) Leff (mm)

6.09×6 4.1 7.0 6.0
6.09×30 3.6 8.5 6.8

Table 6.7. Result of the thermal bandwidth measurement in collinear propa-
gation and a comparison between the calculated effective length, Leff with the
measured grating length, L.
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6 OPTICAL CHARACTERIZATION

What is of more importance is to characterize the tuning properties for non-
collinear propagation. The temperature bandwidths are presented in figure 6.7
for light propagating along the RLV G11.
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(a) Sample 6.09×6 µm2, SHG at 470.87 nm.
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(b) Sample 6.09×30 µm2, SHG at 473.24 nm.

Figure 6.7. SH intensity as a function of temperature. Measured for first
non-collinear propagation, RLV G11.

The striking result is that the bandwidth is about three times larger for the 6.09×6
µm2 sample compared to the 6.09×30 µm2 sample and both of the samples exhibit
a broadening compared to collinear propagation. This increase in bandwidth has
also been seen by Broderick [24], in the case of non-collinear propagation in a
hexagonally poled LN crystal. Temperature tuning is equivalent to wavelength
tuning of the pump and hence it should be possible to obtain efficient phase
match over a wider wavelength range for non-collinear propagation.

6.2.2 Spectral bandwidth

Similarly to the temperature tuning one can also analyze the spectral tuning. It
is motivated since it gives a possibility to compare it to the temperature tuning.
For a uniform grating of length L, the wavelength acceptance bandwidth for the
fundamental beam is given by [13],

∆λωFWHM =
0.4429λω

L

∣∣∣∣n2ω − nω

λω
+

∂nω

∂λ
− 1

2
∂n2ω

∂λ

∣∣∣∣−1

. (6.4)

From a experimental point of view, the bandwidth can be measured in two differ-
ent ways. Either one has a tunable narrowband laser and sweeps the wavelength
while measuring the intensity, or one uses a broadband laser covering the ex-
pected bandwidth. The former option was chosen here, with the same setup as
described in the thermal bandwidth section. Differently from the temperature
tuning, the wavelength was tuned while the temperature was kept constant. The
wavelength of the fundamental beam was recorded by a spectrum analyzer (HP
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6.2 Bandwidth issues

86140 A). A narrowband excitation was achieved, since the bandwidth of the
laser was smaller 0.07 nm, which was the resolution of the spectrum analyzer.
This bandwidth is smaller than the bandwidth of the measured spectrums, which
ensures narrowband excitation.

The spectrums were recorded by tuning the wavelength and measuring the
corresponding power. Measurement values are not taken at evenly spaced points
since the wavelength of the laser was not continuously tunable. At some wave-
lengths it made a jump of 0.1 nm, probably due to longitudinal cavity modes in
the laser. However, this was not a severe problem since the main feature of the
spectrums were attained. Spectrums for collinear propagation is given in figure
6.8 and non-collinear in figure 6.9
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Figure 6.8. SH intensity as a function of fundamental wavelength. Measured
for collinear propagation, RLV G10. The solid line is a sinc2 fit.

Similarly to the thermal bandwidth measurement, an effective crystal length was
calculated using Eq. (6.4) together with the temperature derivatives, Eq. (4.2).
Again, there is an overall agreement in the calculated effective length and the
physical length, indicating a high quality of the poled structure.

Crystal ∆λω (nm) L (mm) Leff (mm)

6.09×6 0.22 7.0 6.7
6.09×30 0.10 8.5 7.7

Table 6.8. Result of spectral bandwidth measurement in collinear propagation
and a comparison between the calculated effective length, Leff with the measured
grating length, L.
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Figure 6.9. SH intensity as a function of fundamental wavelength. Measured
for first non-collinear propagation, RLV G11.

6.2.3 Comparison

The two different bandwidth measurements should agree with each other since
it is the same physical process going on. Both a change in temperature and
wavelength will yield a change in ∆k, thus introducing a phasemismatch. In
conclusion we observe a 3 times increase in bandwidth for the first non-collinear
propagation direction, G11 for the 6.09×6 µm2 sample. Contrary, the increase
in bandwidth for the 6.09×30 µm2 sample is almost negligible. An explanation
could be that the walk-off angle θ (see section 3.3.2) for the G11 peak is much
larger for the 6.09×6 µm2 lattice, thus increasing the acceptance bandwidth. It
is an important feature since it enables the possibility to generate SH light with
a broader bandwidth.
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6.3 Broadband pumping

6.3 Broadband pumping

In this section we will demonstrate the versatility of a nonlinear photonic crystal
in a SHG process. The purpose of using a broadband pump (∆λ ≈ 10 nm) is
to access several QPM interactions simultaneously, and thus have a multiline
coherent light source. A tunable and broadband pump source can be easily
achieved by an optical parametric oscillator (OPO).

6.3.1 OPO pump

The broadband laser source was based on a pulsed, tunable OPO, which is es-
sentially a second-order nonlinear process, phasematched in a 1D QPM KTP
(PPKTP) crystal, resonated by mirrors. The setup is described in figure 6.10. A
pulsed Nd:YAG laser (New wave research’s Minilase I/20 Hz) with a repetition
rate of 20 Hz and pulse width of 3 ns was used as pump source. The OPO will
resonate two interacting beams, the signal and idler, at different wavelengths.
These will exit the PPKTP crystal at different angles due to phase-matching
conditions. Therefore it is possible to block the idler by an aperture and filter
out the remaining pump at 532 nm and let the signal through. Tuning of the
wavelength can be achieved by either rotating the crystal or changing the phase-
matching temperature. The latter option was chosen in this work with a center
wavelength around 941 nm and a bandwidth of 9 nm. The signal was focused
to spot size of w0 = 700 µm (1/e2 intensity) by a positive lens with focal length
f = 200 mm.

Figure 6.10. Experimental setup of the broadband OPO laser source.

The results can be divided into two parts, where the first confirms previous nar-
rowband pumping results, but here with the fundamental light from a broadband
OPO, and the second focuses on a multiline tunable coherent source.

In this first part of the measurements, the OPO was adjusted for a center
wavelength at 941 nm and a bandwidth of 9 nm, with the spectrum depicted in
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Figure 6.11. Spectrum of the broadband OPO centered around 941 nm.

figure 6.11. The output fan of SH light is depicted in figure 6.12 consisting of
a collinear beam with RLV n = 0 index followed by consecutive higher orders.
The angles and wavelengths are given in figure 6.13(a) and are in good agreement
with the cw wavelength tuning, figure 6.2(b).

Light from all peaks in the output fan was focused into a fiber and its spec-
trum was recorded. This combined spectrum, given in figure 6.13(b), contains all
peaks up to the fifth order. It is consistent with the cw wavelength tuning as well
as figure 6.13(a). Each peaks spectrum was also measured, individually, in order
to confirm the correctness of the combined spectrum. An important feature of
this combined spectrum is that it contains several lines, relatively closely spaced.
It can be described as a discrete broadband generation of SH light, in different
directions.

Figure 6.12. Camera image of the whole output fan with output peaks labeled
with its respective RLV n-index. The image is a negative, where dark area
represents high intensity.
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Figure 6.13. Characteristics of the 6.09×30 µm2 sample in a broadband OPO
setup.

6.3.2 Tunable multiline coherent light sources

The two different samples were used in a broadband pump setup in order to
explore possible multiline generation. A common feature is that the intensity can
be interchanged between the generated waves by rotation of the crystal. Also the
wavelength of each peak is changed upon rotation, also a common property of
QPM. These devices act as a tunable multiline coherent light sources in the blue
spectral region.

6.3.2.1 6.09×6 µm2 sample Three narrowband beams (bandwidth ∼0.2
nm) are generated simultaneously from this setup. The n = 0 beam is collinear
with the pump and n = ±1 beams are generated symmetric with a angle sep-
aration of 9 deg (full angle). A fundamental beam, from the OPO described
above, with center wavelength 941 nm and a bandwidth of 9 nm was used as
pump source. The average power of the pump was 12 mW. By rotating the
crystal around the polar axis is was possible to tune the wavelength of the two
non-collinear beams, see figure 6.14. The optical power for each peak is given on
the y-axis.
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6 OPTICAL CHARACTERIZATION

Figure 6.14. Optical output power from the 6.09×6 µm2 sample for different
rotational angles of the crystal relative to the fundamental beam. The output
peaks are labeled with its respective RLV n-index, m = 1 for all cases. Note the
increasing angular separation between the n = ±1 peaks with increasing angle.
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6.3 Broadband pumping

6.3.2.2 6.09×30 µm2 sample Two narrowband beams (bandwidth∼0.2 nm)
originating from the RLV n = ±1 in figure 6.12 are generated simultaneously with
an output angle separation of 1.9 degrees (full angle). All beams according to the
output fan, figure 6.12, were present, but only the n = ±1 were characterized.
However, they are assumed to follow a similar behavior as the n = ±1 beams. A
fundamental beam, from the OPO described above, with center wavelength 946
nm and a bandwidth of 10 nm was used as pump source. The average power of
the pump was 12 mW. The wavelength separation between the two beams can
be chosen in the interval 0 − 4.5 nm. See figure 6.15 for a graphical illustration
of the tuning behavior for 5 different angles as well as the optical output power
of each beam. Tuning is achieved by rotating the crystal around the polar axis
in the interval 0-9 degrees.

K1-1 branchK1+1 branch

Figure 6.15. Experimental demonstration of a pulsed two-line coherent light
source where the separation can be tuned by rotating the crystal (6.09×30 µm2).
The average optical output power for each spectrum is indicated on the z-axis.
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The center wavelength of the SH light is predicted to be tunable slightly more
than 2 nm by changing the phase-matching temperature in the interval 70 deg
C, see figure 6.16. It should also be possible to adjust the center wavelength of
the fundamental beam in order to balance the output power to a desired ratio
between the two beams.
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Figure 6.16. Illustration of the accessible wavelengths by rotation of the
6.09×30 µm2 crystal as well as the predicted dependence for higher phase-
matching temperature of the 2D QPM.
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In this work we have presented a method to manufacture a NPC in KTP, for the
first time in this material. To the best of our knowledge, the feature size (periodic-
ity 6.09×6 µm2) is also the smallest achieved in two dimensions, in a ferroelectric.
In conclusion we have manufactured a NPC in KTP, a material much less sus-
ceptible to photorefractive damage compared to LN. This device can be used in
room temperature and still withstand high intensities. Two crystals of different
periodicity has been manufactured, one 6.09×6 µm2 and the other 6.09×30 µm2.
They can supply phase matching in collinear direction to the pump beam and
also several non-collinear directions, all with different wavelengths. Another use-
ful application might be simultaneously discrete SHG, when a broadband pump is
used. We also demonstrate a multiline coherent light source, consisting of several
beams at different wavelength and whose wavelength separation can be tuned.
A increase in bandwidth was also observed for non-collinear propagation. All
together, we have characterized and demonstrated phase-matching possibilities
in these NPCs by using several different laser pump sources.

7.1 Future work

There are a lot of interesting future work that can be done in the frame of NPCs.
Some are more realistic, for example a smart design of the pattern and optimizing
the domain propagation, whereas realizing a working all-optical micro-transistor
is more difficult and further away in the future.

7.1.1 Optimizing domain propagation

It was evident from the etched structures that it was difficult to propagate
cylinder-shaped domains all the way through the crystal. It would be neces-
sary to investigate how deep the domains had propagated by cutting the crystal
in slices and etch it. From our measurements, it appeared as the 2D structure
gradually merged into a 1D structure along the z-axis.

Apparently, there is a lot of work to do in order to optimize the manu-
facturing process, and mainly the electric field poling. As was discussed in the
fabrication chapter, there is a process window of parameters, where the poling
can be successful. In 2D poling this is much smaller compared to 1D poling, since
there is an extra dimension in which merging can occur. The goal to strive for
is to achieve domain inversion in cylinder shaped fashion along the polar axis,
without merging any domains in the xy-plane.

It is not sure that it will be enough to just adjust the poling settings in order
to obtain a high quality NPC. Instead it can be feasible to do some pre-poling
steps, for example potassium enrichment [17]. The purpose of this chemical
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patterning is to periodically increase the potassium concentration, and hence
lower the coercive field. The main advantage of this method is that the sample
homogeneity is improved and the domain merging is reduced.

7.1.2 Frequency conversion applications

A natural continuation would be to design the pattern of inverted domains, in
order to optimize the desired phase-matching conditions. A theoretical work by
Lifshitz et al. [4] presents a general method for the design of a 2D photonic qua-
sicrystal that can be utilized for simultaneously phase matching of an arbitrary
frequency conversion process. A quasicrystal is similar to a usual crystal structure
and exhibits symmetry and repeating patterns of unit cells. But, unlike a crystal,
this structure requires more than one unit cell to achieve large-order periodicity.
In such a quasicrystal, it is possible to have several phase-matching directions
and along each direction phase-match different processes. Unfortunately there
is an inherent limitation in efficiency of all these non-collinear schemes. The
problem resides in the limited interaction length since the spatial overlap be-
tween pump wave and generated wave becomes shorter when they propagate in
different directions, compared to the collinear case.

Fortunately this problem can be addressed in some cases by implementing
a novel design of the phase-matching scheme. This process starts with phase-
matched generation of a pair of symmetric second-harmonic waves, which then
interact to produce a fourth-harmonic wave that is collinear to the fundamental
[28]. Theoretical calculations suggest that this different scheme should be 4 times
more efficient compared to a conventional fourth-harmonic 1D QPM process.

7.1.3 Photonic applications

As it was mentioned in the introduction, it would be interesting to combine the
guiding properties of a photonic crystal together with a nonlinear material. This
could in principle be done in KTP by means of electric field poling and etching.
An experiment recently demonstrated 1D periodic poling in KTP with a period
of 720 nm, used for SHG [17]. This suggests that it is possible to achieve feature
sizes well below one micron. Together with a optimized etching step, it should
be possible to produce a photonic structure in a nonlinear material with a hollow
cylinder-formed openings.

Another possibility arises when a continuous electric field is applied over
such a structure. The opposite domains acquire positive and negative refractive
index changes, thus generating a photonic crystal realized in a nonlinear medium.
However, the refractive index change is relatively small for voltages that are low
enough, to not cause electrical breakdown.
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