Skip to main content

Saroosh Shabbir

Majorana representation in Quantum Optics - SU(2) interferometry and uncertainty relations.

Time: Fri 2017-05-12 13.00 - 15.00

Location: FA31, AlbaNova

Participating: Saroosh Shabbir

Export to calendar

Title: Majorana representation in Quantum Optics - SU(2) interferometry and uncertainty relations
Candidate: Saroosh Shabbir
Time: Friday May 12, 2017, at 13.00
Location: FA31, AlbaNova
Opponent: Prof. Maria Checkhova, Inst. of Optics, Information and Photonics, Friedrich-Alexander University of Erlangen, Nürnberg, Tyskland
Supervisor: Prof. Gunnar Björk

Abstract: The algebra of SU(2) is ubiquitous in physics, applicable both to the atomic spin states and the polarisation states of light. The method developed by Majorana and Schwinger to represent pure, symmetric spin-states of arbitrary value as a product of spin-1/2 states is a powerful tool that allows for a great conceptual and practical simplification. Foremost, it allows the representation of a qudit on the same geometry as a qubit, i.e., the Bloch sphere.

An experimental implementation of the Majorana representation in the realm of quantum optics is presented. The technique allows the projection of arbitrary quantum states from a coherent state input. It is also shown that the method can be used to synthesise arbitrary interference patterns with unit visibility, and without resorting to quantum resources. In this context, it is argued that neither the shape nor the visibility of the interference pattern is a good measure of quantumness. It is only the measurement scheme that allows for the perceived quantum behaviour.

The Majorana representation also proves useful in delineating uncertainty limits of states with a particular spin value. Issues with traditional uncertainty relations involving the SU(2) operators, such as trivial bounds for certain states and non-invariance, are thereby resolved with the presented pictorial solution.

Page responsible:service@aphys.kth.se
Belongs to: Department of Applied Physics
Last changed: May 09, 2017