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Speckle-based x-ray phase-contrast imaging has drawn in-
creasing interest in recent years as a simple, multimodal,
cost-efficient, and laboratory-source adaptable method.
We investigate its noise properties to help further optimi-
zation on the method and further comparison with other
phase-contrast methods. An analytical model for assessing
noise in a differential phase signal is adapted from studies
on the digital image correlation technique in experimental
mechanics and is supported by simulations and experi-
ments. The model indicates that the noise of the differential
phase signal from speckle-based imaging has a behavior
similar to that of the grating-based method. © 2016
Optical Society of America

OCIS codes: (110.6150) Speckle imaging; (110.7440) X-ray imaging;

(110.4280) Noise in imaging systems.
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X-ray phase-contrast imaging (XPCI) has received much inter-
est due to its better sensitivity for materials with low atomic
numbers in the hard x-ray domain, compared to traditional ab-
sorption contrast imaging. Different XPCI methods have been
developed, among which speckle-based imaging (SBI) has
drawn increased attention in recent years [1,2] for its flexibility
in an experimental arrangement, cost efficiency, and good
adaptability to laboratory systems.

The principle of SBI is to use a static diffuser to generate a
near-field speckle pattern [3] on the detector as a wavefront
marker. By tracking the change of the speckle pattern induced
by an object, including attenuation in intensity, local shift of
the patterns, and loss of local visibility, we can simultaneously
acquire transmission, differential phase-contrast (DPC) and
dark-field images.

Different SBI techniques have been developed, namely
single-shot speckle tracking (ST) [1,2] and several versions
of speckle scanning [4,5]. The first one is intuitive, as the
tracking is applied directly on two images, with and without
an object. The speckle-scanning technique is principally similar

to the grating-based imaging method (GBI) [6,7]: the diffuser
is scanned either in one direction [5] or on a 2D grid [8]. The
retrieval process is applied on the intensity variance maps
formed from all the scan steps for each pixel.

For GBI, the error propagation from original images to the
phase derivative is known [9,10]. SBI, where the phase deriva-
tive must be reconstructed from numerical optimization, has
not yet been explored. A quantitative expression for the noise
property of SBI will allow a better understanding and further
optimization of the method. This Letter mainly discusses the
single-shot speckle-tracking technique, as it is simplest and
commonly used.

An object in an x-ray beam induces a phase shift ϕ to the
propagating wave and causes the x-rays to refract. The angle α,
by which the exiting wave deviates from the incident wave, is
proportional to the derivative of the phase shift as α ≈ λ

2π
∂ϕ�x�
∂x

when α is small, where λ is the wavelength of the x-rays. If there
is a wavefront marker, such as the near-field speckle pattern in
SBI, α will lead to a transverse local shift s of the pattern related
to the propagation distance d as

s � λ

2π

∂ϕ�x�
∂x

d ; (1)

as illustrated in Fig. 1(a). When discussing noise in DPC, we
therefore discuss the noise in the estimated local displacement ŝ.

One common reconstruction method for ST is to model the
sample image as Î�r� � T �r � ŝ�I0�r � ŝ�, where T is the
transmission and I 0 is the measured speckle image without
an object (named as reference image) [11]. The dark-field signal
is not included in this model as we assume the object has low
scattering strength. T and ŝ; can then be retrieved by finding
the least-square difference between the model Î and the mea-
sured sample image I as

χ2 � w � �Î − I �2 �
Z

w�r0 − r� · �Î�r� − I�r��2d2r; (2)

where w is a window function to choose a subset for this cor-
relation process, and * is the convolution operator. In this
Letter, a rectangular window is always used for simplicity;
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hence, the integration can be seen as a sum over all the pixels
within the rectangular window directly.

Although x-ray SBI has only been developed for a few years,
techniques using pattern matching with similar principles have
been widely applied in different areas. For example, in exper-
imental mechanics, the photos of speckle-like patterns are used
for measuring stress or motion [12] and, in the fields of car-
diology and medical imaging, speckle-tracking echocardiogra-
phy is used to analyze the motion of tissues or blood [13]. An
experimental and theoretical analysis has been done on the er-
rors of digital image correlation in the field of mechanics
[14,15]. Here we derive an analytical model for DPC noise
in an x-ray SBI based on an established model from the study
of the digital image correlation [16,17].

As our main interest is in the phase, we assume T � 1.
Defining the difference between the estimate of the local shift
and the expected value as the error e � ŝ − s, we find

Î�r� � I0�r � s � e� ≃ I0�r � s� � ∇I 0�r � s� · e
� I�r� � ∇I�r� · e
� I�r� � � gx�r� gy�r� � · � ex ey �tr; (3)

where gx�r� � ∂I�r�∕∂x, gy�r� � ∂I�r�∕∂y, and tr denotes
transpose of the matrix. The error e is assumed small enough
that the higher-order terms in the Taylor expansion can be
ignored. The model assumes perfect sampling; hence,
I 0�r � s� � I�r�. If not, different interpolation algorithms
need to be discussed, which is not included here. Some exam-
ples have been derived in [16] and show that when interpola-
tion is employed the reconstruction is biased, but the variance
remains the same.

Substituting Eq. (3) into Eq. (2), and including the noise ε0
and ε present in the reference and sample images under the
assumption of white Gaussian photon noise, we have

χ2 �
Z

w�r0 − r� · �Î�r�� ε0�r� ŝ� − I�r� − ε�r��2d2r

�
Z

w�r0 − r� · �gx�r�ex � gy�r�ey � ε0�r� ŝ� − ε�r��2d2r:

Minimizing χ2 by solving ∂χ2
∂ei

� 0, i � x; y, we get [16]

� ex ey �tr �
" R

wg2xd
2r

R
wgxgyd

2rR
wgxgyd

2r
R
wg2yd

2r

#
−1

×

" R
wεgxd

2r −
R
wε0gxd

2rR
wεgyd

2r −
R
wε0gyd

2r

#
;

where the variables r0 and r are suppressed for simplicity,
e.g., w � w�r0 − r�.

We assume stationary statistics for the speckle pattern. From
here on, we only calculate the variance in the x-direction as
representative for both directions [16]:

σ2sx ≈ 2σ2ph
�R wg2yd

2r�2 R w2g2xd
2r � �R wgxgyd

2r�2 R w2g2yd
2r

�R wg2yd
2r
R
wg2xd

2r − �R wgxgyd
2r�2�2

≈
2σ2phR
wg2xd

2r
; (4)

where σ2ph is the variance of the photon noise, which is assumed
to be uncorrelated and approximately the same for different
pixels. The approximation is valid for the window functions
of weight 1 (i.e., w � 1 within the window) and, under the
assumption that for random speckle patterns and sufficiently
large window sizes, the covariance of the gradients in the
two directions within the subset window is null, i.e.,Z

wgxgyd
2r ≈ 0: (5)

From Eq. (1), it is also possible to get the variance for the differ-
ential phase as

σ2∂xϕ �
�
2π

λd

�
2

σ2sx �
�
2π

λd

�
2 2σ2phR

wg2xd
2r
:

This variance equation for SBI can be compared to the expres-
sion for the variance of GBI [9,10]:

σ2φ �
2σ̄2ph
v2N Ī 2

; (6)

where φ denotes the phase difference in the sinusoidal intensity
function for GBI, N is the number of phase-stepping steps, v is
the visibility, σ̄2ph is the average of the photon noise for different
phase-stepping positions, and Ī is the average intensity.
Equations (4) and (6) are in similar forms: both are propor-
tional to the photon noise with a scaling factor. The scaling
factor for ST, �R wg2xd

2r�−1, is related to the speckle-pattern
visibility, in a manner similar to the GBI method. We define

a concept related to the visibility for ST as vx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N Σj ∂I∂x j2

q
∕Ī

with a physical meaning of normalized average gradient indi-
cating the absolute contrast of the speckle pattern within the
window, whereN is the total number of pixels within a window
by using a rectangular function. Then Eq. (4) can be written as

σ2sx �
2σ2ph
v2xN Ī 2

; (7)

which is very similar to the expression for GBI, as N in Eq. (6)
can also be regarded as the number of data points in the cor-
relation analysis.

The speckle-scanning technique shares the same principle as
that of speckle tracking, except that

R
wg2xd

2r needs to be taken
from the scanned intensity map, and the window function is

Fig. 1. (a) Simplified illustration of an object inducing phase shift to
the propagating wave, which converts into a refraction angle and leads to
a transverse displacement on the detected image. (b) Speckle-tracking
method experiment arrangement. A correlation analysis is done on
a small window of subsets extracted from the images taken with and
without samples.
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normally chosen as 1 to use the whole size of the scanned map.
If the scan step is much smaller than one effective pixel size, gx
and gy in the scanned intensity map of one pixel are likely to be
correlated; hence, Eq. (5) might not be valid.

Simulations are performed to support the analytical model us-
ing the Fresnel diffraction theory under the projection approxi-
mation [18] in a similar manner to [10,19]. Experiments are
performed using a liquid-metal-jet source, a piece of sandpaper
as a diffuser, and a CCD camera with a pixel size of 9 μm.
The arrangement in both cases follows that of Fig. 1(b).

From Eq. (4), it follows that if
R
wg2xd

2r is constant, σ2sx is
linearly dependent on photon noise σ2ph. This is difficult to verify
experimentally since varying the exposure time to change σ2ph
also alters gx . In simulations, the variance of noise can
be changed without altering the gradient gx by disconnecting
the mean of the Gaussian distribution from its variance.
Figure 2(a) shows the results of the simulations done as described
above with σ2ph changed from zero to four times its original value.
The window function w is a 24 × 24 pixel 2D rectangular func-
tion. The source is assumed to be monochromatic with an
energy of 16 keV to speed up the simulations. The diffuser is
1 m, and the detector is 2.9 m from the source. The variance
of the simulated local shift for different σ2ph is marked as dots,
with error bars from five repeated simulations with 1000 indi-
vidually retrieved data points each. The noise predicted from
Eq. (4) shown as a solid line agrees quite well with the simulated
data. Some practical factors such as how the gradient of the image
is calculated and the limitations of the assumptions that σ2ph is
homogeneous in the image and that the higher-order terms can
be omitted in the derivation of Eq. (3) can cause the deviations
between the values from the analytical model and simulations.

Simulations are also undertaken with varied exposure times
and the correct relation between mean and variance in the
Gaussian distribution. The simulated results (circles) and pre-
dicted values (solid line) are shown in Fig. 2(b). As photon noise
σ2ph ∝ I ∝ t, where t is exposure time, and

R
wg2xd

2r ∝ t2, it can
be deduced from Eq. (4) that σ2sx ∝ t−1. As quite long exposure
times are applied for these simulations, the noise behavior from
simulations agrees very well with the prediction, but we can still
observe that at a relatively shorter exposure time (200 s), i.e.,
higher noise, the standard deviation of the simulated noise is
larger than at longer exposure times.

Experiments are also done under varied exposure times, and
the measured results (circles) are compared to the analytical
model (solid line) in Fig. 3. The source was operated at
40 kVp with an emission current of 0.6 mA. The diffuser is
a piece of P800 sandpaper placed 0.65 m after the source
and 0.85 m before the detector. Images were acquired with

exposure times from 5 to 100 s. The measured results follow
the trend of the analytical model, even under non-ideal exper-
imental conditions, e.g., the speckle patterns are not entirely
homogeneous so the gradients may vary between differ-
ent areas.

The other factor that affects the noise in the result isR
wg2xd

2r, or the window function if we assume stationary sta-
tistics for the speckle pattern. Different window functions can
be applied, such as a hamming window [11]. With a 2D rec-
tangular window function in this Letter, it is the width a of the
window that determines the integration result directly as
σ2sx ∝ 1∕a2. The effect of subset choosing is previously observed
and investigated in simulations and experiments [17]. In
Eq. (4), it is analytically derived, and experiments are repeated
below to support the derivation, as shown in Fig. 4. The speckle
images are acquired with 40 s of exposure time and the same
other settings as the experiments in Fig. 3. Different window
sizes are adopted for integration of gx in Fig. 4(a) and for ap-
plying the correlation analysis in Fig. 4(b), where the variance
of the shift for different window sizes is obtained experimen-
tally (circles) and analytically (solid line). The variance de-
creases when the window size increases but, for sufficient
window sizes, the improvement is small. The optimal window
size varies with the system parameters, and the analytical model
helps with finding it.

As discussed above, a larger window size will always provide
lower noise. However, other image quality measurements are
not included in Eq. (4). Most importantly, the resolution is
lowered for larger window sizes. Hence, for completeness,
we simulate the resolution dependence on the window size, re-
trieving the contrast-to-noise ratio (CNR) for objects with dif-
ferent spatial frequencies.

The objects are simulated as sinusoidal gratings made of
plastic (polyethylene terephthalate). Their periods and thick-
nesses are equal, ranging from 20 μm to 2 mm. Hence, the
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Fig. 2. (a) Simulations with a varied image noise variance, but the
same intensity. (b) Simulations with varied exposure times. The width
of the correlation window is 24 pixels.

Exposure time (s)
0 50 100

2 s x (
pi

xe
l2

)

0

0.02

0.04

0.06

0.08(a)
Model
Experiment

1/time (s-1)
0 0.1 0.2 0.3

2 s x (
pi

xe
l2

)

0

0.02

0.04

0.06

0.08(b)

Model
Experiment

Fig. 3. Variance of the displacement (in pixels) in the x-direction
for different exposure times in experiments. The width of the corre-
lation window is 24 pixels.

Window area (pixel2)
0 1000 2000 3000

w
g

x2
d

2
r 

106

0

1

2

3

4

5(a)
Linear fitting
Experiment

Window area (pixel2)
0 500 1000 1500

2 s x (
pi

xe
l2

)

0

0.05

0.1

0.15

0.2

0.25

0.3(b)
Model
Experiment
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are applied to the correlation analysis on the experimental images.
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expected phase gradient is also of sinusoidal shape with the same
amplitude for all objects. The simulations use a 1 m source-to-
object and 2.9 m source-to-detector distance, leading to an ef-
fective pixel size of around 3.1 μm, and the spectrum from
the liquid-metal-jet source. No obvious Talbot effect is observed,
as the relatively large periods of the objects give long Talbot dis-
tances. Square windows w with varied widths (a � 5, 10, 20, 40,
and 80 pixels) are applied. The standard deviation of the noise is
taken from experimental data with 5 min of exposure time and
the same arrangement as for simulations. Under the assumption
of white noise, the CNR is calculated as an image contrast di-
vided by the standard deviation of the noise.

The results are shown in Fig. 5 for this particular applica-
tion. The curves only continue until the contrast drops below
10%; as for lower contrasts, artifacts are most likely observed.
As expected, the CNR for the objects of lower frequencies in-
creases with window sizes, due to the lower noise levels.
However, with increasing spatial frequency, the CNR drops
faster for the larger windows due to the decrease in resolution.
This illustrates the trade-off between the spatial resolution and
noise in choosing the right window size.

In conclusion, an analytical model for noise assessment of
the speckle-based differential phase contrast is proposed as
Eq. (4). Some assumptions are necessary for this simplified
model. (i) The sample image can be modeled as a displaced
reference image, i.e., we assume a low-absorbing and smooth
sample. (ii) The images have white Gaussian distributed pho-
ton noise. (iii) The speckle pattern has stationary statistics
throughout the images, and the window size is large enough
that the covariance of the gradients in two directions can be
neglected as Eq. (5). (iv) The assessment error is small enough
that we can omit the higher-order terms in the Taylor expan-
sion in Eq. (3). (v) The image sampling is perfect, so the der-
ivation does not need to include interpolations.

We expect to use this simple model as a reference in further
optimization of SBI. Some parameters affecting the assessment
error are discussed, namely quantum photon noise and window
size. Increasing window size and increasing exposure time both
lead to a reduction in the noise in the DPC image. We also
show that for the single-shot speckle-tracking technique, the
window size limits the spatial resolution. Using this model,
we can predict the performance of the DPC signal from the
speckle-based method, and make a balanced choice depending
on window size and exposure time.

As can be seen from the model, the gradient of the speckle
pattern, which is determined by the speckle size and contrast,
also affects the DPC noise. We have not discussed it further, as
it is affected by many parameters such as structure, material,
and other properties of the diffuser, as well as the x-ray source,
the detector, and the geometry of the arrangement. The ideal is
a speckle pattern with large gradient, which means a small
speckle size and a high contrast, while the pattern should
not be periodic which can cause phase wrapping for larger
phase shift. The diffuser should also not absorb too much
of the flux. It might be difficult to find such a diffuser directly,
as a smaller structure size of the random modulator normally
generates lower-contrast speckle patterns.

This Letter focuses on the speckle-tracking technique.
Other SBI techniques share essentially the same principle,
but more restrictions are required for this simple model to
be valid. For the speckle-scanning technique, the scan step
needs to be larger than the effective pixel size, or the intensity
patterns will be correlated to each other, and the white noise
assumption in the derivation is no longer valid.
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